
OTIO 2D-Annotations Interchange
specification

OTIO 2D-Annotations Interchange
specification.
This version: May, 2025 v2
Previous version: OTIO Annotations - Review-1
Sam Richards

Introduction

The goal of this format is to facilitate interchange of annotations and notes between different
review systems or provide a very simple offline review format for a simple review system.

The user stories are defined in . Review and Annotation User Stories and Requirements
We can break those stories into three categories:

1.​ 2-D annotations on top of movies or 2-D imagery.
2.​ 2/D and 3/D annotations on top of models and 3-D environments.
3.​ Annotations recorded during a live session.

The live session needs to be an extension of

https://lf-aswf.atlassian.net/wiki/spaces/PRWG/pages/11274625/OTIO-Based+Synchro…
.
Similarly model and environment annotations should be handled as a future proposal.
For this document we are going to focus on 2-D annotations on top of movies or 2-D
imagery, integrating the result into OTIO.

Why OTIO
The goal is to have an application neutral format for sharing annotations between
applications. This format should work both within a facility and between vendors and clients
even if they use different production management tools.

OTIO provides a framework for tracking a list of media assets, it is highly extensible so
adding additional metadata schemas on-top is fairly straightforward, and some of the more
recent developments will work well with the requirements for annotations, such as:

●​ Spatial coordinate system -
https://github.com/AcademySoftwareFoundation/OpenTimelineIO/pull/1219

●​ Color Management -
https://github.com/AcademySoftwareFoundation/OpenTimelineIO/discussions/1805
and
https://github.com/AcademySoftwareFoundation/OpenTimelineIO/discussions/1793

●​ Review syncing protocol -
 https://lf-aswf.atlassian.net/wiki/spaces/PRWG/pages/11274625/OTIO-Based+…

https://docs.google.com/document/d/158xEgBbUI0nKGLckeHYV56GwsM0MeejJD7qnuRbTDO4/edit?tab=t.0#heading=h.3jckyebptegj
https://docs.google.com/document/d/1iZ46GuARtKq0lC8MK17jN7J_f48XzVnE2U2TT1CDdfs/edit?tab=t.0
https://lf-aswf.atlassian.net/wiki/spaces/PRWG/pages/11274625/OTIO-Based+Synchronized+Review+Messaging#Annotation-Schemas
https://lf-aswf.atlassian.net/wiki/spaces/PRWG/pages/11274625/OTIO-Based+Synchronized+Review+Messaging#Annotation-Schemas
https://github.com/AcademySoftwareFoundation/OpenTimelineIO/pull/1219
https://github.com/AcademySoftwareFoundation/OpenTimelineIO/discussions/1805
https://github.com/AcademySoftwareFoundation/OpenTimelineIO/discussions/1793

●​ Strong time framework -
https://opentimelineio.readthedocs.io/en/stable/tutorials/architecture.html#otio-openti
me

●​ MultiMediaReference - MultiMediaReference
●​ OTIOZ files as a way to bundle movie deliverables with notes for review, and for

feedback the annotation images.

Terminology
Annotation – A layer over a 2D or 3D object, typically a drawing, for a single point in

time, Typically used to give feedback, but can also be used to identify a point
of interest in a piece of reference.

Notes – Are text based notes which can be associated with the overall media being
reviewed, but can also be associated with a single frame.

Vendor – a vendor is a company who is creating some but not all of the content.

Client – The client for the vendor, all media has its final reviews here. Note, there
may be still multiple review levels within client studio, e.g. VFX Supervisor and
then Director for final buy-off. Also the client studio may have multiple
vendors.

