

Argument against Python in Education
Principal Author: Patricio Whittingslow

Authors: Mario Rugiero

Table of contents
Table of contents
Introduction

Motivation
Outline of Problems

Problems
It is hard to learn

Readability
Autoformatting
Whitespace is code
Exceptions
Complex APIs
Intellisense is weak (Dynamic typing)
Library cognitive overload
Inconsistency
Gotchas

Python harms ability to reason about a problem
Python's interpretation of OOP obscures data
Dynamic typing
No user types outside classes
Only one way of doing things
"Programs have to be fast"

Other
Python prevents innovation
Loss of context in code
Python's carbon footprint

Why is Python like this?
Python
Go

Solutions
Go
Kotlin
Swift

Solutions Continued: Honorable mentions
Hedy
Zig
Dart
Rust
Julia
Go+

Sources
[1] Teaching 11 year olds to program

First message
Second Message

[2] Using Go in the classroom
[3] Courses that use Golang
[4] Perfbook
[5] Language Design in the Service of Software Engineering
[6] Testing the principle of orthogonality in language design
[7] Discord conversation with Tim Stiles and Mihai Todor
[8] Prat, Chantel S., et al. "Relating natural language aptitude to individual differences in
learning programming languages." Scientific reports 10.1 (2020): 1-10.
[9] CppCon 2018: Stoyan Nikolov “OOP Is Dead, Long Live Data-oriented Design”

Introduction
This document lists evidence against using Python to teach undergraduate/graduate students
and presents alternative programming languages as a solution to this problem.

The author teaches a course called "Introducción al Pensamiento Computacional"
(Introduction to Computational Thinking in English). This is an undergraduate course that
introduces the following concepts to students who may have never programmed before:

●​ Expressions
●​ Basic data structures (Python primitives, dict, list, tuple)
●​ Control structures (if, while, for)
●​ Functions

The course also deals with introduction to data analysis using pandas, numpy and matplotlib
libraries.

Throughout this document the author will refer to "modern languages". This makes
reference to a recent change in language design preference which led to various general
purpose programming languages which are memory safe, statically typed and apt for system
programming such as Scala, Swift, D, Rust, Go, Zig, Nim, Kotlin among various others.

Motivation
In 2020 a study was performed to evaluate what skills help students learn languages

faster. This study was performed with Python as the language of choice. The results of the study
were astounding to the programming world. Math was not a skill needed to be a programmer,
predicting only 2% of the variance. The headline in many blog posts treating the subject reads
"Learning to code requires language skills, not math". This is because natural language skills
(reading normal text) predicted 17% percent of the variance. This result put newfound interest in
the importance of code legibility [8].

What was not talked about as much were the other predictors. Working memory capacity
and reasoning skills predicted a staggering 34% of the variance. This particular result is of
interest to the author precisely because the study was performed with Python. Maybe this
predictor can be reduced if Python is swapped out for an easier language to learn. And if this
can be done, it would make the field of programming so much more accessible to those who do
not have the best of reasoning skills.

Outline of Problems
Problems described in detail throughout this document are summarized briefly below.

●​ Readability: Much of Python in the wild is not readable, this includes the standard library.
Students then miss out on reading other people's code, an important part of
programming.

●​ Autoformatting: Boon to readability. Not present by default
●​ Whitespace is code: Invisible syntax has been problematic for students
●​ Exceptions: Students have to deal with an extra control flow concept or avoid using

throwing functions like str or list.index
●​ Complex API: Asking students to depend on pandas/numpy offline/online documentation

is unthinkable. Even standard library documentation is hard to follow for a newbie: see
open. This forces students to constantly depend on Google search for finding
examples+StackOverflow– this context switching is known to hamper learning.

●​ Intellisense is weak: Dynamic typing weakens dev experience. Students have less
confidence due to this.

●​ Library cognitive overload: pandas and numpy are basically DSLs, each with their own
programming paradigm

●​ Inconsistency: Python is an old language which means we are stuck with some design
decisions.

●​ Python obscures data: Python mixes behavior and data structure in code making it
harder to reason about a problem. Ideally data should be understood before solving the
problem.

●​ No user types: Students program in the dark. There is little to no knowledge of the shape
of the data when programming in Python. One must depend on the dict and list types
which offer little introspection into the data.

●​ Python provides many ways of doing the same thing. Learning multiple ways to do one
thing is harmful to the learning process [6]

●​ Loss of context in code: It is sometimes outright impossible to make out what data one is
working with without exploring the data pipeline. This slows students down when
programming. This also slows students down when reading code.

Problems

It is hard to learn

Python is often cited as an easy to learn language though the author believes this is a mixup
with the idea that Python is easy to use. Python compared to other languages as an introductory
language is notoriously hard. The main talking points on this matter are as follows.

Readability
Python as a language is widely regarded as having clean syntax and a prose-like aspect to its
design. However, would you suggest a novice programmer read other people's Python code
online? How about the standard library? Surely Python behind the scenes is readable?

Truth be told, reading Python is only appealing when it's pure Python written by an experienced
Pythonista.
A lot is lost when students are unable to read other people's code

●​ They must take our word that what they are learning is useful and solves real problems
●​ Reading the standard library implementation of a function (or any code in the wild) might

give insight to how another person thought of the problem

Autoformatting as we will see in the following section adds readability.

Autoformatting
There has recently been a push to enforce the use of an uncompromising auto-formatter for
most languages. This move began in the 1980's with Unix indent tool and is now ubiquitous in
nearly every language due to the huge readability and productivity gains; there's even one for
Python.

Even if Python remains the de facto language to be used, students should be forced to use an
auto formatter that triggers on-save in the IDE. Some benefits:

●​ Students worry less about formatting their code, more on solving the problem. The
mental energy this saves is noticeable.

●​ Source code now looks the same regardless of who wrote it- students can look at a
friend's code and understand it immediately. Help between students should become
more prevalent.

Whitespace is code
The arguments for whitespace as part of the language syntax are as follows:

1.​ Code ease of readability compared to curly-brace languages
2.​ Bugs caused by whitespace interpretation in C
3.​ It forces you to format your code so it is more readable

With regards to Readability

As for the first argument (1.) there is no solid evidence to support it. The author suggests
after extensive experience with Python and curly brace languages with enforced auto formatters
there are advantages to readability to each language in how it deals with control structure
delimitation but that there is no language that does it all perfectly for every case.

The author also dismisses the last two arguments (2. and 3.) as invalid since most modern
languages do not rely on whitespace for syntax and since most, if not all, modern languages
use autoformatters which enforce not only code indentation but several other readability rules.

