

1 Purpose
This document describes the changes that are proposed in the L2 Plugin and the L2 Agent of
OpenStack in order to enable distributed virtual router functionality at the L2 layer.

2 Design Goals for L2 in DVR
There are set of goals that went into the design of the set of rules in OVS to enable distributed
virtual routing functionality at the L2 layer. They are the following:
1. The rules should enable communication between tenant VMs on different networks, via a
distributed router hosted in the compute node.
2. Any given distributed router instance may reside on an all the Compute Nodes and will be
responsible for routing packets generated by VMs co-residing on the same node.
3. A given distributed router instance is either hosted in the Compute Node as DVR (or) as
normal router on the Network Node, but never simultaneously in both the nodes.
4. The rules should be such that the existing OpenVswitch infrastructure in OpenStack
Neutron can be used to accomplish distributed routing.
5. Should use lesser MAC Address per compute node and continue to preserve L2 isolation
for routed packets by distributed routers.
6. Should ensure enablement of North-South routing, which indicates access to external
network by the VMs directly.
7. Should embrace FWaaS Service to be operational even with distributed routing enabled on
DVR interfaces.
8. MAC timeouts and ARP timeouts of any element (bridges) inside the nodes in the cloud,
should not affect operation of DVR
9. The rules must ensure that multi-tenant isolation is intact even when Overlapping IP
Addresses is enabled in the cloud.
10. The rules must ensure that multi-tenant isolation is intact even when Overlapping MAC
Addresses are enabled in the cloud (By overlapping MAC Addresses, what is meant here is that
MAC Addresses across different networks could be the same)

3 How Distributed Routing works
In order to accomplish distributed routing, both the L3 and L2 Agent work will need to work
hand-in-hand inside the Compute Node. Today the L3 Agent runs in Network Node, but with
this DVR proposal, the L3 Agent will run in Compute Nodes as well. The L2 Agent on compute
nodes will continue as is today but will work in an enhanced mode called the ‘DVR Mode’ where
the L2 Agents will be additionally responsible for managing (adding/removing) OVS rules in

order to accomplish distributed routing.
The following is a sample topology used to illustrate how distributed routing is accomplished.

Terminology for the contents of packets shown in the above figure:
red1-L-vlan ​ Represents the local vlan of the red network on Compute node CN1
grn1-L-vlan ​ Represents the local vlan of the green network on Compute node CN1
red2-L-vlan ​ Represents the local vlan of the red network on Compute node CN2
grn2-L-vlan ​ Represents the local vlan of the green network on Compute node CN2
red-vni ​ Represents the VXLAN ID used in the tunneled frame, for the tenant network
represented by red-L-vlan local vlan.
grn-vni​Represents the VXLAN ID used in the tunneled frame, for the tenant network
represented by grn-L-vlan local vlan.
r1-red-ip​ Represents the IP Address of the red subnet interface of the DVR Router (r1).
This IP Address for red subnet interface would remain the same on DVR Router (r1) instantiated
in both CN1 and CN2.

r1-grn-ip ​ Represents the IP Address of the green subnet interface of the DVR Router (r1).
This IP Address for green subnet interface would remain the same on DVR Router (r1)
instantiated in both CN1 and CN2.
r1-red-mac​ Represents the MAC Address of the red subnet interface of the DVR Router (r1).
This MAC Address for the red subnet interface would remain the same on DVR Router (r1)
instantiated in both CN1 and CN2.
r1-grn-mac à Represents the MAC Address of the green subnet interface of the DVR Router
(r1). This MAC Address for the green subnet interface would remain the same on DVR Router
(r1) instantiated in both CN1 and CN2.

dvr-cn1-mac​ Represents Mac Address allocated from DVR Base Mac pool by the controller to
Compute Node CN1. This mac address will go as the source mac address in all the frames
that are generated by the DVR subnet interfaces present in CN1.

dvr-cn2-mac ​ Represents Mac Address allocated from DVR Base Mac pool by the controller to
Compute Node CN2. This mac address will go as the source mac address in all the frames that
are generated by the DVR subnet interfaces present in CN2.

