Proposal: Mojo Synchronous Methods

yzshen@chromium.org
02/02/2016

Overview

Currently there are quite a lot of sync IPC messages in Chrome: A quick search of
IPC_SYNC_MESSAGE* in *messages.h returned 239 results. Some messages such as
PpapiHostMsg_ResourceSyncCall are used as generic sync wrappers for other messages, so
there are even more sync messages.

In order to facilitate conversion of Chrome IPC messages to Mojo interfaces, this document
presents the idea of Mojo synchronous methods.

Please note: Sync calls should be avoided whenever possible!

e Although some sync IPCs are necessary; some might be added just for conveniences.
For the latter, in-depth refactoring should be done eventually to convert them to async
calls.

Sync calls hurt parallelism and therefore hurt performance.

Re-entrancy changes message order and produces call stacks that you probably never
think about while you are coding. It has always been a huge pain.

Sync calls may lead to deadlocks.

As you can see below, this feature is similar to the current Chrome sync IPC support, but
is less flexible (mostly intentionally). For example, with Chrome IPCs you can configure
any async IPC message to “unblock” so it can re-enter ongoing sync calls at the
receiving side. Such capability is not supported for Mojo sync calls. Unless later we see
strong demand, | personally would like to consider lack-of-support as a feature in this
case. :)

Mojom

A new attribute [Sync] (or [Sync=true]) is introduced for methods. For example:

interface Foo {

[Sync]

SomeSyncCall () => (Bar result);
}i

It indicates that when SomeSyncCall() is called, the control flow of the calling thread is blocked'
until the response is received.

' It may get re-entered. Please see the Re-entrancy behavior section.

mailto:yzshen@chromium.org

Itis not allowed to use this attribute with functions that don’t have responses. If you just need to
wait until the service side finishes processing the call, you can use an empty response
parameter list:

[Sync]
SomeSyncCallWithNoResult () => ();

Message format

A new flag is defined for the flags field of message header:

enum {
kMessageExpectsResponse =1 << 0,
kMessageIsResponse =1 <1,
kMessageIsSync =1<< 2

}i

If kMessagelsSync is set, either kMessageExpectsResponse or kMessagelsResponse must
also be set.

Generated bindings (C++)

Response is mapped to output parameters. The boolean return value indicates whether the
operation is successful. Returning false usually means a connection error has occurred.

// Client side:
virtual bool SomeSyncCall (BarPtr* result) = 0;

The implementation side implements a different signature:

// Service side:
virtual void SomeSyncCall (const SomeSyncCallCallback& callback) = 0;

The reason to use a signature with callback at the impl side is that the implementation may
need to do some async works which the sync method’s result depends on.

There are two ways to organize these signatures:
Putting them in two different interfaces:
class Foo {
public:
class Service {
virtual void SomeSyncCall (const SomeSyncCallCallbacké& callback) = 0;

}r
class Client {
virtual bool SomeSyncCall (BarPtr* result) = 0;

}i
}i

Or, put them in a single interface:
class Foo {
public:
virtual void SomeSyncCall (const SomeSyncCallCallback& callback) = 0;
virtual bool SomeSyncCall (BarPtr* result) {
// The service side should implement the other signature.
NOTREACHED () ;
return false;
}
}i

| personally prefer the second approach: it requires less changes to the existing bindings/user
code; besides, it allows the client to use both the async and sync way to make the call. (That
being said, the first approach is more clear about the capability/responsibility of both sides.)

Re-entrancy behavior

What should happen on the calling thread while waiting for the response of a sync method call?
This proposal adopts the following behavior: continue to process incoming sync request
messages (i.e., sync method calls); block other messages, including async messages and sync
response messages that don’t match the ongoing sync call.

sync_call_b
sync_call_b
re-gnters
sync_call_a sync_response_b

async_call_cis | SYNEC_response_a

postponed until | ud_d_d_d_d_d____P__T____________———~—~4
sync_call_a E

completes v

i
[}
I
i
i
[}
1
i
i
i
I
: async_call_c
[}
I
i
i
!
1
i
i
i
[}
i

|
)
i
i
| async_response_c
i
i
|
1
i
|

Please note that sync response messages that don’t match the ongoing sync call cannot
re-enter. That is because they correspond to sync calls down in the call stack. Therefore, they
need to be queued and processed while the stack unwinds.

Please also note that such re-entrancy behavior doesn’t eliminate deadlocks involving async
calls. For example:

sync_call_a

async_response_b is
needed to produce

async_call_b
- - SyNc_response_a

async_call_bis nol processed
because sync_call_a has not
completed; but sync_call_a cannot
complete unless async_call_b is
processed,

Deadlock

(If you find that you get into this situation, you probably want to either change async_call_b to a
sync call, or use the pattern described in alternative (2) below.)