With regards to user experience
There is however, the issue of how whitespace as code is detrimental to the learning
experience. In the author's experience it was a source of confusion to students who intuitively
wrote code which seemed correct but were thrown off by the level of indentation. Two issues
were prevalent:

●​ rogue whitespace in the form of a single or two spaces which crashed the python
interpreter

●​ Indentation level mismatch with control structure

 This problem persisted well into the third week after learning if statements. Other languages
deal with this issue by using curly braces. There is no ambiguity when using curly braces and it
follows from other teachers' experience that this is intuitive and it is not questioned nor does it
bring up problems even in the case of eleven-year olds[1], as does Python's take on indentation.

https://github.com/psf/black
https://developers.slashdot.org/story/01/04/20/1455252/guido-van-rossum-unleashed

Exceptions
Which operation does the reader believe is more error prone?

1.​ "Hello".index(character)
2.​ list[i:n:2]

Incredibly, Python can only throw an exception in the first case, and that would be the most
likely outcome since if the character is not in the string there will be an exception.

The author would like to take a moment and deviate from the point they are trying to make to
show and make a point on this ridiculous aspect of Python: most if not all programmers will
know the pains of off-by-one errors– it is no secret that a large portion of security
vulnerabilities are due to this fact (buffer overflows). Python's response to this is "letting it
happen silently" when an index is accidentally negative while raising an exception when a
substring is not found in a string.

Exceptions are commonplace throughout Python and they limit the software students may write
before learning "try/catch" (most introductory courses don't even teach "try") since they must
think of all edge cases so that their program will not crash. This is burdensome work and
completely unnecessary from the point of view of anyone who has used languages with robust
error handling, monads, maybe's etc.

Complex APIs
The author will make reference to other APIs in this section for comparison since "Complex" is a
relative term.

There are 7 ways of calling the open function with 7 different results in Python. The
documentation is 2 pages long (11pt font) and has a table of characters to denote different ways
of formulating a very important argument to open. For context on why this is "complex":
compare this with Go's approach: Go provides two dedicated functions for the most common file
operations, to read one uses os.Open, to create a new file for writing one uses os.Create. If one
desires the generalized open functionality, one can use os.OpenFile, which has similar
functionality to Python's open. In all of the cases above Go returns the same two values, a File
and an error and the documentation does not exceed a paragraph.

https://pkg.go.dev/os#Open
https://pkg.go.dev/os#Create
https://pkg.go.dev/os#OpenFile

Above is an image of the arguments to pandas.read_csv. When a student sees the argument
list, they probably "nope" out, as in ignore it as important. Surely something as complex as
what's seen above is not something the student should know how to use. Due to this
unfortunate API design students stop depending on intellisense/documentation and prefer using
stack overflow and other online resources. This is a slow way to learn.

●​ Students lose context when switching from IDE to browser. Depending on how well the
students can refocus and regain context, time may be lost when switching back to the
IDE

●​ Intellisense has more context on the API than the student. It is a huge missed
opportunity.

Below is an example of Go's dataframe library ReadCSV API:

A few things to note:

●​ The API is cleaner and has the same functionality as the pandas one

●​ The documentation is not "too much", as was the case with pandas. It's clear what
arguments are received and what is returned.

●​ There is a link provided by intellisense which takes the user to the online documentation
where there's an example on how to use ReadCSV.

Final notes: Even in the case of a function with a simple function signature like str.join and
file.writelines(), these receive a Iterable[str] and/or Iterable[LiteralString] and return either a str
or LiteralString, which may be confusing for a first year student.

Intellisense is weak (Dynamic typing)
A type in Python can be unresolved which leads the IDE to show the type as any. In fact, this is
more often the case than not. The following cases yield undefined types:

●​ Access to list, tuple or dictionary with no subtype (impossible to cover all cases)
●​ Arguments in a function when no type hinting is used
●​ Return value of a function when no type hinting is used

When working with undefined types all bets on what can be done with the type are off (as
interpreted by the IDE). This may sound innocuous, after all people use Python every day with
undefined types and no one bats an eye. The truth is it does not make programming in Python
impossible. Most Pythonistas do not see this as an issue… that is until they try a statically typed
language. The benefits of switching to a statically typed language are so numerous that this
document is littered with the harms of dynamic typing all around. The author lists the benefits of
static typing regarding intellisense:

●​ Ctrl+Spacebar (VSCode) is a powerful tool. It shows exactly all of the fields and
methods that may be called on the type for every variable.

●​ It shows documentation for the type if documented.
●​ If the package system is strong enough it may also provide links to online documentation

and examples of usage (e.g. Go)
Thanks to powerful intellisense teachers can begin to depend on it to teach. I.e. If a student is
calling "split" on a variable of list type the teacher may tell them "Consider checking the methods
available for that list type by clicking Ctrl+Spacebar" instead of the hand-waving involved with
Python trying to explain where the variable came from to then have to ask the student to bring a
function cheat sheet or to look for documentation online for the type.

Library cognitive overload
The packages most used in Python courses are numpy, matplotlib and pandas. It is the author's
opinion these packages are far too removed in abstraction and complexity from what students
can do before using them, especially in the context of a student who is new to programming and
has never had to work with tabular, structured data. In the author's experience, students are
barely grasping the idea of dict of dict records by the end of the semester when a DataFrame is
presented to them. The motivation for this is that they'll be able to perform "SELECT * FROM X
WHERE …" like queries in an idiomatic fashion using the boolean indexing scheme x[x>50].

https://pkg.go.dev/github.com/go-gota/gota@v0.12.0/dataframe#ReadCSV

There is no denying these are excellent constructs for easing the usability of Python. This has
given the data science field unprecedented accessibility for budding programmers and an
overall increase in the quality of life of data scientists. That said, is teaching budding
programmers this concept favoring them? It is true this will make the students life easier for
solving a subset of problems dealing with tabular data but we may have inadvertently doubled
the difficulty of the course since we have introduced novel concepts:

●​ Extreme vectorization: Yes, you can write a for loop to count the characters in a string
but there is also the count() method! This is one of the early realizations of modularity-
functions can embed for loops and save up on the code complexity (though in Python it
is common to teach functions after loops due to the difficulty functions present with
respect to types, see Loss of context in code). With the introduction of numpy's
`where` or panda's `DataFrame` students are introduced to new ways to save up on a
for loop and new ways to access data like DataFrame's iloc and loc, numpy's matrix
access notation, DataFrames and numpyArray comparison operator overloading. This
arguably introduces a DSL the students must learn to work with either numpy or pandas
before they have assimilated basic/core programming concepts. It also considerably
weakens the perceived power of the for loop, which may not necessarily be a bad thing
but is worth pointing out.

●​ Opaque/complicated Objects: Whereas before teachers could work through a problem
and print out intermediate results, now most values students must work with are opaque
or require hand-waving explanations: i.e. the result of np.where is a tuple of two numpy
arrays, the first containing the row indices and the second containing the columns
indices.

●​ Complex and obfuscated documentation: Although Python is well documented the
presentation of said documentation or in how its API has been designed could be better
(See Complex APIs). Let's be forgiving and say Python's is "OK" in that aspect. In that
case, pandas and numpy are "Questionable" at best since it would be ludicrous to
suggest students depend on their documentation shown in intellisense or in online
reference manuals while programming. Standard practice is to google what you want to
do and visit a few Stack Overflow links.