In the above figure, a PING ECHO Request is initiated from vm1 on red network to vm2 on
green network which are connected by a DVR router identified by r1. The DVR Router r1 will
have the same IP Address and MAC Address on both the nodes CN1 and CN2. As we see,
the DVR Router r1 has two interfaces: one interface is a subnet in the red network and another
interface is a subnet in the green network.

The packet flow for PING ECHO Request from vm1 to vm2 is shown in the above figure with
packets numbered from ‘1’ to ‘6’.

1 ​ The frame with destination ip as ‘vm2 ip’ is sent by vm1 towards its default gateway mac
for red network which is r1-red-mac.​ The integration bridge forwards this frame to DVR router
r1.
2 ​ The DVR router r1’s red subnet interface picks this frame and it then routes the IP
packet in the frame.
3 ​ After routing, the DVR router r1 puts the routed frame out of its green subnet interface.
This frame is switched by the integration bridge towards the tunnel bridge along with tagging the
frame with green network’s local-vlan tag.
4 ​ The tunnel bridge on CN1, replaces the frame’s source mac address with a Unique DVR
MAC Address of its node (one unique dvr mac address is assigned per compute node by the
controller). The resulting frame is forwarded to CN2 by this tunnel bridge. Before forwarding, it
also strips the local green-vlan tag and tunnels the frame with green-vni VXLAN id.
5 ​ The tunnel bridge on CN2, picks up the tunneled frame, de-tunnels it and strips off the
green-vni tag. It then adds its local green network vlan tag to the frame and forwards the frame
to the integration bridge.

6 ​ The integration bridge on CN2, identifies the incoming frame’s source mac address is a
DVR Unique MAC Address (every compute node l2-agent knows all dvr unique mac addresses
used in the cloud). It then replaces the DVR Unique MAC Address with the green subnet
interface MAC address and forwards the frame to vm2.

For the PING RESPONSE from vm2 to vm1, the same above sequence happens in reverse.

As you might notice, the frames are routed by the DVR router in the frame originating node itself
and then they are just put towards the right destination. For all the routed frames, the DVR
Unique MAC Address of the frame’s originating node is used in the underlay, as the Source
MAC Address of the frame (ie., in inner frame).

The ARP entry for vm2 will be pre-populated in DVR router r1 residing in CN1, by the L3-Agent
running on CN1 (through information supplied from the L3 Plugin). Similarly the ARP entry for
vm1 will be pre-populated in the DVR router r1 residing in CN2, again by the L3-Agent running
on CN2 (through information supplied from the L3 Plugin).

On Compute Node CN1:

On Compute Node CN2:

All those tables and rules shown in brown are the new ones that will be additionally managed by
the L2 Agent, while it runs in DVR Mode.

A brief description of the rules in BROWN are given below:

a. ARP broadcast requests generated by tenant VMs are broadcasted to every other CN in the
cloud. However, if the ARP request frame’s target is the default gateway IP (router subnet ip),
then such frames are dropped by the local tunnel bridge from being forwarded to the cloud.
Because, such ARPs need and will be serviced only by locally available DVR instances.

Tunnel bridge
DVR PROCESS Table 1 (New table for dvr):
table=1, priority=4, dl_vlan= red1-L-vlan, dl_type=arp, ar_tpa= r1-red-ip actions: drop
table=1, priority=4, dl_vlan= grn1-L-vlan, dl_type=arp, ar_tpa= r1-grn-ip actions: drop

b. All requests generated by the distributed router interface ports, be it ARP request, other
broadcast (or) unicast packets, will be sent to the cloud. But, all such frames are considered
“dvr routed frames” and hence such frames will carry “local unique dvr macaddress“ in the
source mac of the frame before being forwarded to the cloud, on the originating node itself.
This translation of local router interface mac-address to “local unique dvr macaddress” is done
by the following rules in the DVR PROCESS table.