Alternatives considered (but disfavored):

1) no re-entrancy: block the thread completely until the response message arrives.
Alternative (1) results in deadlocks, if two or multiple parties can issue sync calls to others and
create a cycle. Besides, it is easy to achieve the same purpose using the following pattern:

interface SyncCallWaiter {
Done (Bar result);
}i
interface Foo {
SyncCall (SyncCallWaiter) ;
}i

foo->SyncCall (std: :move (sync_call waiter ptr));
// Block and wait for the service side to call Done().
sync_call waiter binding.WaitForIncomingMethodCall () ;

2) full re-entrancy: continue to process all messages.
You can achieve the same purpose using the following pattern:

interface Foo {
AsyncCall () => (Bar result);
}i

foo.set connection error handler ([&run loop] () { run loop.Quit(); 1});

foo->AsyncCall ([&run_ loop] (BarPtr result) { run loop.Quit(); 1});
run_loop.Run() ;

3) context-based re-entrancy: continue to process incoming sync request messages
caused by the ongoing sync call, but not other messages. For example, in the following
diagram, sync_call_b is resulted from sync_call_a so it is allowed to re-enter; on the
other hand, sync_call_c is not resulted from sync_call_a so it is postponed until
sync_call_a completes:

app_1 app_2 app_3

i —__sync call a i i

: ~Syne_call_ | '

| H“‘\-_ i i

1 T—— 1 1

i syn l:_csll_b__ﬂ-—f:"': —

i e ' e i

| i e i

i I e i

: \%f’ sync_call_c !

! — !

|__‘_,_,—'-'_'_F'_ : i

‘0 ' '

sync_call_cis rr’ i SYNC_Fesponseg_a—) i
postponed until | ' '
gync_calla | L. i i
complatas ! ! !

—
: ——i___sync_response_c i
i ———
i

—
i : !
i ' \

Alternative (3) seems useful to reduce sync call re-entrancy. However, it can lead to deadlocks
similar to alternative (1). Also, it is hard (if not impossible) to determine automatically whether a
call is “caused by” another call. Consider complicating the example above a little bit: what
should we do if in order to serve sync_call_a, app_2 has to make an async call to app_4 which
in turn sends sync_call_d to app_17? The bindings probably have to require the user to pass a
context ID around explicitly, in order to tell whether a call is caused by another call.

Message pumping and scheduling

Basic case
Obviously, when an interface pointer (let’s call it calling_ptr) is used to make a sync call, we

need to watch calling_ptr's message pipe handle for response.

In addition, we also need to watch all bindings that serve sync calls on the same thread. A
thread-local registry is necessary to keep track of all those bindings.

While waiting for sync response on calling_ptr, those bindings being watched may receive async
requests; calling_ptr may receive async responses and non-matching sync responses (for
previous sync calls down in the call stack). They all need to be queued and processed later.

More complex case: associated interfaces involved

It becomes more complex when associated interfaces are involved. Because master interface
endpoints (no matter they are bindings or interface pointers) serve as routers for all associated
interfaces running on the same pipe. Those associated interfaces may live on different threads.
Also, associated interfaces may contain sync calls. It means we also need to watch:

e Allinterface ptrs and bindings that serve as master endpoints. Even if there are only
async messages, the destination associated endpoints may live on a different thread. It
is undesirable to block them.

e Associated bindings that serve sync calls. Because associated bindings don’t own a
message pipe handle, we need to set up a control message pipe between an associated
binding and its corresponding master endpoint to signal about sync message arrival.

Combine all the cases above, while waiting for a sync response on calling_ptr, we will need to
watch:

“
[kept track of by thread-local registry HandleWatcherRegistry 1
I I
: bindings that master_endpoints [associated_bindings :
| serve sync calls = that serve sync calls 1| calling_ptr
I \ \ \ 1
I LY T ¥ |
\ I
A e -

Calling_ptr could be an associated interface pointer, too. We also need to use a control
message pipe between it and its corresponding master endpoint. But the rest is the same.

In some cases, users may want to enforce that certain threads shouldn’t make any sync calls. It
is straightforward to set such policy at the thread-local registry and enforce it when calling_ptr
gueries what handles should be watched.

https://docs.google.com/document/d/1ENDDzACX4hplfQ8cCHGo_rXd3IHTu5H4hEZ44Cu8KVs/edit?usp=sharing