Track based annotations
Our proposal is to take advantage of the overlaying functionality of tracks, to have each
review be a different track. The Annotation track ideally could act as a conventional timeline
(for backwards compatibility with legacy systems), where each annotation frame is defined
using a Clip.2 schema with a still frame with alpha (using a PNG file).

https://docs.google.com/document/d/13jrl2qtWBTSFqMTVQh28LWc16uYvQ79w-7TfX92JaIM/edit?tab=t.0#heading=h.nkw1yjtl83a8
https://opentimelineio.readthedocs.io/en/stable/tutorials/architecture.html#otio-opentime
https://opentimelineio.readthedocs.io/en/stable/tutorials/architecture.html#otio-opentime

Additionally, each Annotation-frame node, would also have a representation of the
annotation as a vector timeline, using the ANNOTATION_1.0 timeline defined by the sync
messaging - https://lf-aswf.atlassian.net/wiki/spaces/PRWG/pages/11274625/OTIO-Ba…

https://lf-aswf.atlassian.net/wiki/spaces/PRWG/pages/11274625/OTIO-Based+Synchronized+Review+Messaging#Annotation-Schemas

Example Annotation Frame

The annotation is shown within the clip for the specified frame.
Within the clip, so a clip might look like:
{
 "OTIO_SCHEMA": "Clip.2",
 "metadata": {
 },
 "name": "Chimera_DCI4k5994p_HDR_P3PQ_%06d",
 "source_range": {
 "OTIO_SCHEMA": "TimeRange.1",
 "duration": {
 "OTIO_SCHEMA": "RationalTime.1",
 "rate": 60.0,
 "value": 1.0
 },
 "start_time": {
 "OTIO_SCHEMA": "RationalTime.1",
 "rate": 60.0,
 "value": 44200.0

 }
 },
 "effects": [],
 "markers": [],
 "enabled": true,
 "media_references": {
 "DEFAULT_MEDIA": {
 "OTIO_SCHEMA": "ImageSequenceReference.1",
 "metadata": {},
 "name": "",
 "available_range": {
 "OTIO_SCHEMA": "TimeRange.1",
 "duration": {
 "OTIO_SCHEMA": "RationalTime.1",
 "rate": 60.0,
 "value": 1.0
 },
 "start_time": {
 "OTIO_SCHEMA": "RationalTime.1",
 "rate": 60.0,
 "value": 44200.0
 }
 },
 "available_image_bounds": null,
 "target_url_base": "annotation_overlay",
 "name_prefix": "annotation_clip1",
 "name_suffix": ".png",
 "start_frame": 1,
 "frame_step": 1,
 "rate": 60.0,
 "frame_zero_padding": 4,
 "missing_frame_policy": "error"
 }
 },
 "annotations": {
 "OTIO_SCHEMA": "ANNOTATION_1.0",
 "author": "Sam Richards",
 “canvas_size”: [1920, 1080],
 "creation_timestamp": "2025-01-31T16:14:00Z",
 "annotation_note": "This is final",
 “annotation_renderer”: “RV-7.1”,
 "annotation_commands": [
 {

 "event": "PAINT_START",
 "payload": {
 "source_index": 0,
 "paint": {
 "OTIO_SCHEMA": "Paint.1",
 "points": [],
 "rgba": [1.0, 1.0, 0.0, 1.0],
 "type": "COLOR",
 "brush": "circle",
 "visible": true,
 "name": "Paint",
 "effect_name": "Paint",
 "layer_range": {
 "OTIO_SCHEMA": "TimeRange.1",

 "start_time": {
 "OTIO_SCHEMA": "RationalTime.1",
 "value": 0.0,
 "rate": 30.0
 },
 "duration": {
 "OTIO_SCHEMA": "RationalTime.1",
 "value": 1.0,
 "rate": 30.0
 },
 },
 "hold": false,
 "ghost": false,
 "ghost_before": 3,
 "ghost_after": 3
 }
 }
 }
 }
}

To break it down, each annotation is typically for a single frame for a clip (although could
also be for a range of frames or the whole clip), if there is an actual annotation, it should
point to a frame, typically a PNG file (TODO Determine if there is a better spec), which
needs to have an alpha channel, so that the frames can be overlaid on top of the actual
media.

In the annotations block you can have the following fields:

●​ author - Who is making the annotations, possibly based on the username, but this
might need to be overwritten for some reviews.

●​ creation_timestamp - When was this annotation created using ISO 8601 (e.g.
2017-05-16T10:30:56+01:00).

●​ The original_frame_number of the clip. Note this is only if start_frame_number (see
below) is defined.

●​ Canvas_size: An array for the width and height of the canvas being drawn on (see
below for examples).