Inconsistency
It may come as a surprise to some that there is a reason Python does not include the “end”
element of a slice operation. In 1968 a committee was gathered in Paris with the brightest minds
in computer science. Names like Djikstra, Naur, Wirth and Hoare were present. The result?
Algol 68.

Algol 68 introduced slicing as we know it today in Python. It was decided that indices do not
correspond to the elements as is common in Fortran style languages, but rather to the starting
position in memory. An array could be represented graphically as follows

> slice = ['a', 'b' , 'c']

So 0 corresponds to the start of the array, not the first element. When we ask Python for the
contents between indices 1 and 2 we should get “b”. Sure enough

> slice[1:2]
> [‘b’]

For anyone learning slicing for the first time, the reason Python does not include the "end"
element should now become apparent and intuitive.​

But what if we want to slice it in reverse?

> slice[2:1:-1] # From position 2 to position 1, should be 'b' only following previous logic
> ['c']

Oh dear… well at least it does the expected thing for negative indices… right? Well yes, but only
partially, you can't index from 0 towards the negatives.

> slice[0:-1]
> ['a', 'b']
> slice[0:-2:-1]
> []

Instead of following the memory model on which itself and countless other programs are based
on, Python has chosen to invent its own memory model. The author suspects this is due to how
Python is taught to most undergraduates with the aberrant saying: "slicing does not include the
end element", thus, when reverse slicing was added to the language it preferred to implement it
as it had been taught. Due to this the answer that could be given by Pythonistas when asked

Q : "Why does Python not include the last element?" is
A1: "Because that's how the computer thinks" or
A2: "That's how Python works under the hood" or
A3: "Because that's how it's always been done"

Of which the first two are false. A programming language is designed to benefit the programmer,
not the computer. This is especially true of higher level languages and more so in education. If
this were not the case we'd be writing our programs in assembly.

Due to this inconsistency in the language, it is dangerous to teach indexing as it exists in the
world since this would mean students slip up in the case of reverse slicing. There are other
cases of inconsistency including (but certainly not limited to):

●​ PEP encourages underscored function names, but standard library does not comply.
●​ str.isalnum(): You need to look at documentation to know what isalnum does. Why

would they not use a self-documenting name for a method? Why does the Python
standard library act like Pythonistas have to memorize methods (supposing IDE has the
most basic type of intellisense) to be able to make the most of Python? This design
decision violates at least 2 aphorisms in the Zen of Python.

Gotchas
As a teacher of beginner level Python, it's often the case that the need to teach lots of small
details to students arises due to the creative design of the language:

●​ Not all whitespace is equal, even when they look identical in the IDE
●​ Python has "global" variables (module level variables) and global (when using keyword)

variables. A module-level variable is "read-only" when it's not a primitive type (string, int,
float). Dicts and lists are modifiable from any scope and thus not truly local variables.
This confuses students who are taught that functions create a copy for arguments and
variables outside of their scope. It also raises the question of pointers when in reality one
of python's attractive features is the absence of pointers from the language's syntax
model.

○​ Problem arises when students use += operator with globals in a `def`
●​ Functions with no return return None successfully
●​ Tuple unpacking rules
●​ Looping: `for`, `while`, `enumerate`, `range`, `zip`, etc. Just so many ways to do the

same thing.

Python harms ability to reason about a problem
“It's very illuminating to think about the fact that some –at most four hundred– years ago,
professors at European universities would tell the brilliant students that if they were very diligent,
it was not impossible to learn how to do long division. You see, the poor guys had to do it in
Roman numerals. Now, here you see in a nutshell what a difference there is in a good and bad
notation." -Edsger Djikstra, 1977

It is no secret Python is harmful when used to solve large scale problems. Today Python is
being chosen less and less as a software engineering tool, only being preferred when the
problem has a fixed scope. This is largely because of anti-features which are undesirable in a

software engineering setting such as dynamic types, poor stdlib (standard practice not to use it),
poor default tooling (pip), questionable community practices, insecure packaging system.

That said, what does "harms ability to reason about a problem" mean in this context? Consider
these following quotes on the importance of data structures in programming:

"I’m a huge proponent of designing your code around the data, rather than the other way
around, and I think it’s one of the reasons git has been fairly successful… I will, in fact, claim
that the difference between a bad programmer and a good one is whether he considers his code
or his data structures more important. Bad programmers worry about the code. Good
programmers worry about data structures and their relationships." -Linus Torvalds link

"Data dominates. If you’ve chosen the right data structures and organized things well, the
algorithms will almost always be self-evident. Data structures, not algorithms, are central to
programming." -Rob Pike link

"Much more often, strategic breakthroughs will come from redoing the representation of the data
or tables. Show me your flowcharts and conceal your tables, and I shall continue to be
mystified. Show me your tables, and I won't usually need your flowcharts; they'll be obvious." --
Fred Brooks link

"The purpose of all programs and all parts of those programs is to transform data from one form
to another [...] If you don't understand the data, you don't understand the problem [...]
Conversely you can understand the problem by understanding the data." -Mike Acton link

It would seem data structures are important when programming. The author claims one begins
to reason about a problem by thinking about the data: what shape should it have to solve the
problem at hand? Can this shape be generated easily? Where is the real cost of solving the
problem?

Python is limited to dict, list and tuple composite data structures in an introductory course. In
more advanced courses Pythonistas may use classes. The next few points will make reference
to the available data structures in Python as one of its core flaws.

Python's interpretation of OOP obscures data
Python's take on OOP is one that follows a tradition that "marries data with operations" [9].
The most glaring problem is not a fault in Python's features, but how Python encourages
programmers to think about a problem. Classes put special emphasis on methods and little
emphasis on its data. A class cannot exist without it's __init__ method, the data members only
exist within the classes methods (as is apparent to an observer which inspects the class
declaration). A long time Pythonista will learn to inspect the __init__ method or simply scroll
down intellisense suggestions to learn what data members are available, though this becomes
tiresome once classes begin to be embedded within classes. Composition is a pain point in
Python.

https://moyix.blogspot.com/2022/09/someones-been-messing-with-my-subnormals.html
https://www.activestate.com/blog/how-to-detect-typosquatting-with-python/
https://lwn.net/Articles/193245/
http://doc.cat-v.org/bell_labs/pikestyle
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://www.youtube.com/watch?v=rX0ItVEVjHc&ab_channel=CppCon

Consider the following

There is no semblance of data structure definition here. Only class boilerplate code which mixes
with the initialization logic. Compare with a data-oriented definition of these data structures.

The data relationship is clear, readable. There is no blurred line between logic and data
structure. In the long run this simple change in data definition makes the code more readable
and overall easier to work with since data structures are the core notion at the center of
programming.

Dynamic typing
Python is a dynamically typed language. This is a boon for anyone writing short and sweet
scripts to solve small problems. For larger more complex programs Python helps out by adding
type hinting, which still does not fully solve the dynamic typing problem of python.