Tunnel bridge
DVR PROCESS Table 1 (New table for dvr):
table=1, priority=1, dl_vlan=red2_L_vlan, dl_src=r1-red-mac, actions: mod_dl_src=dvr-cn1-mac,
resubmit(,2)
table=1, priority=1, dl_vlan=grn2_L_vlan, dl_src=r1-grn-mac, actions: mod_dl_src=dvr-cn1-mac,
resubmit (,2)

c. Complementing to what was captured as point b above, in DVR routed frames received by
a compute node, the integration bridge on destination node will rip off the unique DVR MAC
Addresses from the source MAC field of the frame. In place of the same, the integration bridge
will substitute the local dvr instance subnet interface mac address , before the frame is
forwarded to the local destination VM. Per VM rules precede network-subnet wide rules. The
per VM rules ensure that the packet is put forth just to the right VM directly instead of the packet
being sent like a subnet-directed broadcast to all VM ports. We may be removing the
network-subnet wide rules as DVR code stabilizes. This is done by new Table 1 on integration
bridge. For example on CN2:

Integration Bridge Rules:
Table 0: (Local switching table)
table=0, priority=2, in_port=patch-tun, dl_src=dvr-cn1-mac actions: goto table 1
table=0, priority=1, actions: output->NORMAL

Table 1: (DVR_TO_LOCALMAC table)

table=1, priority=2, dl_vlan=grn2-L-vlan, nw_dst=grn-subnet actions: strip_vlan,
mod_dl_src=r1-grn-MAC,output->port-vm2
table=1, priority=2, dl_vlan=grn2-L-vlan, nw_dst=grn-subnet actions: strip_vlan,
mod_dl_src=r1-grn-MAC,output->port-vm2
table=1, priority=1 actions: drop

d. Packets destined to the local dvr subnet interface mac address are dropped by the tunnel
bridge in the originating compute node, as forwarding them to the cloud, will create mac
ambiguity when the packet is decoded by other compute nodes in the cloud. This is
accomplished by the
following rules:

Tunnel bridge
DVR PROCESS Table 1 (New table for dvr):
table=1, priority=2, dl_vlan=red2_L_vlan, dl_dst=r1-red-mac, actions: drop
table=1, priority=2 , dl_vlan=grn2_L_vlan, dl_dst=r1-grn-mac, actions: drop

e. In order to prevent multiple unicast of routed packets destined to remote VMs to all compute
nodes in the cloud, the l2 pre-population technique is used to pre-populate the FDB table in the
compute node to put out the frame only to the correct single destination compute node.

f. For rules like these (network-subnet wide rule) in the integration bridge, where a long list of
ports might appear in the ‘output port’ action, this document proposes the use of ‘Group Tables’
facility available from OpenVswitch(OVS) version 2.1.

Integration bridge
Table 1: (DVR_TO_LOCALMAC table)
table=1, priority=2, dl_vlan=grn2-L-vlan, nw_dst=grn-subnet actions: strip_vlan,
mod_dl_src=r1-grn-MAC,output->port-vm2

4 DataModel Extension for L2 in DVR

The DistributedVirtualRouterMacAddress table is maintained in the controller and this table is
used to store/retrieve unique DVR MAC Addresses supplied to L2 agent running on hosts
identified by ‘host’.

The other new table that is used to hold port bindings for DVR router interfaces is the
ml2_dvr_port_bindings table shown below. This is similar to the portbindings table, but this
table will hold bindings only for dvr router interfaces.

In the above table port_id will refer to ‘id’ field of the port table.