●​ annotation_note - This is a note associated with this frame (and there might not be
an actual image, it might be just the note), we recommend that this at a minimum
support Markdown (See below). NOTE, this note is off-screen, and is in addition to
any captioned note (see below).

●​ clip_uuid (optional) - A UUID provided by the vendor to help ensure that we are
annotating the right clip. This can be any string the vendor likes, provided that its
unique within the vendors facility. See below.

●​ status (optional) - This can be a single string, or an array of strings. If it's an array of
strings, this is used to denote the possible values of the status. This would be used in
the case of a client updating the status to pass back to the vendor, and the vendor
has their own definitions of statuses.

●​ annotation_renderer - Which protocol was used to render the annotation. While we
should strive to have annotation renderers that look the same most of the time, its
possible there may be proprietary renderers where the brush strokes may not be

https://en.wikipedia.org/wiki/Markdown

easily emulated by other renderers. This makes it more likely that you would want to
use the pre-rendered overlay.

●​ annotation_commands (optional) - A list of commands that can be used to re-create
the annotation using the sync command set.

Annotation colorspaces
The annotations are assumed to be in sRGB colorspace, however the hope is that the
results of the ASWF color-interop-forum will eventually be merged into OTIO to make it clear
what the colorspace of each set of media is, to help with their later combining.

An example of why this is important is that an annotation color could be defined by picking a
color off the media, and then painted over part of the screen. If the wrong colorspaces are
used, we could easily end up with a different color making the artistic intent wrong.

Text Formatting and Tagging.
As mentioned above we recommend using Markdown for text general formatting, but
additionally recommend

1.​ Hashtags (#tag):
○​ This is a very common convention, borrowed from social media.
○​ Example: This is a note about #project-alpha and

#meeting-notes.
2.​ Mentions (@user):

○​ Allow reviewer to flag a particular user.
○​ Standard Markdown processors will just render this as text.
○​ Example: Hey @jane-doe, can you review this?

#review-request

TODO: Should there be other conventions, e.g. to refer to other media?
E.g.: You could have a variable hashtag that refers to underlying media metadata, such as:

●​ #var:frame - the current media frame number.
●​ #var:timecode - the current media timecode.
●​ #var:filename - current media filename.
●​ #var:artist - current media artist name.
●​ #var:creationdate - current media creation date.
●​ #var:taskstatus - show the current task status (which probably comes from

production management system, not OTIO file).
This would allow you to create a overlay with metadata and position it as you like that would
cover all the media, rather than embedding the overlay in the media. This has the benefit
that the overlay track could easily be disabled. See below…

https://www.aswf.io/news/introducing-the-aswf-color-interop-forum/

Another example could be tagging media objects…
#asset:spiderman

Brush Strokes
Note, this is optional, since PNG files can be used, however there are advantages to
including the actual brush strokes in potentially a more lightweight transfer file. It does also
allow for ingest into other systems (e.g. maya) as a set of brush-strokes which may have
additional benefits. Additionally being able to manipulate the original brush-strokes, and read
any text allows you to use the raw data in interesting ways (e.g. searching any text, or copy
and pasting individual brush-strokes, rather than the whole image).

For each annotation, the canvas-size would be defined. This makes it easy to define text
size, since the font pixel size can easily be specified.

Each paint surface needs:
Frame(s)
Window-geometry.

Each brush stroke needs a minimum of:

●​ stroke_id - Needed for cases where there are multiple annotations happening at the
same time, string based, e.g. GUID.

●​ point_index
●​ Color (RGB)

https://en.wikipedia.org/wiki/Universally_unique_identifier

●​ Width (float) - Stroke width (Normalized units). TODO - is this scaled for image size?
●​ point_value (x, y)
●​ Brush type: Draw, Erase.
●​ Pen_type (Gauss, Circle)
●​ Pen Opacity: 0-1
●​ Pen-tilt (tx, ty) (Optional)
●​ Pen Pressure: (Units?) (Optional) - Not needed for rendering, just reference. Should

be converted to brush width, and opacity.

