
tl;dr Go directly to the section “How to React” below to skip the historical details and get to
solution space.

Overview
A common pattern we encounter when supporting C* clusters goes something like the following:

1.) Usually in response to some operational event (streaming, importing SSTables, etc.),
compaction on a particular node falls behind. Specifically, the number of pending compactions
grows, all compaction threads are busy, and compaction begins to consume excessive amounts
of CPU (including additional garbage collection overhead).

2.) As this happens, the node continues to receive new reads, and more importantly new writes,
and these new writes fill up new memtables which are flushed to put even more pressure on an
already overloaded compaction subsystem. (Repair poses a similar risk, although this was
addressed in CASSANDRA-15817.)

3.) While new reads and writes might arrive directly from clients over the native protocol or from
other nodes via internode messaging/other coordinators, the former are clearly making a bad
situation worse (and leading to inflated server-side latencies), so we disable binary/disable the
native protocol server. In some cases, this relieves pressure on compaction and allows the
backlog to clear (although in some cases we’ll also revisit whether there are too many
concurrent compactors), at which point we allow native protocol messages to flow again.

In short, we have no automatic mechanism to back-pressure clients in response to excessive
compaction activity. Even the recently added native protocol rate-limiting introduced in
CASSANDRA-16663 is configured statically, although like enabling/disabling the protocol server
entirely, it can be adjusted at runtime.

Quantifying the Problem
Before we can address the problem above, we have to be able to quantify exactly what we
mean by compaction “falling behind.” There are a few signals to choose from in the space of
existing compaction metrics, but ideally we’d like something that is accurate (it only gets loud
when compaction is putting excessive load on the hardware), responsive (it gets loud as soon
as there is a problem, not after we’ve been in trouble for some time), and intelligible to
operators. (If it doesn’t behave reasonably with little/no configuration, we might as well not build
it.)

Pending Compactions
Looking at prior art in the codebase, one way we’ve quantified lagging compaction is simply the
number of pending compactions. (Specifically, this is the sum of currently active compactions
globally and the total estimated pending compactions for all tables. See

https://issues.apache.org/jira/browse/CASSANDRA-15817
https://issues.apache.org/jira/browse/CASSANDRA-16663

CompactionMetrics.pendingTasks.) As of CASSANDRA-15817, if this number rises
above reject_repair_compaction_threshold (configured in cassandra.yaml w/ a
default of 1024), we reject incoming requests for repair.

This signal is easy to spot with our existing tools, and the threshold is simple to think about and
configure. There are still ways to configure it that wouldn’t help much, of course. If we leave the
threshold too high, we won’t respond quickly enough to compaction falling behind. If we use an
unreasonably low value, we’ll respond too quickly. Along those lines, it might make sense to
avoid reusing reject_repair_compaction_threshold for this purpose, as we may want a
different trigger threshold for the native protocol than repairs.

Finally, compactions being “behind” is certainly a decent indication of the hardware and the write
path being under stress, but it might also be an indication that we should push back on read
traffic. The more pending compactions, the greater the risk that reads will hit too many
SSTables, and that has obvious latency side effects, but the pending compactions don’t need
the noise of the increased disk access either. This will become more relevant as we discuss
approaches to throttling.

Unleveled SSTables
While we don’t directly track this metric globally yet, the number of unleveled SSTables could (in
an LCS-centric world) also produce a signal indicating compaction is behind. One advantage it
might have over pending compactions is that misconfigurations around the number of
compactors could create a synthetic backlog that doesn’t directly indicate resource stress.
Rather than being an estimate, unleveled SSTables are an immediate indicator, especially of the
fragmentation reads might encounter.

Flushing vs. Compaction Rewriting
Another signal, suggested by Benedict Elliott Smith, that would indicate a growing compaction
backlog, is if the rate of bytes/cells being written to memtables exceeds the rate of bytes/cells
being read by compaction. (In simpler terms, the idea is we’re in trouble if we add more data to
memtables than we invalidate through compaction.) Aside from some esoteric caveats, like the
fact this might not be usable with auto-compaction disabled, it might be more responsive than
signals based on unleveled SSTables or pending compactions. (i.e. We may be able to respond
earlier but more gradually than we would with a threshold that means we’re already in trouble.)

We currently track global bytes compacted (which is updated at the completion of a
compaction). Bytes flushed is tracked at the table level, but it should be trivial to track globally.
The number of bytes flushed isn’t necessarily what we described above, but bytes written to a
memtable and flushed to disk might not be equivalent. (Using a more coarse measure, like rows
or cells, could be comparable whether it relates to memtables or SSTables.) Thinking of the
lifecycle of bytes/cells through the system, the same data that is written once to a memtable
might be compacted multiple times. We might have to do a bit of experimentation to confirm how

https://issues.apache.org/jira/browse/CASSANDRA-15817

the two metrics (bytes written/flushed vs. bytes read during compaction) would behave relative
to one another under stable (and not so stable) write load.