It may be of interest to the reader to know most if not all recent successful modern languages
are statically typed:

●​ Zig
●​ Go
●​ Rust
●​ Carbon (not ready for use)
●​ Nim
●​ Swift
●​ Odin
●​ Kotlin
●​ Typescript (textbook case study)

https://ziglang.org/
https://go.dev/
https://www.rust-lang.org/
https://github.com/carbon-language/carbon-lang
https://nim-lang.org/
https://developer.apple.com/swift/
https://odin-lang.org/
https://kotlinlang.org/
https://www.typescriptlang.org/

This is because static typing acts as a guard rail. It avoids a whole subset of possible errors and
crashes that your program would otherwise be vulnerable to. It also is often cited as the reason
programmers are so productive when switching from a dynamically typed language to a
statically typed language.

"We underestimated how powerful the editor integration is. Typescript was a boon to our stability
and sanity". Felix Rieseberg on Slack's switch from javascript to typescript (as a testament to
the benefits of a statically typed vs. dynamically typed language).

No user types outside classes
The author will tell of an experience teaching to illustrate the damage done by not having easily
defined user types.

We were solving a problem that required reading data from a .csv file and inserting the rows into
a dictionary as a dictionary, i.e. dictionary[id] = {"Name": name, "Lastname": lastname …}
When we got to this point students froze dead in their tracks. The author suspects it was due to
the cognitive overload of having to define a data structure while programming the algorithm.
Most wanted to save the row as a list inside the dictionary since a dictionary inside a dictionary
was "too much". This is what Python teachers have to wrestle with: the cognitive overload of
defining data structures while designing algorithms. While there is a @dataclass decorator
for defining classes with no __init__ method this still does not strictly prevent the intermingling of
data and logic and provides additional cognitive load of the decorator pattern in Python. Is it
reasonable that a package be imported every time a deficiency in Python's type system needs
to be addressed?

from dataclasses import dataclass

@dataclass

class asd:

 fullname:str

 def firstname(self):

 return self.fullname.split()[0]

 def lastname(self):

 return self.fullname.split()[1] if self.haslastname else ""

 haslastname:bool

Consider a statically typed language. Before even starting the problem we may begin to think
about the data structure for an employee by looking at the csv file. We reason about the .csv file
contents first before writing a single line of code. We know we must define a data structure with
fields corresponding to the amount of columns in the CSV. When we get to the point of saving
data in our dictionary we now simply assign the defined data structure to the dictionary entry,
much like filling out a template. There is no reasoning to do, it has already been done in the

data structure definition stage. See "Loss of context in code" section for more information on
struct types and fields.

Reliance on dict type
The lack of static types puts Python dict's type in an awkward position: It is by far the most
flexible and natural feeling type in the language. Whenever there are "fields" in play, as is so
common in data manipulation, the dict type is the obvious choice. It's hard to justify the use of a
tuple or list to store fields when there are several fields in play since indexing by strings is just
so much more readable than using hard coded number indices.
That said, when using dictionaries to store dicts within dicts the indexing can become confusing
when stringing several indexing operations to reach a nested dictionary. Errors can become
hard to follow and students must depend on their own wit to debug. This is largely solved by
static types as mentioned before where not only the compiler helps, but more importantly there
is intellisense to let you know what fields are available and where. The sanity this would provide
to students cannot be overstated. See "Intellisense is weak" section.

Only one way of doing things
It's in the Zen of Python, so surely Python would adhere to it?

●​ str.format vs f-strings
●​ list.reverse() vs. list[::-1]
●​ list[:] vs. list.copy()
●​ Iterations

○​ While vs. for. Having two distinct keywords for doing the same thing (iterating).
Keywords add things a student new to programming must memorize and
hampers the cognitive process. Citation pending.

○​ For vs. list comprehension
●​ The list goes on

Note: The author is not suggesting str.format be removed from the language, as this would
break backward compatibility. This is merely an argument against using Python in education.

The concept of orthogonality (in context of programming languages) has been cited as a boon
to the ease of learning a language and the productivity it brings [6]. This is mainly because
novice programmers may get caught up with the amount of tools at their disposal and instead of
focusing on solving the problem, they focus on choosing the most adept tool for the problem.

"Programs have to be fast"
Throughout his career the author has seen his Python programming colleagues have a
misguided obsession with program execution speed. More often than not, these colleagues who
teach Python to undergraduates want to show students big-O notation by the second class.

The author's perspective on this matter is as follows: Reason about the problem and build the
simplest thing that works, only optimize later if:

https://peps.python.org/pep-0020/
https://en.wikipedia.org/wiki/Orthogonality_(programming)

●​ The program's execution speed is a problem
●​ You can measure where the program is slow (profiling). More often than not your

guesses will be wrong on where the bottleneck is [4]
The author is not sure where this obsession has come from but it seems it is part of a wider
more systematic problem in the Python community, often manifesting as a command line flag
such as "--fast" which results in faster programs with less correct results. Examples of this
in action:

●​ Widespread package poisoning with FPU flags
●​ Black (--fast)
●​ this developer who'd rather matrix multiplications yield completely incorrect results over

being marginally slower.

In any case, by using Python you are already coming at a loss in terms of performance, not only
because of the underlying implementation, but because Python impedes reasoning about data
structures (talked about earlier). Data structures and algorithms are equally important in defining
program execution speed and far outweigh compiler optimizations and program tuning [4].

Other

Python prevents innovation
Python limits teachers when they want to create new and interesting problems for students to
solve. Python does this a few ways

●​ Poor standard library: Usually need a specific library to solve a problem, i.e. http
requests, image manipulation etc.

●​ Poor packaging system: Installing libraries is a game of dice, maybe the library does not
play nice with the local python environment. Thus anaconda and other packaging
systems are widespread

●​ Wheels availability and correctness: Maybe the python version on the students machine
does not work with the library. Preparing wheels is also error prone work, the author is
familiar with errors that appear on certain architectures on certain OSes.

Thus, when a teacher wants to propose a new problem they have to jump through a few hoops:
Have the students installed a library that helps them solve the problem? What libraries do the
students have to install to solve the problem? What issues may arise regarding versions of the
wheel, library semver, the student's install environment.

Due to these issues it's often easier to just settle for a set of libraries when the semester starts.
This means teachers have to iterate course work on the order of months regarding new
problems. This is especially a problem with new courses that do not have tried and tested
course material. Most modern languages have solved this issue in full. Take for example Go
modules:

●​ No manual library installation needed. Ever.
●​ Robust versioning: No cyclic dependencies, minimum version selection, reproducible

build file.

https://moyix.blogspot.com/2022/09/someones-been-messing-with-my-subnormals.html
https://github.com/psf/black
https://github.com/brandondube/linalg/issues/2#issuecomment-1179623102

Due to this above, one can run pretty much any .go file and the go tool will take care of
resolving the dependency graph and installing packages. So in practice a teacher can give
students a .go file and a student with the same Go version will be able to run it on their
computer problem-free, thus a teacher may formulate any problem using any library. What's
more is that publishing a package is as simple as creating a repository with 2 files on github (.go
and .mod files). This is because go packages are URLs. A teacher can then publish a library
overnight so that students may use it the next day. This is a game changer for innovation in
coursework.

