
in-toto Due Diligence for CNCF
Graduation

August 2023​
Primary Authors: Justin Cappos (NYU), Santiago Torres-Arias (Purdue University)​

Reviewers and other Contributors: Lukas Pühringer (NYU), Aditya Sirish A Yelgundhalli
(NYU), Trishank Karthik Kuppusamy (Datadog)

This Document
The purpose of this document is to provide the in-toto project technical review Due Diligence as
described here. The overarching goal of this document is to provide the requisite information for
in-toto's graduation.

Background
-​ Link to TOC PR
-​ Link to presentation (TBD)
-​ Link to github project

Project Introduction
in-toto, Latin for “as a whole,'” is a framework that holistically enforces the integrity of a software
supply chain by gathering cryptographically verifiable information about the software supply
chain. This information can be checked against a policy which enforces that certain steps were
performed by different parties, those steps had certain outcomes, and that the result of a step
was used by other steps to make the software.

Modern software is built through a complex series of steps called a software supply chain.
These steps are performed as the software is written, tested, built, packaged, localized,
obfuscated, optimized, and distributed, among other steps. In a typical software supply chain,
these steps are “chained” together to transform (e.g., compilation) or verify the state (e.g., the
code quality) of the project in order to drive it into a delivered product, i.e., the finished software
that will be installed on a device. Usually, the software supply chain starts with the inclusion of
code and other assets (icons, documentation, etc.) in a version control system The software
supply chain ends with the creation, testing and distribution of a delivered product.

https://github.com/cncf/toc/blob/master/process/dd-review-template.md
https://github.com/cncf/toc/pull/1162
http://github.com/in-toto

Securing the supply chain is crucial to the overall security of a software product. An attacker
who is able to control any step in this chain may be able to modify its output for malicious
reasons that can range from introducing backdoors in the source code to including vulnerable
libraries in the delivered product. Hence, attacks on the software supply chain are an impactful
mechanism for an attacker to affect many users at once. Moreover, attacks against steps of the
software supply chain are difficult to identify, as they misuse processes that are normally
trusted.​

Currently, supply chain security strategies are limited to securing each individual step within it.
For example, Git commit signing controls which developers can modify a repository,
reproducible builds enables multiple parties to build software from source and verify they
received the same result, and there are a myriad of security systems that protect software
delivery. These building blocks help to secure an individual step in the process.

Although the security of each individual step is critical, such efforts can be undone if attackers
can modify the output of a step before it is fed to the next one in the chain. These piecemeal
measures by themselves can not stop malicious actors because there is no mechanism to verify
that:

1)​ the correct steps were followed, and;
2)​ that tampering did not occur in between steps.​

in-toto protects the software supply chain as a whole. In order to achieve this, in-toto provides a
series of mechanisms to define:

-​ What steps are to be carried in the supply chain
-​ Who can carry out each step
-​ How the artifacts between each step interconnect with each other

This way, in-toto can allow project owners to define (and update) the topology of the supply
chain in a file called a software supply chain layout (or just layout for short). In addition to this,
in-toto provides a way for functionaries to provide cryptographically-signed attestations that can
be used to verify that all steps within the supply chain were carried out according to the
specification.

Project Provenance and Collaborations
This project was started by the research teams of Prof Santiago Torres-Arias (formerly a PhD
student at NYU, now a professor at Purdue), Prof Justin Cappos (NYU), and Prof Reza
Curtmola (NJIT). It was originally funded with a small DARPA (1M USD) grant and has two NSF
grants (totaling about 2M USD) currently. We have applied for more such funding to continue to
work on the project at high velocity.

Note however, that a lack of funding does not mean a lack of support or effort for the project.
For example, the TUF project (which in-toto maintainer Justin Cappos leads and Santiago

Torres-Arias participated in), has had funding for only a few years of its lifetime (about 4 years
and 772K USD direct funding over its 13 years). Academics can usually find a way to work on
topics of interest, even without funding.

