1.1. Требования к машинам и деталям

К большинству проектируемых машин предъявляются следующие требования:

- высокая производительность;
- экономичность производства и эксплуатации;
- равномерность хода;
- высокий кпд;
- точность работы;
- компактность, надежность и долговечность;
- удобство и безопасность обслуживания;
- транспортабельность;
- соответствие внешнего вида требованиям технической эстетики.

При конструировании и изготовлении машин должны строго соблюдаться ГОСТы.

Применение в машине стандартных деталей и узлов уменьшает количество типоразмеров, обеспечивает взаимозаменяемость, облегчает ремонт машин.

Одним из главных требований, предъявляемых к деталям, является *технологичность*, которая значительно влияет на их стоимость. Следует предусматривать максимально возможное применение стандартных узлов и деталей. Существенными показателями технологичности конструкции являются ее *материалоемкость*, *трудоемкость* изготовления и себестоимость. Технологичной считают такую конструкцию, для которой характерны минимальные затраты при производстве и эксплуатации.

1.2. Критерии работоспособности и влияющие на них факторы

Быть работоспособными - значит находиться в таком состоянии, в котором детали могут выполнять заданные функции в пределах технических требований. Без учета работоспособности детали нельзя говорить о её надежности.

Работоспособность деталей оценивают:

- прочностью;
- жесткостью;
- износостойкостью;
- теплостойкостью;
- вибрационной устойчивостью.

Значение того или иного параметра возрастает или уменьшается в зависимости от функционального назначения детали. Например, для крепежных винтов - прочность, ходовых деталей - износостойкость. Работоспособность обеспечивают выбором соответствующего материала и расчетом детали по

основным критериям работоспособности.

Рассмотрим критерии работоспособности:

Прочность - главный критерий. Различают статическую и усталостную прочность. При статической - разрушение наступает при превышении предела прочности. При усталостной - при превышении предела выносливости. Усталостная прочность значительно снижается при наличии концентраторов напряжений или дефектов производства. Факторы, влияющие на величину коэффициента запаса усталостной прочности, степень ответственности детали, однородность материала и надежность его испытаний, точность расчетных формул, влияние технологии изготовления детали и т.д. В каждой отрасли машиностроения, основываясь на своем опыте, выбирают свои нормы запаса прочности для конкретных деталей. Эти нормы не являются стабильными. Их периодически корректируют по мере накопления опыта и роста уровня техники.

В деталях машин существенным является и разрушение от контактных напряжений. Они возникают в месте соприкосновения двух деталей в тех случаях, когда размеры площади касания малы по сравнению с размерами деталей. Если они больше допускаемых, то на поверхности деталей появляются вмятины, борозды, трещины или мелкие раковины. Подобные явления наблюдаются у фрикционных, зубчатых, червячных и цепных передач, а также в подшипниках качения.

Жесткость. Расчет на жесткость предусматривает ограничение упругих деформаций деталей в пределах, допустимых для конкретных условий работы, например:

- условия работы сопряженных деталей (правильность зацепления зубчатых колес);
 - технологические условия (точность станка и т.д.);

Значение расчетов на жесткость возрастает в связи с широким внедрением высокопрочных материалов, у которых увеличиваются характеристики прочности, а модуль упругости практически не меняется.

Износ - процесс постепенного уменьшения размеров деталей в результате трения. Детали, изношенные больше нормы, бракуют и заменяют при ремонте. Интенсивность износа зависит от величины давления на поверхности соприкосновения деталей, коэффициента трения и износостойкости материала.

Различают несколько видов изнашивания деталей:

- абразивный износ (имеет основное значение);
- износ при заедании;
- износ при коррозии.

5

Для повышения износостойкости широко используют смазку трущихся поверхностей, применяют антифрикционные материалы, специальные виды химико-термической обработки поверхностей, уменьшают нагрузки и т.д.

Износостойкость значительно понижается при коррозии. Что надо учи

тывать при проектировании деталей, работающих в агрессивных средах.

Теплостойкость. Нагрев способствует:

- понижению механических свойств и появлению ползучести;
- понижению защищающей способности масленых пленок, и, следовательно, увеличению износа;
 - изменению зазоров в сопрягаемых деталях (заклинивание);
 - понижению точности машин.

Для определения температуры работы деталей проводят тепловые расчеты и, если необходимо, вносят соответствующие конструктивные изменения (применяют специальные устройства для охлаждения).