Pen move / up:

●​ stroke_id, string based, e.g. GUID.
●​ point_index
●​ point_value (x, y)
●​ pen_tilt (tx, ty) (Optional)
●​ pen_pressure (Optional)

Text Captions

●​ text_id (unique ID, e.g. GUID)
●​ Color (RGBA)
●​ Spacing
●​ Size (pixel height).
●​ Scale
●​ Background color (defaults to 0, 0, 0)
●​ Background opacity (defaults to 0)
●​ Font - We may want to limit what fonts can be used to fonts that are known to be

cross platform, such as Arial/Helvetica, Times new roman, Verdana (Need to check)?
We should support UTF-8 and I18N character encoding. TODO - figure out how this
is supported by json.

●​ Text - Note, text should allow markdown formatting, see below.
●​ Origin of the text box (top left)
●​ Width: - Box width is defined, but height is governed by the amount of text.
●​ Alignment - Left, center, right.

TODO - Arrows, boxes, circles? - Are these important?

Overall review metadata
Additionally there would be track metadata that would denote information about each review.
Example information could be:

●​ Review title
●​ Participants
●​ Review start time
●​ Location(s)
●​ Review description
●​ Vendor name

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

Note: an annotation is not required, you can just have the text note, which would make it
somewhat similar to a marker.

Vendor notes
Beyond just the clipname, there is metadata that the vendor needs to send to the client.

In this situation the “to be reviewed note” would typically be everything other than the actual
annotations (although there might be cases where annotations are handy too). The note
would be information for the reviewer on what they are reviewing it for, e.g. WIP, For Final, or
for approval of an element (e.g. Approval of water sim). The note would span the whole clip,
unless a specific frame needs to be highlighted by the vendor as a message to the client.

So in the above example, the vendor would send along with the media to be reviewed a
OTIO clip that looks like the above.

Once the client reviewer has completed their work, they would get back an OTIO file, which
would have the same OTIO file, but with an additional track with the feedback from the
vendor.

Clip Metadata
We would also expect a number of metadata fields to be added to each clip:

●​ start_frame_number (optional) - The start frame number is 0 for compressed movies
unless somebody is assuming timecode has been mapped to frame number,
explicitly defining the start-frame is a useful way to correctly identify offsets within the
clip. If this is undefined the timecode should be converted to a frame number.

●​ vendor_name (optional) - The name of the vendor
●​ Task (optional) - The task that is being reviewed.
●​ artist_name (optional) - the name of the artist who submitted the media.
●​ Vendor-id (optional) - A unique ID generated by the vendor (see below).
●​ client-id (optional) - A unique ID generated by the client(see below).
●​ Clip_uuid (optional) - A unique ID for this clip, to be used by the annotation note, to

ensure that we are annotating the right clip. This is generated by the vendor and
should be carried through the review pipeline. If its undefined it should never be
added, since its not clear if the clip_uuid has simply been dropped by some process.

vendor-id/client-id
It's common for vendors to have a way to identify an item for review, e.g. bar-4356 where
“bar” is the show code, and 4356 is an index into a review table for the “bar” show. This ID is
human readable, and relatively short compared to a UUID, so is ideal for referencing
compared to a file-string, and it also allows the indirection of proxy media for review, since
they all would share the same vendor-id.

The problem comes when sharing the media with a client, who ingests it into their own
system, and have their own tracking ID. So we need a clear way to have both a vendor and
client id.

We propose that the vendor-id be added and if it exists, it is not overwritten. The client-id
should be the review-id of the local system, i.e. when ingested into a clients system, you
would overwrite this ID.

Media Multi References
OTIO has a framework for allowing multiple pieces of media to be referred to within a single
clip. A typical use case could be the original full rez frames, along with proxy versions.
This when combined with the media reference plugin framework
https://opentimelineio.readthedocs.io/en/latest/tutorials/write-a-media-linker.html could be
used to have the client, vendor and “DEFAULT_MEDIA” path. We recommend that the
media that is travelling with the OTIO file (e.g. in an OTIOZ) would be the
“DEFAULT_MEDIA” entry, and have "active_media_reference" set to "DEFAULT_MEDIA".
Then each vendor/client would have alternate clips based on their facility name.

Import Export Adapters
The fact that the actual clips are on a separate track does make it slightly harder to match
the clips up. So an API should be developed to allow easy importing and exporting to the
neutral OTIO format.