Furthermore, the in-toto project is well supported and widely used by industry. This is through
three major axes: as a standalone project, as the default mechanism to provide SLSA
attestations, and within the Sigstore ecosystem.

As a standalone tool, in-toto has been used by Datadog and the reproducible builds project for
more than three years. Recently, in-toto became adopted by the npm cli as part of its attestation
mechanism. Other emerging projects such as SCAI (part of Intel Labs), Keylime and the GUAC
project all support in-toto. Similarly, static analysis tools such as Aqua's trivy can consume
in-toto-signed SBOM's for validation, as well as generate attestations of scanning.

Through SLSA, in-toto has seen widespread adoption by major CI players. This includes Tekton
through its chains project that generates in-toto SLSA attestations as well as its own specific
payload. Jenkins hosts a plugin to also generate in-toto attestations with minimal setup. More
recently, GitLab added support for generating in-toto attestations of runner runs. Lastly, GitHub
now generates a collection of attestations (including SLSA) for NPM builds as part of a public
beta.

Sigstore is a project that initially started as a "transparent transport for in-toto" as originally
written by Luke HInds. While its goals and scope have grown, in-toto is still one of the most
prevalent types of data generated. Sigstore supports generation and validation of in-toto
attestations through its cosign tool as well as its policy controller. In fact, in-toto attestations are
the second most popular type of signature hosted in the public-good instance of the sigstore
project.

We document broader integrations in our friends repository.

Alignment with Cloud Native / Need
One of the most pressing security problems in cloud native is software supply chain security. in-toto
addresses this issue by providing a secure and trustworthy means for representing all the operations
within the cloud-native pipeline and verifying that they were carried out to the letter.

A good way to understand the need for in-toto in the Cloud Native space is to understand the value
of signed SBOMs vs in-toto metadata + layouts. A signed SBOM indicates that some party (whose
key you presumably have a reason to trust) states what the software contains. In contrast, in-toto
will have signed information about the individual steps of the supply chain cryptographically linking
metadata together from various parties and validating this all against the software’s policies. As a

https://openssf.org/projects/slsa/
https://openssf.org/projects/slsa/
https://www.datadoghq.com/blog/engineering/secure-publication-of-datadog-agent-integrations-with-tuf-and-in-toto/
https://ssl.engineering.nyu.edu/blog/2019-01-18-in-toto-paris
https://github.com/npm/attestation
https://aquasecurity.github.io/trivy/v0.38/docs/attestation/sbom/
https://aquasecurity.github.io/trivy/test/tutorials/signing/vuln-attestation/
https://tekton.dev/docs/chains/intoto/
https://plugins.jenkins.io/in-toto/
https://about.gitlab.com/blog/2022/08/10/securing-the-software-supply-chain-through-automated-attestation/
https://www.sigstore.dev/
https://docs.sigstore.dev/cosign/attestation/
http://github.com/in-toto/friends

result, their protection modes would work quite differently in many cases. For example, see the
following table:

Attack scenario Signed SBOM Result In-toto layout + metadata result

Software manipulated after
software supply chain completed

Detect and reject the
malicious software

Detect and reject the malicious
software

Attacker compromises VCS and
inserts malicious (unsigned) code
where signatures are required

Undetected. User
compromised.

Detect and reject the malicious
software

Attacker substitutes a malicious
dependency (not signed by that
dependeny’s maintainer)

Undetected. User
compromised.

