
Supplementary Material 

 

Dynamic versus Static Systems:  

 

The sport and exercise medicine community has started to consider both causal diagrams1 and 

dynamic or complex systems2-4 in their analysis and conceptualization. In our article, a static 

system perspective was adopted. However, static does not mean that a system does not change 

over time, nor does it mean that the data are not generated by a dynamic system (see next 

section). A static system “simply” assumes time-invariance within a discrete time interval (point 

in time). While the use of static systems may appear to be an “over-simplification”, their use in 

clinical research is useful. Indeed, their adoption and application have facilitated the successful 

identification and confirmation of causal paths that have resulted in effective treatments.5 This 

does not negate the value of a dynamic system approach but simply highlights that there may 

be different (methodological and philosophical) approaches to answering similar research 

questions. Both approaches can produce findings that are useful in a real-world setting and can 

help to generate knowledge. How to reconcile the two approaches is an area still under 

investigation and debate.6-8  

 

There are mathematical and philosophical differences between these two different perspectives 

and these differences affect how we simulate and analyze data. While exploring these 

differences and their implications in detail is beyond the scope of this paper, one important 

distinction worth highlighting is that these frameworks often utilise the same words with 

different meanings, which can lead to confusion. The main purpose of our article was to explain 

concepts related to exposure and dose, and not to address the different philosophical 

approaches to causation. During the review process, however, a discussion regarding the use of 

static vs dynamic systems perspectives arose, which may be of interest to others.  Therefore, we 

elaborated on the comparison in this supplementary material.  This can be useful for other 

readers embracing a dynamic system perspective and may not be familiar with causal inference 



and counterfactual framework principles, terminology and methodology. We, therefore, provide 

a brief overview of three important concepts below: (1) “bidirectionality” (or circular causality) 

versus time-varying exposures, (2) causes versus interactions and (3) the sufficient cause model 

which shows the multifactorial nature of causation.  

 

1.​ “Bidirectionality” versus “Time-varying exposures” 

 

Conceptually, a dynamic system can be thought of as a system where the value of variables is 

constantly changing over time but the system is in equilibrium and self-regulates to reach 

stability.2 Physiologically, homeostasis is a state of equilibrium. Mathematically, equilibrium 

means the average value remains constant over the chosen period of time. In other words, 

sampling data at random time points is always expected to give the same average value. 

Consider that blood pressure is in equilibrium (e.g., controlled by the carotid sinus) and 

constantly fluctuating around an average value. Measuring blood pressure at any time point will 

on average, give the same value as blood pressure at another time point. When one intervenes 

on a variable and “changes it” (e.g., medication), the system will achieve a new “equilibrium” 

value (e.g., mean blood pressure). Because the values of variables in dynamic models are 

constantly changing even if in equilibrium, and there may be multiple factors that affect each 

other over time, the language and graphical models used to describe dynamic systems often 

refer to circular causality (“bidirectionality”).9 For example, alcohol might cause smoking, and 

smoking might cause alcohol consumption (Figure 1S-A).  

 

In a static system (e.g., structural causal models, causal directed acyclic graphs (DAGs)), a 

variable is defined both by its construct and the time at which it is measured. As the value of a 

variable may change over time, such variables are known as time-varying variables or 

exposures. Using the example of alcohol and smoking, alcohol consumption on Jan 1 can cause 

smoking on Feb 1, but alcohol consumption on Feb 1 cannot cause smoking on Jan 1. Therefore, 

from the causal inference perspective, causal DAGs depicting the causal relationships between 

alcohol consumption and smoking would be represented by one node for alcohol consumption 



at each time point, and one node for smoking at each time point, i.e., alcohol consumption at 

one point in time is a different variable to alcohol consumption at another point in time, with 

the same applying to smoking. To elaborate, when constructing our DAG (Figure 1S-B), we might 

include an arrow from (1) alcohol Jan 1 to smoking Feb 1, (2) alcohol Jan 1 to alcohol Feb 1, (3) 

smoking Jan 1 to alcohol Feb 1 and (4) smoking Jan 1 to smoking Feb 1. However, we would not 

include arrows from alcohol Feb 1 to smoking Jan 1, or from smoking Feb 1 to alcohol Jan 1, as it 

is not possible for something in the future to cause something in the past. Conceptually, the 

static model can be expanded (by using separate nodes for each timing) so that each timepoint 

is only one minute or one second apart, essentially providing the causal relationships in the 

dynamic model (but remaining acyclic, i.e., no variable can be the cause of itself). Comparing 

the dynamic to static models, it becomes obvious that the “bidirectionality” language used in 

dynamic models is possible because cause-effect temporality (i.e., time) is treated differently 

(e.g., cyclic diagrams, Figure 1S-A) than in static systems (e.g., acyclic diagrams, Figure 1S-B and 

1S-C).  