Виброустойчивость. Вибрации понижают усталостную прочность деталей, т.к. возникают дополнительные переменные напряжения. В некоторых случаях они снижают качество работы машины (например, в металлорежущих станках снижают точность обработки и ухудшают качество обрабатываемой поверхности). Особое значение имеют резонансные явления.

ЛЕКЦИЯ 2.

План:

- 2.1. Понятие о надежности машин
- 2.2. Основы проектирования механизмов
- 2.3. Стадии разработки проекта

2.1. Понятие о надежности машин

Надежность - это вероятность безотказной работы в течение заданного срока службы в определенных условиях. Под заданным сроком службы понимается время до первого планового ремонта или между плановыми ремонтами. Надежность определяют для машины в целом и для отдельных её узлов и деталей. Расчет надежности базируется на статистических данных.

Для оценки надежности выбирают различные показатели: число отказов в работе, средний срок службы в часах, число километров пробега и т.д.

Коэффициент надежности сложного изделия равен произведению коэффициентов надежности отдельных составляющих элементов. Таким образом:

- надежность сложной системы всегда меньше надежности самого не надежного элемента, поэтому важно не допускать в систему ни одного ненадежного элемента;
- чем больше элементов имеет система, тем меньше её надежность. Рассмотрим изменение надежности системы во времени, которое характеризуется интенсивностью отказов - т.е. числом отказов в единицу времени (рис. 2.1).

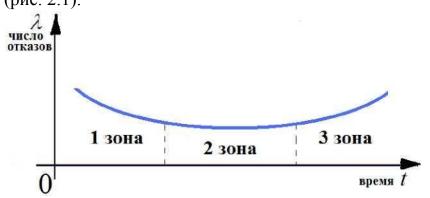


Рис.2.1. Изменение надежности системы во времени

- **1 зона** период приработки. Вследствие приработки все трущиеся детали автоматически доводятся до наиболее рациональных форм. Из этого следует, что для повышения надежности целесообразно производить обкатку изделия до сдачи его в эксплуатацию.
- **2 зона** период нормальной эксплуатации, характеризуется примерно постоянным значением интенсивности отказов. Причиной отказов здесь служат случайные перегрузки, скрытые дефекты производства, не проявившиеся в период приработки.

3 зона - период проявления изнашивания. Здесь различные виды износа достигают таких значений, которые приводят к разрушению деталей или к нарушению нормальной работы машины. Машина потребует очередного ремонта.

Основы надежности закладываются конструктором при проектировании изделия. Плохо продуманные, не отработанные конструкции не надежны.

Рассмотрим основные пути повышения надежности:

- улучшение качества производства конструкции;
- уменьшение напряженности деталей (рационально применять высокопрочные материалы, различные виды термической обработки, которые увеличивают нагрузочную способность зубчатых передач до 2...4 раз);
 - применение хорошей смазки;
 - установка предохранительных устройств;
 - должный контроль ОТК.

2.2. Основы проектирования механизмов

Основные принципы проектирования:

- 1. *Последовательность* (очередность выполнения этапов при проектировании) и *итерационность* (корректировка проектных решений предыдущих этапов).
- 2. *Схемная надежность* (min элементов в конструкции). *Коэффициент надежности* сложного изделия выражается произведением коэффициентов надежности составляющих элементов. Чем больше элементов имеет система, тем меньше ее надежность.
- 3. *Равнопрочность*. Надежность сложной системы всегда меньше надежности самого ненадежного элемента, поэтому важно не допускать в систему ни одного слабого элемента.
- 4. **Унификация** стремление к использованию однотипных и стандартных элементов. Стандартные узлы и детали разрабатывают на основе большого опыта и изготовляют на специализированных заводах с автоматизированным производством.
- 5. *Компромиссность* проектных решений (поиск компромиссов между техническими характеристиками и экономическими показателями)
- 6. *Резервирование* создание в конструкции определенных резервов (запас прочности, и т.д.).
- 7. Сменные детали должны быть *взаимозаменяемыми* с запасными частями. Конструкция должна обеспечивать *легкую доступность* к узлам.

Конструирование машин и механизмов - творческий процесс. Основные особенности этого процесса состоят в многовариантности решений, необходимости согласования принимаемых решений, что делает необходимым анализ этих вариантов, принятие решений с учетом предшествующего опыта

и использованием существующих аналогичных конструкций. В наше время большое внимание уделяется вопросам технической эстетики, поэтому создаваемые конструкции должны быть не только надежными и экономичными, но и сочетать красивый внешний вид с целесообразностью форм.