Detect and reject the malicious
software

Attacker provides files to the build
system which did not come from
the VCS

Undetected. User
compromised

Detect and reject the malicious
software

Attacker containerizes / packages
binaries other than the ones the
build system built

Undetected. User
compromised

Detect and reject the malicious
software

Tests are not run on the software
but it is (accidentally?) released to
production

Undetected. User
compromised

Detect and reject the malicious
software

The legal team has not reviewed
source code licenses for included
libraries

Undetected. Impact
varies

Detect and reject the software

One important thing to note about the table above is that it isn’t impossible for someone to do many
of these steps and checks before signing an SBOM. If you did all of these checks, and signed the
statements saying you did them to provide stronger validation, and distributed the root of trust for
your signatures in a secure way, and managed situations where signing keys need to be revoked /
rotated / expired, and handled trust delegation to different parties, and linked metadata between
steps together, and let people write policies to reason about those steps, and let them link metadata
in from dependencies to do so, and handled all of the above in scenarios where insiders can be
maliciously interfering with your, system, then you would effectively reconstruct in-toto.

We are aware of some efforts, like the Zephyr project, where project members have worked to try to
reconstruct some of the guarantees of in-toto and decided to live with the gaps in their security for
other portions. For groups that have done this work already this does make sense to us as a viable
alternative in the short term. However, we do believe that using a common, holistic approach like

https://www.zephyrproject.org/

in-toto will be necessary as projects continually add the missing security pieces from in-toto and
want to reason more and more about each other as dependencies.

Note that in-toto is not a substitute for having appropriately secure steps in the software supply
chain. For example, if you use an insecure process of building software that just curls and
builds software from a website, in-toto will happily sign metadata indicating that you did the
same insecure action indicated you would.

This is why projects like SLSA and FRSCA are built as an opinionated set of steps on top of
in-toto. They specify which actions they feel are more important for software supply chain
security and mandate their use.

These projects are solving different problems at different levels. In-toto allows you to capture
information about your steps, ensure policies about them are applied, handle trust of keys, etc.
Frameworks like SLSA and FRSCA use in-toto as a mechanism to capture and enforce a
specific set of policies that result in more secure supply chains.

Graduation State Requirements

1 Have committers from at least two organizations.

As an intentionally minimal security specification / framework, we deliberately do not have a high
degree of feature additions in the project. Effort comes on either the implementations, such as the
Go implementation (used by tools like Trivy and Tekton), the Python reference implementation (used
by Datadog), the Java implementation (used by the Jenkins plugin and Rabobank), and the
specification (where all implementations coordinate for interoperability).

Since reaching the incubation stage, the in-toto project has switched its governance model to use a
steering committee. The first in-toto Steering Committee (ITSC) was voted on by the in-toto
community and comprises five members from organizations spanning industry and academia. The
ITSC has oversight over all in-toto sub-projects such as the specification, the Attestation Framework,
and implementations maintained by the community written in Python, Go, Java, and Rust. Each
sub-project has its own set of maintainers recorded in a CODEOWNERS or MAINTAINERS file in its
repository. Across our sub-projects, we have contributors from a diverse set of organizations like
Google, Kusari, New York University, Purdue University, Verizon, Intel, and TestifySec.

The current ITSC comprises of the following

●​ Santiago Torres-Arias (Purdue University)
●​ Justin Cappos (New York University)
●​ Jack Kelly (Control Plane)

https://slsa.dev/
https://github.com/buildsec/frsca

●​ Cole Kennedy (TestifySec)
●​ Trishank Karthik Kuppusamy (Datadog)

We have had active contributions from an array of contributors across the CNCF landscape. One
way to see this is via the substantial changes that made their way into the specification.

Changes to the in-toto standard largely come in the form of ITEs (in-toto enhancements). There is a
substantial ITE, ITE-4, that standardized non-file artifact specifications for in-toto metadata. The
stakeholders in it are Github, Conda, SPDX and Google's Grafeas.

Another significant ITE is ITE-6 [https://github.com/in-toto/ITE/blob/master/ITE/6/README.adoc].
This enhancement introduced the in-toto Attestation Framework to record and disseminate software
supply chain specific information like build provenance, code review results, test results, SBOMs,
vulnerability scans, and more. in-toto attestations are now used by GitHub for NPM build
provenance, OpenVEX, Docker buildx, scanners like Trivy that can generate signed SBOMs, Tekton
Chains, Sigstore, GUAC, Witness, and Archivista. SolarWinds, in their next generated build system
introduced after SUNBURST, also generate in-toto attestations.