The original portbindings table will also hold one-binding row for a dvr router interface, but that
won’t hold binding information. That binding row is held there, only to ensure transparency of
dvr presence to the tenants themselves. A blueprint has been filed to give an admin only CLI to
view (not manage) the bindings available in ml2_dvr_port_bindings here:
https://blueprints.launchpad.net/neutron/+spec/dvr-interface-binding

Also the ‘status’ field value of the single-binding row for the dvr router interface in original
portbindings table will be an ORed value of ‘status’ field all bindings for that same dvr router
interface in the ml2_dvr_port_bindings table shown above.

https://blueprints.launchpad.net/neutron/+spec/dvr-interface-binding

5. Configuration specific to L2 Agent

5.1 enable_distributed_routing
The ovs_neutron_plugin.ini file being used by the OVS L2 Agent, will have an additional
configuration flag:

enable_distributed_routing=False

In order to run the OVS L2 Agent in DVR Mode, the above flag must be set to True and the OVS
L2 Agent must be restarted. ​ The default value of this flag is False. For example on the
Network Node, the L2 Agent will not run in DVR Mode. That is in NN, this flag will need to be
left as is by the cloud administrator.

The L2 Agent will operate normally as it is today. However, when the
enable_distributed_routing=True is read by the L2 Agent in its init(), it will additionally
run in DVR Mode. What is DVR Mode? DVR Mode just refers to the enhanced behavior of the
L2 Agent, wherein it will intelligently handle Distributed Router Interface ports that are detected
on the integration bridge. As part of processing distributed router interface port
(presence/absence), it will be using the OVS Rules documented in this document.

5.2 dvr_base_mac
There is another flag that will need to be made available in neutron.conf which represents the
base-mac to use for DVR Unique MAC allocation by the ML2 Plugin. That configuration is given
here:

DVR Base MAC address. The first 3 octets will remain unchanged. If the

4th octet is not 00, it will also used. The others will be randomly generated.

3 octet

dvr_base_mac = fa:16:3f:00:00:00

4 octet

dvr_base_mac = fa:16:3f:4f:00:00

The above dvr_base_mac MUST be different from the base-mac used allocated for virtual
ports. This is required in order to ensure isolation of virtual port Mac Addresses from the DVR
Unique Mac Addresses themselves.

6. RPC Changes
This section describes the new RPC calls that will be introduced in the L2 area of OpenStack to
enable DVR functionality.
The following new RPCs will be introduced:

7. L2 Interaction with Plugin and L3
Agent

 7.1 L2 OVS Agent initialization
During initialization the L2 OVS Agent needs to know its hosted unique dvr mac address, in
order to key in the appropriate OVS rules into the tunnel and integration bridges. For this
purpose, the L2 agent invokes RPC get_dvr_mac_address(host_id) served by ML2 plugin.

 7.2 Distributed Router creation
A router can be created to explicitly as a distributed router. There is typically no action required
on the agents due to creation of router (be in distributed mode or otherwise). Only when an
interface is added to the router, there are actions taken in both the L2 and L3 agents.
On the plugin side, as usual the created router information is stored in the DB which is shown in the

figure below.

7.3 Interface addition to a distributed router
A router-interface-add command executed on a distributed router results in routers_updated() RPC to be

invoked on the L3-Agent-on-CN. As part of servicing such a request, the L3-Agent-on-CN initially

validates if the router affected is a distributed router. If so, it then gets the interface port corresponding

to that newly added interface and attaches that port on the integration bridge. This part of operation is

similar in nature to that of the L3 Agent except for the difference being that the L3-Agent-on-CN runs in

the Compute Node and adds router ports only if such ports are destined on a distributed router. Ports

that are interfaces of a distributed router will have a special device_owner field value as

‘network:router_interface_distributed’.

After adding the router interface port on the br-int, the L3-Agent-on-CN requests information about the

list of ports on the cloud available on this subnet interface. For this it invokes get_compute_ports_

by_subnet (subnet_id) towards the L3 Plugin. The L3 Plugin then contacts the ML2 Plugin to get all the

ports available on the input subnet and returns the list of ports to the L3-Agent-on-CN. The

L3-Agent-on-CN caches these ports and then uses the port information to create static ARP entries in the

DVR router namespace. This completes the DVR-side handling of the router-interface.