Проектированием называется процесс разработки технической документации, содержащей технико-экономические обоснования, расчеты, чертежи, макеты, сметы, пояснительные записки и другие материалы, необходимые для производства машины. По типу изображения объекта различают **чертежное** и объемное проектирование; последнее включает выполнение макета или модели объекта. Для деталей машин характерен чертежный метод проектирования.

Совокупность конструкторских документов, полученных в результате проектирования, называется *проектом*.

Чтобы избавить конструктора от выполнения трудоемких расчетов, многофакторного анализа и большого объема графических работ используют ЭВМ. При этом конструктор ставит задачу для ЭВМ и принимает окончательное решение, а машина обрабатывает весь объем информации и делает первичный отбор. Для такого общения человека с машиной создаются системы автоматизированного проектирования (САПР). *Целью создания САПР* являются повышение технико-экономического уровня проектируемых объектов, сокращение сроков, уменьшение стоимости и трудоемкости проектирования.

2.3. Стадии разработки проекта

Стадии разработки конструкторской документации и этапы работ установлены стандартом, который обобщает опыт, накопленный в передовых странах по проектированию механизмов и машин.

Первая стадия - разработка технического задания - документа содержащего наименование, основное назначение и технические характеристики, показатели качества и технико-экономические требования, предъявляемые заказчиком к разрабатываемому изделию.

Вторая стадия - разработка технического предложения — совокупность конструкторских документов, содержащих технические и технико-экономические обоснования целесообразности разработки документации изделия на основании анализа технического задания, сравнительной оценки возможных решений с учетом достижений науки и техники в стране и за рубежом, а также патентных материалов. Техническое предложение утверждается заказчиком и генеральным подрядчиком.

Третья стадия - разработка эскизного проекта — совокупность конструкторских документов, содержащих принципиальные конструктивные решения и разработки общих видов чертежей, дающих общие представления об устройстве и принципе работы разрабатываемых изделии, его основных пара

метрах и габаритных размерах.

Четвертая стадия - разработка технического проекта — совокупность конструкторских документов, содержащих окончательные технические решения, дающих полное представление об устройстве изделия. Чертежи проекта состоят из общих видов и сборочных чертежей узлов, полученных с учетом достижений науки и техники. На этой стадии рассматриваются вопросы надежности узлов, соответствие требованиям техники безопасности, условиям транспортирования и др.

Пятая стадия - разработка рабочей документации- совокупности документов, содержащих чертежи общих видов, узлов и деталей, оформленных так, что по ним можно изготавливать изделия и контролировать их производство и эксплуатацию (спецификации, технические условия на изготовление, сборку, испытание изделия и др.). На этой стадии разрабатываются кон- срукции деталей, оптимальные по показателям надежности, технологичности и экономичности.

Курсовой проект по деталям машин в условиях учебного заведения включает в себя все стадии разработки.

В соответствии с разработанной в процессе проектирования рабочей документации в дальнейшем создается *технологическая документация*, которая определяет технологию изготовления изделия.

Рабочие, технологические, а также нормативно-технические документы (последние включают стандарты всех категорий, руководящие технические материалы, общие технические требования и т. п.) в совокупности составляют *техническую документацию*, необходимую для организации и осуществления производства, испытаний, эксплуатации и ремонта предмета производства (изделия).

Условия работы деталей машин бывают весьма разнообразными и трудно поддающимися точному учету, поэтому расчеты деталей машин часто выполняют по приближенным, а иногда эмпирическим формулам, являющимся результатом обобщения накопленного опыта проектирования, испытаний и эксплуатации деталей и узлов машин.

В процессе проектирования деталей машин встречаются два вида расчетов, а именно: **проектный расчет**, при котором обычно определяются основные размеры деталей или узла, **проверочный расчет**, когда для созданной конструкции определяется, например, значение напряжений в опасных сечениях, тепловой режим работы, долговечность и другие параметры.

Контрольные вопросы и задания

- 1. Что называют механизмом, машиной, деталью, узлом?
- 2. Перечислите виды соединений.
- 3. Укажите назначение передач вращательного движения.
- 4. Приведите классификацию передач вращательного движения.

- 5. Назовите критерии работоспособности деталей машин.
- 6. Что понимают под проектированием?
- 7. Перечислите стадии разработки проекта
- 8. Что дает автоматизация проектирования?
- 9. Что понимают под надежностью машин?
- 10. Как оценивают надежность машин?
- 11. Как изменяется надежность во времени?
- 12. Укажите пути повышения надежности машин.