2 Have achieved and maintained a Core Infrastructure Initiative
Best Practices Badge.

The in-toto project has a Gold CII (now OpenSSF) Best Practices Badge. As of 31st of July,
2023, there are only 23 projects in the world to have such a distinction. The only other CNCF
project with a Gold Badge is the TUF project (a graduated security project).

According to the OpenSSF Best Practices website, the in-toto project received its initial
OpenSSF Best Practices badge on January 5th, 2018.

3 Have completed an independent and third party security audit
with results published
See the in-toto Security Audit ‘23.

https://github.com/in-toto/ITE
https://github.com/in-toto/ITE/blob/master/ITE/4/README.adoc
https://github.com/in-toto/attestation
https://aquasecurity.github.io/trivy/v0.38/docs/attestation/sbom/
https://bestpractices.coreinfrastructure.org/
https://bestpractices.coreinfrastructure.org/en/projects/1523?criteria_level=2
http://theupdateframework.io
https://in-toto.io/security-audit-23/

4 Explicitly define a project governance and committer process.
The committer process should cover the full committer lifecycle including onboarding and
offboarding or emeritus criteria. This preferably is laid out in a GOVERNANCE.md file and
references an OWNERS.md file showing the current and emeritus committers.

The project’s GOVERNANCE.md and contributor instructions cover the committer lifecycle,
onboarding, offboarding, and emeritus criteria. Any participant may commit, so long as their
code is approved by a project maintainer for the implementation for that codebase. The current
maintainers are also listed in the repository.

The in-toto specification has a separate process by which changes and additions are proposed
and vetted. This is through the ITE (in-toto enhancement) process, which involves a public
proposal of a specification change which is discussed by the community.

Explicitly define the criteria, process and offboarding or emeritus conditions for project
maintainers; or those who may interact with the CNCF on behalf of the project. The list
of maintainers should preferably be stored in a MAINTAINERS.md file and is audited at
a minimum of an annual cadence.

As above, the project’s GOVERNANCE.md covers the criteria for maintainers including the
onboarding, offboarding, and emeritus criteria. These are audited at an annual cadence by the
in-toto steering committee, as is described in the project’s GOVERNANCE document.

While the maintainers of both the in-toto specification and its implementations work together for
the health of the project, for the purposes of CNCF interactions, the in-toto maintainers are the
ones who will interact with the CNCF on behalf of the project. The current maintainers are listed
in the repository.

Have a public list of project adopters for at least the primary repo (e.g., ADOPTERS.md
or logos on the project website). For a specification, have a list of adopters for the
implementation(s) of the spec.

There is a public “friends list” of project adopters.

https://github.com/in-toto/community/blob/main/GOVERNANCE.md
https://github.com/in-toto/community/blob/main/CONTRIBUTING.md
https://github.com/in-toto/in-toto/blob/develop/MAINTAINERS.txt
https://github.com/in-toto/ITE
https://github.com/in-toto/ITE/blob/master/ITE/1/README.adoc
https://github.com/in-toto/community/blob/main/GOVERNANCE.md
https://github.com/in-toto/in-toto/blob/develop/MAINTAINERS.txt
https://github.com/in-toto/in-toto/blob/develop/MAINTAINERS.txt
https://github.com/in-toto/friends

in-toto Community Activity Inside and Outside the
CNCF
We would also like to stress that in-toto project maintainers have been active members in the
CNCF community.

Justin Cappos is a tech lead for TAG Security. He has been very active in the security
assessment process for the CNCF. He is currently working with Ragashree Shekar to write a
security assessments book for TAG-Security to help to ease the on-boarding of TAG-Security
members. He is also the consensus builder for the CNCF project TUF.