Loss of context in code
Context helps the programmer deduce what the code is doing. This can refer to

●​ Identifiers: a.k.a. Naming. What data does a variable contain? What does a function do?
●​ Types: Give form to our data. How does it contain the data it contains?
●​ Syntax annotation: Python is an imperative language. There is syntax to the language,

how does the syntax help convey what we want the computer to do? This can come in
the form of keyword combinations, operators, and formatting of the code (indentation,
operator grouping, …).

Take the following Python function

def update_salary(employees, salaries):

 for id, employee in employees.items():

 xp_employee= employee["Experience"]

 for xp_minimum,salary in salaries:

 if xp_employee<=xp_minimum:

 employees[id]["Salary"] = salary

 return employees

Let's break it down

●​ We may guess employees is a dictionary after seeing the items method call.
●​ Employee seems to contain dictionaries as it's values (from the "Experience" key

access)
●​ Salaries looks like it could be a list of tuples. The tuple in it contains xp_minimum and

salary
●​ We know nothing of these types except that xp values may be compared to set the

employee's salary when a certain threshold is met (xp_employee <= xp_minimum)
●​ The whole function returns the modified employees data structure

Let's see a statically typed language implementation of the function

func update_salary(employees map[int]Employee, salaries []Salary)

 map[int]Employee {

 for id, employee := range employees {

 xp_employee := employee.Experience

 for _, salary := range salaries {

 if xp_employee <= salary.MinimumXP {

 employee.Pay = salary.StartingPay

 employees[id] = employee

 }

 }

 }

 return employees

}

A few things we did not know about the Python implementation (or that had us guessing)
become immediately apparent:

●​ We must access employees dictionary using an integer
●​ Salaries is indeed a list containing the type Salary!
●​ We immediately know the function returns a single value and its type. We get a much

better sense of the work this function does at a glance!
We can then mouse over the Salary and Employee types to acquire the full context experience:

●​ Salaries is a list containing a Salary with the fields MinimumXP and StartingPay
●​ Employee contains various fields we had no knowledge about such as Name and

LastName

We now have a much better idea of what the algorithm does. We had no idea that the numerical
salary inside a Salary type was the starting pay and we know the experience inside the salary
type is the minimum experience needed to be able to get paid said StartingPay. We managed to
figure all of this out without a single code comment. This is the power of having local code
context with types and intellisense. This is all lost when using a dynamically typed language.

Python's carbon footprint
Python is one of the most inefficient languages in terms of energy consumption one can use. It
consumes 70 times more energy than C and an order of magnitude more than similar
languages. This means Python's carbon footprint per user is larger than that of other languages
when using pure Python.

https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf?utm_source=thenewstack&utm_medium=website&utm_campaign=platform

Why is Python like this?
This subsection aims to answer a question the reader may or may not have: "Why is Python the
way it is with respect to these problems?" by contrasting the history of the design of Python with
the design of Go, a language that does not have the deficiencies outlined.

Python
A few things to note about Guido Van Rossum and his creation, Python See [Oral History of
Python Part 1]:

●​ Bright student, among top of his class.
●​ Knew Pascal, Algol, C and Shell before designing Python
●​ Worked on the team that created ABC, a scientific language and spiritual precursor to

Python
●​ Python was born out of frustration with C and Shell. Van Rossum had to write programs

that "took a week to write in C, but that could be written in 15 minutes with ABC"
●​ Van Rossum designed language on their own, taking inputs from colleagues once the

groundwork was laid down
●​ Van Rossum had the final say on what went into the language for the next ~20 years

Go
Go is a language similar to Python, often touted as "the next Python" due to its striking similarity
and simplicity. The language was conceived by Rob Pike, Ken Thompson, and Robert
Griesemer. Some notes to contrast with Python: (see [Building on the Shoulders of Giants, by
Steve Francia]

●​ The amount of language design experience these three had collectively is mind
boggling. Ken is the creator of the C programming language among others

●​ Rob Pike's papers are often cited by language designers as being core to language
design decisions (see Odin)

●​ Go was born out of frustration with C++, Rob Pike has often cited feature overload and
readability as the problems with C++

●​ The three were working on a Google software project that spanned millions of lines of
code

●​ The three had to be talked into a feature before being added to the language
●​ Go was open sourced upon its release and follows a public driven change policy

The author hopes that the points above offer some insight into why Python has the problems
outlined in this document.

It is the author's opinion that Python had little input from others throughout the design and was
purposefully designed to solve small, bite sized problems that have a very low cognitive load
when being read or solved.

https://www.youtube.com/watch?v=Pzkdci2HDpU&ab_channel=ComputerHistoryMuseum
https://www.youtube.com/watch?v=Pzkdci2HDpU&ab_channel=ComputerHistoryMuseum
https://www.youtube.com/watch?v=sX8r6zATHGU&ab_channel=CurryOn%21
https://www.youtube.com/watch?v=sX8r6zATHGU&ab_channel=CurryOn%21

Solutions

Go
The author has come to the realization that Python is unfit for educational purposes because he
teaches Python being an experienced Go developer. He has hit the walls mentioned above and
reminisced of how it would be different if teaching Go. Truth be told, all of the issues
mentioned above would be solved by switching from Python to Go as the de facto
educational language. Benefits/disadvantages of Go:

●​ First look at Go is not progressive. There is cognitive overload when seeing three
keyword declarations in a file just to print "Hello, World"

●​ Intellisense breaks when storing multiple programs in a single folder. Must keep a single
Go program per directory. This may confuse first time users and users coming from
Python

●​ Lack of built-in operators such as in. Instead can use slices.Contains
●​ No stringing comparisons. I.e: a < b < c
●​ No need for manual package installation. No virtualenvs either
●​ Quality stdlib. Image manipulation, http server and requests. Students can solve more

interesting problems thus helping motivation
●​ One way to do things, really. Orthogonality was something the designers had in mind.
●​ Students will have to depend on standard library which will expose them to packaging

and namespaces from the start
●​ Students will have to write their code inside the main function which will expose them to

function syntax from the start
●​ Autoformatting is forced. All Go code in the world is self-similar
●​ No-nonsense functions. No *args, **kwargs, keyword arguments (when abused can be

noxious, especially when combined with the likes of PEP570 and PEP3102), global
keyword, decorators.

●​ Go's for loop is confusing in a different way than Python's iterators. Go has only one
keyword for iterating "for", though the for loop can be written in roughly 2 (three if you're
strict) ways. The advantage of the for loop in Go is that it can be taught incrementally.
This is important as it is the hardest topic students in the course see (in the author's
experience).