Internode Backpressure
TODO: this might not be something we attack for phase 1, but the chain of local compaction
stress → local inbound backpressure → remote outbound backpressure → remote client
backpressure is worth investigating

Rates of Change
For any of the above metrics, it may also make sense to characterize our “overload” signal as a
rate of change. For example, if we’re looking at pending compaction tasks, we may want to
track not the raw number of tasks, but the rate at which the backlog is growing. The idea is that
we might be more responsive during the period where pending tasks are piling up (before we’ve
hit a static configurable threshold). A rate-based signal may not be sufficient by itself though.
For instance, a zero growth rate with 0 pending compactions shouldn’t produce the same signal
as a zero growth rate with 4000 pending.

How to React
Whichever signal(s) from the above we decide to use, the primary action we should consider is
throttling requests at the native transport, which could relieve stress on compaction by allowing
fewer writes and allowing fewer reads doomed to read too many SSTables. (Some
troubleshooting guides, for example, suggest responding to alerts around unleveled SSTables
by disabling the native protocol entirely.)

Disabling the Native Protocol
Completely disabling the native protocol is one of our most common tools for relieving particular
nodes under stress from compaction (in addition to disabling repairs, etc.). This is a reasonable
manual intervention, and we can be mostly sure that we aren’t going to inadvertently cause an
availability issue for one ore more rages in the cluster. However, a server-side/automatic
implementation of this policy might not be appropriate, unless we can also automatically come
to a reliable consensus on which replicas are allowed to disable binary. Slowing the rate of
message consumption in a bounded, more gradual way is preferable.

Rate Limiting and a Lower Bound
We could respond to signals around compaction stress by adjusting the rate limiter that governs
native protocol message throughput added in CASSANDRA-16663. We could translate the
signal we receive into dynamically pushing the active limit lower, all the way down to a new
configurable lower bound. (The bound would avoid a coordinated throttling to zero on all
replicas for a range if they all fell behind on compaction.) This could come in many forms:

●​ As soon as a threshold is reached, bump the rate limit directly to the configured lower
bound. When we cross back below the threshold, indicating that compaction is

https://issues.apache.org/jira/browse/CASSANDRA-16663

recovering, move back to the original rate limit. This isn’t very subtle, but it is
straightforward. Perhaps the biggest concern would be possibly rapid bouncing between
the upper and lower bounds driven by a flapping signal.

●​ Similar to the above, we could adjust the rate limit at a configurable gradual pace. (i.e.
Move from the upper to lower bound limit at a rate of N requests/second.) This would be
a bit more complex to configure, but it would ramp up the rate of requests more slowly
when a node is in the final stages of its recovery from a compaction backlog episode.

●​ For a signal that isn’t a simple threshold, perhaps a ratio of write rate to compaction
invalidation rate, the ratio could map to appropriate levels between the upper and lower
bound limits. (This is a bit hand-wavy right now...)

In all cases, actions taken in response to these signals could be applied by a simple scheduled
process that wakes up periodically to assess the situation. (How often this happens could affect
responsiveness, but avoiding explicit configuration with a reasonable default period would be
preferable.)

Reads, Writes, or Both?

The original motivation for this discussion was finding a way to throttle writes in response to
compaction backing up. This makes sense, given that clearly can pour more gasoline on the
fire. The existing native transport rate limiter, however, does not distinguish between reads and
writes. If we want to isolate writes in particular, we would have to build a sub-limiter.

Throttling Inbound Internode Messages
Hints, mutations, and read requests from other coordinators use internode messaging, and we
have a few ways to limit that activity. Specifically, we have configurable limits on the global and
per-IP/connection receive queue capacities for internode messages. (There is both a
primary/local queue capacity and a reserve queue capacity, and both can be configured at
runtime.) Drastically reducing global reserve queue capacity (or perhaps even zeroing it along
with per-connection reserve queue capacity) would insulate the struggling node from operations
originating elsewhere in the cluster, potentially even actuating their outgoing internode
back-pressure. (In a cluster w/ RF=3 and even load balancing, this would affect 2/3 of all
mutations...and of course all hints.)

Concerns
Having explored the space of what we might be able to do above, are any of those options
better than the current SRE playbook, which entails manually disabling the native protocol
server on machines with too many unleveled SSTables? The root cause of our problems around
compaction being behind seem to boil down to repair/streaming (which we have guardrails to
address now) and not ongoing writes. When we manually disable binary, we do it to reduce the
number of timeouts we encounter from using the node as a coordinator. Perhaps throttling
writes will allow compaction to recover more quickly, but if we still need to disable binary anyway
to avoid timeouts, what does the former accomplish? Even throttling both reads and writes
would allow a smaller number of reads to execute, and we may still observe timeouts.

If there is a way to accurately determine that a compaction backup is not being directly caused
by streaming, possible solutions described above become more appropriate. Some condition
along the lines of a higher than (historically) normal number of pending compactions coupled
with a (historically) normal number of unleveled SSTables might fit.

Throttling inbound internode messaging reserve capacities might sidestep this problem. It would
insulate the node from hint delivery, mutations and reads from other replicas, batches, and a
number of other operations, but it would also leave the node available for coordination, at least
until manually disabling the binary transport became necessary.

	Overview
	Quantifying the Problem
	Pending Compactions
	Unleveled SSTables
	Flushing vs. Compaction Rewriting
	Internode Backpressure
	Rates of Change

	How to React
	Disabling the Native Protocol
	Rate Limiting and a Lower Bound
	Throttling Inbound Internode Messages
	Concerns