This would be designed for easy ingest into existing applications, would be using C++ for
easy usage in non-python friendly applications.

Pros/Cons
There are several benefits of this system:

●​ It could allow a reviewer to be able to load a OTIOZ file into a reviewing platform that
supports the annotation workflow, and do the review offline. Save the OTIO file back

https://opentimelineio.readthedocs.io/en/latest/tutorials/write-a-media-linker.html

out with their notes, and then send the smaller OTIO file back to a client. If the
overlay images are required, it would still need some form of the OTIOZ file (perhaps
the actual media track wouldn't be embedded in the OTIOZ file).

●​ It would allow Editorial to be able to load the annotations into any editor that supports
OTIO files (TODO creates an OTIO file to illustrate this).

There are a couple of concerns:

●​ This does not natively support non time based workflows, such as model reviews, or
for media such as PDF’s. PDF’s are the more straightforward, since we can treat
each page as a separate image.

●​ We are relying on the annotation format to support 3d annotations, which is not
currently defined.

●​ PDF media in particular might benefit from more direct markers associated with text
(i.e. highlight text, and then have a comment thread).

Future Extensions
There are a number of areas that a future iteration of the annotation spec could be extended
to support, we list some of the ideas, and what technology needs to be in place to support it.

1.​ Framing decision lists - for now, we are assuming all media sets are the same aspect
ratio. FDL’s could help enormously in how to combine media that does not have the
same aspect ratios, or based on the project needs to be combined in a particular
way.

2.​ Track/clip colorspaces - integrating the work from the color-interop-forum into OTIO,
which would be a huge benefit when picking annotation colors off the screen.

3.​ Taking advantage of advanced brush stroke renderers such as
https://disneyanimation.com/technology/meander-1/

4.​ Support for 3d annotations, e.g. for model reviews.

Additional Tasks
●​ Create example media. A reference OTIOZ file with embedded PNG files should be

possible without any coding, as a test.
●​ We are relying on the sync protocol for the annotations, but that is not well defined.
●​ Build reference plugin to xstudio and rv.
●​ Build reference plugin for Flow production management.
●​ A sample annotation renderer will need to be written, this would allow for similar

results to be rendered across multiple applications. Good example of issues this
addresses include how brush-strokes with opacity that intersect are rendered.

https://github.com/ascmitc/fdl/blob/main/ASCFDL_UserGuide_v1.0.pdf
https://disneyanimation.com/technology/meander-1/

Annotations V2 additions

Annotations V2 additions
THis has mostly merged into the main doc, see the main tab…

Coordinate system
The OTIO spatial coordinate system -
https://github.com/AcademySoftwareFoundation/OpenTimelineIO/blob/main/docs/tutorials/sp
atial-coordinates.md - does not specify how things drawn inside work. Its not normalized.

Is there a place for FDL -
https://github.com/ascmitc/fdl/blob/main/ASCFDL_UserGuide_v1.0.pdf Seems useful if it is
defined, perhaps we include it, if its known in the OTIO file?

This is solving a related problem to the spatial coordinate systems, in how different
resolution pictures relate to each other. (Particularly if they are crops).

Can we solve this by simply stating what the resolution is of the annotation area, and
reference a FDL if it exists? All coordinates should be floating point, rather than absolute
pixels, to ensure that brush strokes (particularly for low resolution media) are still smooth.

Benefits of absolute coordinate system:

●​ Does make it easier to define text size, and exact brush sizes, particularly for tilt.
●​ Assuming we always supply “canvas size” its easy to normalize coordinates if

necessary.

Annotation Scaling
When you zoom into an annotated image, do you want to see the brush strokes and text
scale, or should they stay the same size?

●​ Having text size preserved can be good, but sometimes if its a note, you just want to
be able to read it, and know where the note is associated to, so having the text scale
up if you zoom in is not necessarily helpful.

●​ Similarly with some annotations, seeing a sharp edge, can be useful.

Colorspace
There is progress defining standard colorspace names (see
https://www.aswf.io/news/introducing-the-aswf-color-interop-forum/) but this still may be a
little way off. For the initial release, we should assume all annotations whether its a PNG
overlay, or vector graphics, we should assume that they are created in sRGB but composited
in linear space.