Santiago Torres-Arias created the CNCF’s Catalog of Supply Chain Compromises while working
on in-toto and has donated it to the CNCF and TAG-Security.

We have also presented in-toto to the CNCF TOC previously as well as to TAG-Security.

We have been active in talking about in-toto, which has helped to drive adoption. Academically,
this includes a talk on the peer-reviewed academic paper describing in-toto at USENIX Security
2019. We have also done significant outreach to the government and other agencies.For
example, in-toto was mentioned in Microsoft’s president Brad Smith’s testimony to the U.S.
Congress. More recently, we have submitted a white paper about in-toto to the NIST’s call for
position papers that was issued as a result of the 2021 Presidential Executive Order on
``Improving the Nation’s Cybersecurity''. We have spoken both to Senator Wyden's office and
also the staffers on the House Committee on Science, Space, and Technology that are working
on a response to the SolarWinds hack and supply chain security more broadly.

In the last year, we’ve also worked to expand in-toto to critical industries such as automotive
and other embedded software. We leveraged our experience working on Uptane, a derivative of
TUF for automotive and internet-of-things (IoT) software, to understand how in-toto can be used
to secure those software supply chains. We published a whitepaper entitled Scudo
(https://uptane.github.io/papers/scudo-whitepaper.pdf) detailing these efforts. We’ve also been
working closely with Toradex, an IoT hardware and software producer to deploy in-toto in their
supply chain. Once this deployment is complete, Toradex’s products that are used in key
applications such as medical devices will benefit from in-toto’s software supply chain security
features.

https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/README.md
https://docs.google.com/presentation/d/1jhzJlSAAJNNil1nIYp60eSMH3LPd6AwqHLt3vEAzMSg/edit#slide=id.g5bcd054cc9_0_0
https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://www.usenix.org/conference/usenixsecurity19
https://www.usenix.org/conference/usenixsecurity19
https://uptane.github.io/papers/scudo-whitepaper.pdf

In-toto was the first project to go through the TAG-Security assessment process. As the
assessment process was being tested and refined at that time, this was much more
burdensome than other projects that went through the process later.

Incubation Project recommendations

Verify in-toto's supply chain with in-toto in-toto/issue#278

See An example of this in our tooling is:
https://github.com/in-toto/witness/actions/runs/8147511831/attempts/1#summary-22268
394102

Improve introductory documentation to clearly communicate security scope
docs/issue#15

We have worked on this process in our community repository . We also have put in a
request to the CNCF documentation experts to give us an outsider’s perspective.

Additional integrations, examples and/or documented case studies (such as:
in-toto/issue#284, roadmap#3)

This documentation was added to our project adopters page.

Consider encoding best practices in default implementation (such as issue#287)

We’ve worked to address issues (such as issue#287) to reduce user confusion. We
have also worked with communities that are building policies on in-toto (such as SLSA)
to ensure that they have integrated it in a secure manner.

Proceed with CII silver badge & roadmap.

We have since obtained silver and gold OpenSSF Best Practices Badges

Additional recommendations

Formal security audit: no blocking issues for a formal code audit

A security audit was performed by X41, the results of which we discuss here. The issue
marked “high severity” that is listed in the report was well known to us (with an issue
open for several years on our issue tracker). Most other findings were related to a user
potentially misunderstanding the scope of protections provided by in-toto or possibly

https://github.com/in-toto/in-toto/issues/278
https://github.com/in-toto/witness/actions/runs/8147511831/attempts/1#summary-22268394102
https://github.com/in-toto/witness/actions/runs/8147511831/attempts/1#summary-22268394102
https://github.com/in-toto/docs/issues/15
https://github.com/in-toto/community
https://cncfservicedesk.atlassian.net/servicedesk/customer/portal/1/CNCFSD-1517
https://github.com/in-toto/in-toto/issues/284
https://github.com/in-toto/ITE/issues/3
https://github.com/in-toto/friends
https://github.com/in-toto/in-toto/issues/287
https://github.com/in-toto/in-toto/issues/287
https://slsa.dev/
https://bestpractices.coreinfrastructure.org/en/projects/1523?criteria_level=1
https://github.com/in-toto/in-toto/blob/develop/ROADMAP.md
https://bestpractices.coreinfrastructure.org/en/projects/1523?criteria_level=2
https://in-toto.io/security-audit-23/

misconfiguring it. We have clarified our documentation and code base to minimize this
as a potential risk.