 



 

 

 

Figure 1S. Bi-directionality causality represented in dynamic systems (A) and in static causal 

directed acyclic graphs (B and C). For simplicity, the diagrams incorporate just two variables, 

smoking and alcohol, but the same applies to more complex causal paths. Figure 1S-A 

represents causal loop diagram10,11 with causal circularity (bidirectionality) when time is only 

implied and not explicitly included (only time delays are normally included in this kind of 

graphical representation). The internal loop or the signs – and + normally representing positive 

(reinforcing) or negative (balancing) effects presented given the generic examples. Figure 1S-B 

and 1S-C represent causal directed acyclic graphs for the same data generating process, where 

each variable is defined by its construct (smoking, alcohol) and the time it is measured. In (B), 

there is no intervention. In (C), there is an intervention setting SmokingFeb 1 to a specific value for 

different participants: do(SmokingFeb 1) (modified from12). Causal directed acyclic graphs can also 

include positive and negative effects but are not routinely used.13  



 

2.​ Causes and Interactions 

 

In dynamic systems, cause is sometimes restricted to a system state (which is the cause of the 

next state), or the self-organising process causing the emergence of (new) properties in complex 

systems..14-16 However, cause is also often used more broadly, and consistent with the use of the 

term in static systems.15,17,18 

 

In static systems, a cause can be a single variable, and this variable can interact with others. 

Restricting the word “cause” to a state and self-organization, while coherent with some specific 

views of causation from a dynamic system perspective,14 is inconsistent with contemporary uses 

of the word in most of science and medicine, on which our article was based. To elaborate, 

consider a randomized trial of codeine for pain control. The mean pain level in the group after 

receiving codeine is 4 and the mean pain level in the group after receiving the control is 8. The 

standard conclusion is that codeine causes pain relief. However, codeine must first be converted 

to morphine by the liver to relieve pain. This enzyme is missing in ~10% of the population. 

Therefore, using the proposed dynamic systems interpretation of cause above, we could not say 

codeine is a cause of pain relief. Rather, we would only be able to say the interaction between 

codeine and a specific enzyme (and other system components such as the ability to absorb 

codeine, enzymes that breakdown codeine) was the cause of the pain relief.  

 

In dynamic systems, the same concepts occur but the terminology is different. Consider the 

context of describing how a system changes in response to an external intervention 

perturbating its dynamic.19 The external intervention can be seen as the intervening variable 

causing the system to change. Within our article, exposure is the intervening variable, i.e., the 

variable causing a system to respond to this perturbation (under the dynamic system 

perspective).  Even though new properties of the system emerge as a consequence of the 

interactions between the different components, feedback loops and through self-organization, 

this is still compatible with the interpretation of exposure as a cause.    



 

3.​ The sufficient cause model  

 

Static models can incorporate the same concept of interactions but under the rubric sufficient 

component causal model framework.20-22 This framework conceptualises a cause as an “act or 

event, or a state of nature which initiates or permits, alone or in conjunction with other causes, 

a sequence of events resulting in an effect”.20 In this framework, all of the individual causes 

together are called a sufficient cause, and each of the individual causes that is not sufficient to 

cause the event by itself is called a component cause. There may be several different sufficient 

causal sets for an event. When a component cause is present in every sufficient cause, it is 

called a necessary cause.20 One of the acknowledged strengths of this model (compatible with 

causal inference principles, counterfactual terminology and models) is that it makes clear the 

multifactorial nature of causation.21 

 

Using codeine and pain relief as a concrete example, the component causes a) codeine, b) the 

converting enzyme and c) any other required factor for the event to occur, together form a 

sufficient causal set. In the simple causal DAG that most readers may be familiar with, both 

codeine and the enzyme would be represented by their own nodes, and each would have an 

arrow to pain relief (Figure 2S-A). The fact that both are required together for pain relief is not 

indicated on the graph. Although this appears a limitation, it is by design and is required for 

many of the conclusions we make using causal DAGs.  

 

Although the commonly used causal DAG does not show interactions, sufficient component 

causes that include mapping out these interactions explicitly can be represented in causal DAGs 

(Figure 2S-B). These models can also indicate that a cause may be the absence of a variable 

rather than its presence. For example, the development of phenylketonuria requires both 

ingestion of phenylalanine and absence of the phenylalanine hydroxylase enzyme.23 For a more 

complete understanding of the strengths and limitations of sufficient component causal DAGs, 

and solutions to model ﻿to more complicated multicausal relationships, see.24-27  



 

 

Figure 2S. (A) Common direct acyclic graph for pain relief using codeine and acetylsalicylic acid 

(ASA) as the only two causes for simplicity. Both codeine and ASA require absorption, and 

codeine must be converted to morphine by an enzyme for it to be effective. In B, the required 

interactions between variables for codeine to be effective, and for ASA to be effective, are 

indicated within the ellipse of sufficient causes (adapted from25,26).  
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