The router interface port added by the L3-Agent-on-CN is detected by the L2 Agent. The L2 Agent

identifies if this port is a distributed router interface. If not, it does normal processing. If yes, it does

special processing wherein it invokes get_compute_ports_on_host_by_subnet(subnet_id) to get the list

of local VMs available on this router interface. It then uses this list of ports and the router interface port

information to create OVS rules in the tunnel and the integration bridges.

7.4 Interface removal from a distributed router
A router-interface-delete command executed on a distributed router results in routers_updated()
RPC to be invoked on the L3-Agent-on-CN. As part of servicing such a request, the
L3-Agent-on-CN initially validates if the router affected is a distributed router. If so, it then gets
the interface port corresponding to that being deleted. It removes that router interface port on
the integration bridge. This part of operation is similar in nature to that of the L3 Agent except
for the difference being that the L3-Agent-on-CN runs in the Compute Node and deletes router
ports only if such ports belong to a distributed router.
After deleting the router interface port on the br-int, the L3-Agent-on-CN hits the port cache to ascertain

the list of ports available on the deleted router interface. It then removes the static ARP entries from the

router namespace for all the ports in that list. This completes the DVR-side handling of the

router-interface deletion.

The router interface port deleted by the L3-Agent-on-CN is detected by the L2 Agent. The L2
Agent identifies if this port is a distributed router interface. If not, it does normal processing. If
yes, it does special processing wherein it removes all the OVS rules from the integration and the
tunnel bridges, matching the removed router interface port.

7.5 New VM added to a subnet interface of a distributed
router
When a new tenant VM is added to a subnet interface managed by the distributed router, a
CreatePort API invocation is done by Nova to host the new tenant VM. As part of createPort
servicing by the ML2 Plugin, the ML2 plugin will inform the L3 Plugin about a new port being

available. The L3 Plugin will check if this new port is in a DVR hosted subnet. If not it will not do
any processing. If yes, the L3 Plugin will initiate an RPC call port_add() to the L3-Agent-on-CN.
The L3-Agent-on-CN will service this RPC in which it will get this port information and add static
ARP entry for that port in the corresponding router namespace. This completes the DVR-side
handling of the new tenant VM port addition.

The new tenant VM port is detected by the L2 Agent. The L2 Agent identifies if this port is a
member of subnet that is already distributed router interface. If not, it does normal processing.
If yes, it does special processing wherein it adds this port (OFPORT) to existing OVS Rules in
br-int and br-tun for the matching subnet gateway.

7.6 Existing VM is removed from a distributed router
subnet interface
When a tenant VM is removed from a subnet interface managed by the distributed router, a
DeletePort API invocation is done by Nova for the deleted tenant VM. As part of deletePort
servicing by the ML2 Plugin, the ML2 plugin will inform the L3 Plugin about a port being deleted.

The L3 Plugin will check if this deleted port is in a DVR hosted subnet. If not it will not do any
processing. If yes, the L3 Plugin will initiate an RPC call port_delete() to the L3-Agent-on-CN.
The L3-Agent-on-CN will service this RPC in which it will get this port information and remove
matching static ARP entry for that port in the corresponding router namespace. This completes
the DVR-side handling of the tenant VM port removal.
The removed port is detected by the L2 Agent. The L2 Agent identifies if this port is a member
of subnet that is already distributed router interface. If not, it does normal processing. If yes, it
does special processing wherein it modifies the existing OVS rules in br-int and br-tun so that
the rule does not contain this port being deleted (OFPORT).

	1 Purpose
	2 Design Goals for L2 in DVR
	3 How Distributed Routing works
	On Compute Node CN1:
	On Compute Node CN2:

	4 DataModel Extension for L2 in DVR
	5. Configuration specific to L2 Agent
	5.1 enable_distributed_routing
	5.2 dvr_base_mac

	6. RPC Changes
	 7.1 L2 OVS Agent initialization
	 7.2 Distributed Router creation
	7.3 Interface addition to a distributed router
	7.4 Interface removal from a distributed router
	7.5 New VM added to a subnet interface of a distributed router
	7.6 Existing VM is removed from a distributed router subnet interface