Colorspace can be an issue when an image is sampled to use for a brush, and the
annotation is based on that sampled brush stroke.

https://github.com/AcademySoftwareFoundation/OpenTimelineIO/blob/main/docs/tutorials/spatial-coordinates.md
https://github.com/AcademySoftwareFoundation/OpenTimelineIO/blob/main/docs/tutorials/spatial-coordinates.md
https://github.com/ascmitc/fdl/blob/main/ASCFDL_UserGuide_v1.0.pdf
https://www.aswf.io/news/introducing-the-aswf-color-interop-forum/

Brush Strokes

Image space should be normalized.
Decision - Normalized for image width only? If its normalize for x, and y, does that affect how
scaling works for brush-strokes (particularly for tilt?).

Each paint surface needs:
Frame(s)
Window-geometry.

Each brush stroke needs a minimum of:

●​ Stroke-ID - Needed for cases where there are multiple annotations happening at the
same time.

●​ point_index
●​ Color (RGB)
●​ Width (float) - Stroke width (Normalized units). TODO - is this scaled for image size?
●​ point_value (x, y)
●​ Brush type: Draw, Erase.
●​ Pen_type (Gauss, Circle)
●​ Pen Opacity: 0-1
●​ Pen-tilt (tx, ty) (Optional)
●​ Pen Pressure: (Units?) (Optional) - Not needed for rendering, just reference. Should

be converted to brush width, and opacity.

Pen move / up:

●​ stroke_id
●​ point_index
●​ point_value (x, y)
●​ pen_tilt (tx, ty) (Optional)
●​ pen_pressure (Optional)

Text Captions

●​ Text ID
●​ Color (RGB)
●​ Spacing
●​ Size (pixel height).
●​ Scale
●​ Font - We may want to limit what fonts can be used to fonts that are known to be

cross platform, such as Arial/Helvetica, Times new roman, Verdana (Need to check)?

We should support UTF-8 and I18N character encoding. TODO - figure out how this
is supported by json.

●​ Text - Note, text should allow markdown formatting, see below.
●​ Origin of the text box

TODO - Arrows, boxes, circles?

Text Formatting and Tagging.
As mentioned above we recommend using Markdown for text general formatting, but
additionally recommend

1.​ Hashtags (#tag):
○​ This is a very common convention, borrowed from social media.
○​ Example: This is a note about #project-alpha and

#meeting-notes.
2.​ Mentions (@user):

○​ Allow reviewer to flag a particular user.
○​ Standard Markdown processors will just render this as text.
○​ Example: Hey @jane-doe, can you review this?

#review-request

TODO: Should there be other conventions, e.g. to refer to other media?
E.g.: You could have a variable hashtag that refers to underlying media metadata, such as:

●​ #var:frame - the current media frame number.
●​ #var:timecode - the current media timecode.
●​ #var:filename - current media filename.
●​ #var:artist - current media artist name.
●​ #var:creationdate - current media creation date.
●​ #var:taskstatus - show the current task status (which probably comes from

production management system, not OTIO file).
This would allow you to create a overlay with metadata and position it as you like that would
cover all the media, rather than embedding the overlay in the media. This has the benefit
that the overlay track could easily be disabled. See below…

Another example could be tagging media objects…
#asset:spiderman

Tab 3

Adaptor nodes? How to map from RVPaint to

Using custom schemas - not portable?

HOw to use the tool.

	OTIO 2D-Annotations Interchange specification
	OTIO 2D-Annotations Interchange specification.
	Introduction
	Why OTIO
	Terminology
	Track based annotations
	
	
	Example Annotation Frame
	Annotation colorspaces
	Text Formatting and Tagging.
	Brush Strokes
	Text Captions
	Overall review metadata
	Vendor notes
	Clip Metadata
	
	vendor-id/client-id

	Media Multi References
	Import Export Adapters
	Pros/Cons
	Future Extensions
	Additional Tasks

	Annotations V2 additions
	Annotations V2 additions
	Coordinate system
	Annotation Scaling
	Colorspace
	Brush Strokes
	Text Captions
	Text Formatting and Tagging.

	Tab 3