●​ Progressive loop difficulty: In the author's experience, one of the hardest topics for
students has been the while loop. Go's while loop does not have many of the pitfalls of
Python's while loop

○​ Can copy paste code into Go's while loop without risking indentation errors
○​ Impossible to mismatch whitespace
○​ Simpler syntax: for { fmt.Println("Hello") } is a valid while loop in go, can be

taught with minimal new syntax (just a new keyword, no statement). Reduces
cognitive load and makes it overall easier on students.

https://pkg.go.dev/golang.org/x/exp/slices#Contains

There are of course disadvantages and limitations to using Go for education when compared
with Python.

Kotlin
Same playing field as Go. Would solve many of the aforementioned problems found with Go.
Not as popular though and therefore may be harder to find online documentation, help, libraries.

●​ Heavier syntax than Go
●​ Struct types are slightly more obfuscated than Go

Swift
Similar playing field as Go. Solves the issues with Python. Is actually marketed as a good first
language by Apple. Swift+Xcode is being taught at Shanghai Business school to focus on
developing apps. A few notes on swift:

●​ Much heavier syntax than Kotlin/Go
●​ Relies on exceptions which are hard to teach since it is a form of systems programming
●​ Is arguably more complex than Kotlin/Go

Solutions Continued: Honorable mentions

Hedy
This language finds the global optimum way of teaching Python.
https://www.youtube.com/watch?v=fmF7HpU_-9k&ab_channel=StrangeLoopConference

●​ Progressive language: levels means concepts are taught little by little, ensuring minimum
cognitive overload

○​ Great for middleschoolers
●​ Built for teaching: Has a curated coursework program
●​ Still Python. Has the same problems outlined above.

Zig
Much closer to C than Python, though it is a great language to design low level systems and
solves many issues explained here. Best suited for engineering/compsci students. Still in early
development.

Dart
While it would solve proposed problems with Python it seems like a cluttered language at a
glance since it is optimized for developing GUI clients.

https://www.youtube.com/watch?v=fmF7HpU_-9k&ab_channel=StrangeLoopConference

Rust
The most promising language in the world is thought to be too cluttered and low level to teach
as a first language. Best suited for advanced engineering and compsci students.

Julia
The author has heard of Julia being used in education for math and physics courses. However
the author is wary of Julia since it is a dynamically typed language (back to square one) and has
been known to be faulty and unfit to build robust software (article link). The Julia authors are
known to be overburdened with requests for fixes.

Go+
Basically Python but marginally better. Although it is statically typed it loses readability since
types are not compulsory. Still presents some of the problems presented in this document.

Sources
The author of this treatise has taken the liberty of adding bold typeface to passages of interest.

[1] Teaching 11 year olds to program
From https://groups.google.com/g/golang-nuts/c/FIRSDBehb3g/m/BFiHYVNCwzUJ?pli=1

First message
I'd like to describe my experiences using Go as a first programming language for a group of young
programmers. [...]
This is the first question I have seen that directly relates to teaching children.
My situation was similar to Maarten's. I had 12 eleven-year-old school children. Over the course of
the last 7 weeks of the school year, about 12-13 hours in total, I managed to teach them just enough
Go so they could write a mandelbrot generator. But,critically, they were able to understand the
code.[1]

And what I found was: Go is not only a good teaching language, it's an excellent one for first time
programmers, including children. I want to try and outline the Go features that really stand out when
you have young programmers and why I think we've ended up here.

The first feature that helps is Go's left to right syntax. If you are eleven this intuitively makes sense
because Go reads in a natural way. This becomes very apparent if you ask the children what they
think a particular line means.

https://news.ycombinator.com/item?id=31396861
https://yuri.is/not-julia/
https://goplus.org/
https://groups.google.com/g/golang-nuts/c/FIRSDBehb3g/m/BFiHYVNCwzUJ?pli=1

Secondly, Go has a small set of keywords. If you are child this turns out to be important because it
seems like there's not a lot to learn. They can (initially) re-frame the problem of learning to program
into "What do these words mean, and how do I use them?" Now the problem looks to be tractable to
them.

Thirdly, go fmt is a huge help on a number of levels. It's a confidence boost to a child if they know
that they can just type a program in and not worry about the exact formatting, knowing that the
editor, via go fmt, will fix that for them. Over time they learn what the go fmt style is and just start
doing this naturally.

Go fmt by its nature makes everyone's code look the same; this has an interesting side effect. When
(not if) they spontaneously start helping each other, and they start comparing a program that works
to one that does not, they are not looking at the formatting, they are focused on the logic. They
actually compare the order of the steps in each program to find the differences and fix the problems.
Go fmt shortens the mental leap you need to do this, without it this process may not have arisen as
quickly as it did and would have required a much larger mental leap to see though the formatting
differences. So go fmt as it turns out is actually an aid to learning and understanding. It lowers the
barriers a child needs to understand a program. My conclusion from this is that eleven-year-olds
need go fmt for the same reasons we do.

Fourthly, the go tool and the workspace. The go tool makes things very easy for young programmers
to get started. Once they learn that all they need to do is use 'go run' to run their program they never
ask how to run any program again. I only had to show them this two or three times.I just cannot
imagine doing this with either makefiles or a string of command line switches. This is so simple that
children just get it.

The workspace also helps. Simply knowing that they have to put their code under $GOPATH/src for it
to work helps because it forces everyone to do the same thing. The children don't have to worry
about the program not building because it (or a dependency)is in the wrong place.

When I started this, I thought that the children would stand a good chance of being able to use Go.
But there were a few areas that I thought might prove problematic when I tried to explain them to the
children.

Types are an interesting case. I thought this might be a really a hard concept for the children to
grasp because it is fairly abstract. Most of the usual teaching languages used with children are
"typeless"for this reason. But exactly the opposite was true. The children just got it. They only had to
make the mistake of trying to assign an int to a string once or twice to realise that the compiler won't
let them do this. The compilers static checking really helps here, because it stops the children and
tells them there's a problem here.

But of course, having types also helped.The children had to reason about them when they first
declared the variable. They would talk about what they wanted a variable for and then pick the type
they needed. In a very subtle way this extended their logical thinking abilities.

I used Atom and a command line to teach the children, rather than an IDE. I was concerned that the
lack of a UI and "Run button" might be a problem for the children. But they proved me wrong.
Provided they have a syntax colouring editor, with go fmt integration, and they are shown what
commands they need to build/run their program it's not an issue. Using the command line really
wasn't a problem. Similarly they didn't need a debugger. When their programs went wrong they just
went back to the editor changed it, rebuilt it and tried it again. The edit/build/run cycle is so quick
they just didn't need a debugger. If anything having to use a debugger would have slowed them
down. But this may, in part, be due to the smaller size of the projects they were creating.

Marking blocks with braces also wasn't a problem for the children. The children just never
questioned it. Perhaps partly because go fmt also sets to the indentation to match. Or perhaps it’s
because they have never programmed before they had no preconceptions about the presence or
absence of braces. At the minute its not clear to me which case is true for the children. When they
did miss a brace they soon learned to decipher the compiler error message a look to see where they
had missed a brace or two.