Our fixes consist, above all, of clarifications in the specification and usage documentation.

Additional organizations contributing to as core members of the development team,
recommend addressing documentation issues above in advance of CNCF promotion

Since incubation we have added major contributors from Google, Intel, Verizon and
More.

Consider integrations with other CI/CD projects

We have been heavily involved in integrations with SLSA, FRSCA, Tekton, TUF,
SPIFFE/SPIRE, Keylime, Gitlab, SPDX, and other groups, as has been mentioned above.

Other References

[1] https://github.com/cncf/toc/blob/main/process/due-diligence-guidelines.md

[2] https://github.com/cncf/toc/blob/main/process/project_proposals.md

[3] https://github.com/cncf/toc/blob/main/PRINCIPLES.md

[4]
https://github.com/cncf/toc/blob/f01a4fab58ee26280f93a40bb3962610820887e2/sigs/security-c
harter.md

[5] https://github.com/cncf/toc/pull/956

https://github.com/cncf/toc/blob/main/process/due-diligence-guidelines.md
https://github.com/cncf/toc/blob/main/process/project_proposals.md
https://github.com/cncf/toc/blob/main/PRINCIPLES.md
https://github.com/cncf/toc/blob/f01a4fab58ee26280f93a40bb3962610820887e2/sigs/security-charter.md
https://github.com/cncf/toc/blob/f01a4fab58ee26280f93a40bb3962610820887e2/sigs/security-charter.md
https://github.com/cncf/toc/pull/956

	in-toto Due Diligence for CNCF Graduation
	This Document
	Background
	Project Introduction
	Project Provenance and Collaborations
	Alignment with Cloud Native / Need
	Graduation State Requirements
	1 Have committers from at least two organizations.
	2 Have achieved and maintained a Core Infrastructure Initiative Best Practices Badge.
	3 Have completed an independent and third party security audit with results published
	4 Explicitly define a project governance and committer process.
	Explicitly define the criteria, process and offboarding or emeritus conditions for project maintainers; or those who may interact with the CNCF on behalf of the project. The list of maintainers should preferably be stored in a MAINTAINERS.md file and is audited at a minimum of an annual cadence.
	
	As above, the project’s GOVERNANCE.md covers the criteria for maintainers including the onboarding, offboarding, and emeritus criteria. These are audited at an annual cadence by the in-toto steering committee, as is described in the project’s GOVERNANCE document.
	
	While the maintainers of both the in-toto specification and its implementations work together for the health of the project, for the purposes of CNCF interactions, the in-toto maintainers are the ones who will interact with the CNCF on behalf of the project. The current maintainers are listed in the repository.
	Have a public list of project adopters for at least the primary repo (e.g., ADOPTERS.md or logos on the project website). For a specification, have a list of adopters for the implementation(s) of the spec.

	in-toto Community Activity Inside and Outside the CNCF
	Incubation Project recommendations
	Verify in-toto's supply chain with in-toto in-toto/issue#278
	Improve introductory documentation to clearly communicate security scope docs/issue#15
	Additional integrations, examples and/or documented case studies (such as: in-toto/issue#284, roadmap#3)
	Consider encoding best practices in default implementation (such as issue#287)
	Proceed with CII silver badge & roadmap.

	Additional recommendations
	Formal security audit: no blocking issues for a formal code audit
	Additional organizations contributing to as core members of the development team, recommend addressing documentation issues above in advance of CNCF promotion
	Consider integrations with other CI/CD projects

	Other References