What do I conclude from all of this? I don't think the Go team ever intended Go the be a good
teaching language, but by a happy accident we seem to have both a good system programming and
a good teaching language. A rare feat indeed. The only thing I can put this down to is the languages
design process itself. Rejecting more than was kept and above all keeping things simple and
orthogonal - both the language and the tools - has paid off in a way we might not had predicted.

As both Russ Cox and Andrew Gerrand pointed out at GopherCon this year we as a community must
not lose sight of these original goals as the language moves forward. If we do we might be risking
the programmers of tomorrow as well as today!

Lastly if anyone else has tried teaching Go to first time programmer, especially children, I'd really like
to hear what your experience has been.

I already have plans to teach another larger group over a longer time period from September.

Regards
Owen

Second Message

Hello Everyone,

Okay so as a few people have asked "How did I do it?" I'll try and explain....Apologises if this gets a
little off topic for the list.

Essentially I used a pattern based bottom up approach, with each stage building on the last one.

So we started with Hello World. Not for hello world itself, though they get a sense of achievement
from printing this, but to show them how to edit/build/run a program.

Next we looked a numbers, so ints (*) to do simple sums (+. -. * and / operations) with small'ish
numbers (<1K).

Next we looked at strings, with a simple program to print their name and age.

I think it is important to say that at this point there where no variables in the programs. Everything
was static. I was just trying to get them used to typing code and beginning to understand little bits of
it. So showing them how to print with fmt.Print and fmt.Println and reinforcing the edit/build/run
cycle is more important at this stage. At this stage I'd showed them the pattern to print to the
terminal.

Then we did variables, for both numbers and strings. I used a pattern approach to teach them this.
So they had three patterns. Declarations in the form of "var variable-name variable-type", assignment
in the form "variable-name = variable-value" and then the usage which is just the variable name. And
yes, everything is long hand - there is no := operator. You can't use that until you understand what you
are short-cutting. Also you want to make the types explicit so that they think about these. Kids with
good maths skills will quickly see that variables are like unknowns in maths. Others you need to take
a little more time with, before they see that the computer will substitute the variable value, when they
use the variable name. I introduced this with a version of the strings program that used variables to
hold their name and age.

Then we looked keyboard input so we can set the value of the variables at runtime. For this I wrote a
simple wrapper around go's stdin stream handling. fmt.Scanf is fine in the stdlib, but it'll behave in an
unexpected way if you feed it invalid input i.e. strings when its expecting ints etc. The behaviour is
correct, but its not very encouraging if you are a child. The alternative I used was to wrap a read
buffer around the stdin stream in a function (in a new package) without showing them the internals.
That gave them a simple "Read{Number, String}FromKeyboard" function they could just use. To
explain how that function worked I'd have to introduce interfaces, pointers, pointer receivers and
streams which isn't appropriate at this stage. I wanted then to focus on using input to set variables.
Not worry about how the input magic worked.

Then they did if and if-else statements again with patterns. So the if pattern became "if condition {
true-statement-block }". I deliberately didn't show them the initializer block form to keep things
simple. At this point they can start to write something "useful" so I got them to write a simple "quiz"
that picked two random numbers, a and b, (between 1 and 12) and asked them to type in the answer
to a * b. Then print out congrats, or bad luck depending on their answer. I had to take time with

conditions, to be clear that the answer can only be true or false. So sometimes you need encourage
them to "rephrase" the question. Also "==" took a little while to settle in, just because they haven't
seen it before.

The last area they looked at was loops in the simplest form of "for condition { loop-body }". They
used this to extend the previous program so that the program asked them a different question each
time until they got the correct answer.

Once you have variables, if tests and loops you have enough knowledge to draw a mandelbrot plot.
You only need 3 loops and an if test to do it. So I wrote a skeleton program that used the go SDL
bindings to open the window and do the graphics parts, but left the calculation bits out. I needed to
show them a little bit about screen coordinates (origin is top left, Y axis is down etc) vs. set
coordinates so they can work out the scaling calculations. The pupils then had the follow the
comments I left in the program to do the calculation.

I know this might whole approach might sound overly simplistic. But to get an eleven year old to this
point will really stretch their ability to logically reason and problem solve. Sometimes we as adults
forget just how much we know and take for granted.

Also I'm not trying to teach them idomatic go at this stage, or every language feature. That misses
the point I think. What I was trying to do was to encourage then, and spark their curiosity, and
interest. You want to remove as many barriers as you can at this stage. Once they stop thinking
about what an if test does a how to write a loop or declare a variable you can start to building
towards this.

Other more general tips if anyone else is trying this:

* Aim high, so pick something you think bright kids can do, then go a little bit further. Even I didn't
think they would mange the mandelbrot plot when I started.
* Give them a goal, in this case they had the mandelbrot plot as goal from day one, that they can aim
for to motivate them.
* Give them something fun or unusual, or something they ask about as the goal.
* Go slow, use little short lessons and build upon previous concepts.
* Go in a logical order. By this I mean don't aim for a http server until you can explain every concept
that you need to use the stdlib code and have them understand as well. Start with the absolute
basics and work upwards.
* Don't spoon feed them. By this I mean you can give then a complete program for the first two or
three times. Once they get these working challenge them to extend them in some simple way. So
print their friends name and age as well as theirs. Then as you go froward start to give them
programs that are more and more incomplete and get them to fill in the blanks.

Owen

(*) I'm going to add floats into this in September as "float64" threw them when they saw it in the last
lesson. The kept asking what the "64" meant.

[2] Using Go in the classroom
From https://groups.google.com/g/golang-nuts/c/ewJpIYNXSvs/m/oWQh9XCahdsJ
kev...@google.com
no leída,
23 dic 2012, 4:28:53
a Danny Gratzer,golang-nuts

[...]One thing that will really help the students is the fact that Go is statically typed and that the compiler
is relatively strict. It will seem difficult to them, especially if they are coming from a language like Python
where a mistyped variable name doesn't prevent the whole program from running, but in the long run I
suspect that it will be catching a lot of their most common bugs before they even have a chance to
materialize. The fact that Go is garbage collected, as I'm sure you've already surmised, is great for
beginners because it reduces the amount of bookkeeping that they need to do. The lack of pointer
arithmetic and the safety of the language are also great safety nets for a beginner.

If I were teaching a class in Go, I would probably start the students out with the usual hello world, followed
almost immediately by the hello world web app. You can let the students play around with that in any
number of ways, and it allows you to dive into a lot of important things that they are leveraging without
having to code themselves. You can show them the standard library documentation, which will hopefully
spur some of the students to go exploring. You get to explain about functions and function types. You get
to explain about interfaces (the transition from http.HandleFunc to http.Handle with the same handler
function is particularly interesting). When you've finished deconstructing that, you can move into more
aspects of the standard library like templates, math, i/o, exec etc. Again, they'll be using a lot of features
that you get to explain (types, fields, methods, etc) without having to actually reproduce it themselves. At
this point I'd probably spend some time going through the language spec, so that the students are familiar
with how it is laid out and what the features are called, so that as you start to ask them to create their own
types, their own methods, their own interfaces they will know where to look for answers. As you do start
asking them to create more of their own types and things, it probably makes a lot of sense to teach them
unit testing. One of the requests I would usually ask a student who came to me for help with their code
was "Show me your code the last time it was working, show me what you changed, and I will probably be
able to tell you why that doesn't do what you thought." In retrospect, if we had instilled unit testing in
them, it would probably be more like "Show me your code the last time your tests passed" or "Show me
the unit test you wrote for the feature you're having trouble implementing." If you've made it this far with
the students, I'd probably dive into concurrency patterns and maybe do some case studies with some
standard library packages or third-party packages to have a look at real-world Go code and perhaps get
some exposure to common idioms and documentation standards. More detail on networking and building
client/server applications is another advanced topic.

https://groups.google.com/g/golang-nuts/c/ewJpIYNXSvs/m/oWQh9XCahdsJ
https://yourbasic.org/golang/http-server-example/

[3] Courses that use Golang

[4] Perfbook

[5] Language Design in the Service of Software Engineering

[6] Testing the principle of orthogonality in language design

[7] Discord conversation with Tim Stiles and Mihai Todor
Tim, Author of Poly(merase) library:
I made a very conscious choice to use Go for this project based on several criteria.
Speed of development, speed of code execution, strong devops ecosystem, and being able to
compile to a binary were all higher priority than what language other people were using in
synbio (mostly python)

Go was the only language that fit all those criteria. Rust handles strings in a somewhat tricky
and unique way that I thought would scare too many devs coming from python away, and its
devops ecosystem wasn't really mature when I started the project.
I've seen some people actually posit that with the advent of Go generics that Go should become
the default language for scientific computing for all of the reasons I chose it several years ago.

Mihai, Principal Software Engineer working on https://benthos.dev:
Back in 2015, I started working in a company where, just like in my previous 3-4 jobs, I was
asked to contribute to a largeish C++ codebase that took well over 20 minutes to build (over 3
hours at a previous-previous job). I was so frustrated that, yet again, someone duped me into
wasting my time with their horrible codebase and coding practices that I started talking about it
with a colleague, Karl (https://relistan.com/), from the cloud infrastructure side of things. He told
me to jump ship and learn Go, so I did. I told my management chain that they either assign me
to Karl's team or I'm gone. After one year of mucking around with a few small internal projects, I
was finding my way around Go codebases quite easily and I got a good sense of the various
languages (Python, Terraform etc) and tooling (Docker, Ansible, Kubernetes etc) and systems
that get used in this space. It was quite handy to have this guy as a mentor and see him code
almost every day. /rant Here's what I think makes Go compelling: - Build speed and quick
iteration cycles when running tests. You can do the same in Python, since no static compilation
is needed, but the tooling and frameworks are not as snappy. - Parallel programming. Go makes
this easy even for beginners and I don't think you can achieve the same thing in Python. I
suppose there's some way to get Python to use a thread pool and then have some channel
signalling mechanism on top, but it will require quite a bit of knowledge to get right. -
Opinionated code style and small language footprint. No need to learn a ton of language
features and quirks and many of the existing examples tend to be quite clean / well maintained.
- Frameworks and libraries that are well-polished and idiomatic. The Go module tooling makes it

https://github.com/golang/go/wiki/Courses
https://github.com/dgryski/go-perfbook
https://go.dev/talks/2012/splash.article
https://www.tandfonline.com/doi/abs/10.1207/s15327051hci0402_1
https://www.linkedin.com/in/timothysstiles?miniProfileUrn=urn%3Ali%3Afs_miniProfile%3AACoAAAk3-dYBBcOcBlI8c62mrcualTZkpbARwFM&lipi=urn%3Ali%3Apage%3Ad_flagship3_search_srp_all%3BF3yW8aAoThqq6LijtioW9A%3D%3D
https://www.linkedin.com/in/mtodor?miniProfileUrn=urn%3Ali%3Afs_miniProfile%3AACoAAALnD74B-Zf7yXwEBSfg8i3cmZ5GtY7QavM&lipi=urn%3Ali%3Apage%3Ad_flagship3_search_srp_all%3BRZhXAs2lR1yx9OMXnJywXQ%3D%3D
https://benthos.dev/
https://benthos.dev
https://relistan.com/

trivial to avoid versioning hell without virtual envs. - CGo. Calling C APIs is also well-supported
and there's good tooling around it. - Gravity. It attracts people who like performance and got fed
up with slow builds.
I think people will still pick Python and R over Go for many data science tasks, not just because
of the gravity factor, but also because in Python they don't have to worry as much about types
and curly brackets. I've seen https://goplus.org/, but it still doesn't feel like something that will
get people to jump ship... Also, somebody showed me this
https://dashbit.co/blog/nx-numerical-elixir-is-now-publicly-available recently, which I guess might
be cool to try, given how much praise Elixir gets in some circles, but I'm not sure it's worth the
time investment to learn it when one can achieve the same stuff using languages that they're
more familiar with.

[8] Prat, Chantel S., et al. "Relating natural language aptitude to individual differences in learning programming
languages." Scientific reports 10.1 (2020): 1-10.

[9] CppCon 2018: Stoyan Nikolov “OOP Is Dead, Long Live
Data-oriented Design”

https://goplus.org/
https://dashbit.co/blog/nx-numerical-elixir-is-now-publicly-available
https://dashbit.co/blog/nx-numerical-elixir-is-now-publicly-available
https://www.youtube.com/watch?v=yy8jQgmhbAU
https://www.youtube.com/watch?v=yy8jQgmhbAU

	Argument against Python in Education
	Table of contents
	
	Introduction
	Motivation
	Outline of Problems

	Problems
	It is hard to learn
	Readability
	Autoformatting
	Whitespace is code
	Exceptions
	Complex APIs
	Intellisense is weak (Dynamic typing)
	Library cognitive overload
	Inconsistency
	Gotchas

	Python harms ability to reason about a problem
	Python's interpretation of OOP obscures data
	Dynamic typing
	No user types outside classes
	Only one way of doing things
	"Programs have to be fast"

	Other
	Python prevents innovation
	Loss of context in code
	Python's carbon footprint

	Why is Python like this?
	Python
	Go

	Solutions
	Go
	Kotlin
	Swift

	Solutions Continued: Honorable mentions
	Hedy
	Zig
	Dart
	Rust
	Julia
	Go+

	Sources
	[1] Teaching 11 year olds to program
	First message
	Second Message

	[2] Using Go in the classroom
	[3] Courses that use Golang
	[4] Perfbook
	[5] Language Design in the Service of Software Engineering
	[6] Testing the principle of orthogonality in language design
	[7] Discord conversation with Tim Stiles and Mihai Todor
	[8] Prat, Chantel S., et al. "Relating natural language aptitude to individual differences in learning programming languages." Scientific reports 10.1 (2020): 1-10.
	[9] CppCon 2018: Stoyan Nikolov “OOP Is Dead, Long Live Data-oriented Design”

