
MD Bookmarks Data flow  
Status: Final 

Author: tsergeant@chromium.org 
(This document is public) 

Objective 

Background 
MD Bookmarks project 
Bookmarks Extension API 
Existing MD Bookmarks data-flow model 
One-way data flow models 

Overview 
Store 

Handling actions with reducers 
StoreClient 

Detailed Design 
Data flowchart 
State tree structure 
Initialization 
Writing UI elements 
Writing actions 

Deferred Actions 
Writing reducers 
Key subsystems 

Search 
Selection 
API Listeners 

Performance analysis 

Code Location 

Caveats/Alternative Approaches 
Alternatives considered 

Two-way data binding 
Improve Polymer-based one-way binding 

Test Plan 

mailto:tsergeant@chromium.org


Document History 

Objective 
We aim to create a model and data-binding system for the MD Bookmarks project which 
effectively separates back-end logic from UI. We should be able to make changes to the 
bookmark tree structure easily, and have those changes automatically reflected in the UI 
components. We do not aim to create a general purpose system, although the ideas here could 
be useful elsewhere. 

Background 

MD Bookmarks project 
MD Bookmarks is a rewrite of the Chrome bookmark manager (chrome://bookmarks) following 
Material Design guidelines and using the Polymer Web Components library. This follows on 
from existing work: the Downloads (Design Doc), History and Settings pages have all been 
rewritten in this way. 

Bookmarks Extension API 
Much of this work is motivated by the specific data structures and APIs that are used by the 
bookmarks manager. The bookmark manager uses the chrome.bookmarks and 
chrome.bookmarkManagerPrivate extension APIs to retrieve and modify bookmark state. 
 
These APIs operate on the BookmarkTreeNode data structure. Each Node has an id, a title, a 
parentId pointer, and either a url (for items) or an array of children (for folders). Modifications are 
made by calling API functions (eg, chrome.bookmarks.create), and then responding to the 
corresponding listener (chrome.bookmarks.onCreated). This listener will be fired regardless 
of where the modification originated: either on the current page, from the bookmarks bar/menu, 
or from Chrome sync. This listener will be fired with enough information to update the local page 
state, which allows the page to stay in sync with the bookmarks backend without performing full 
data refreshes. 

https://docs.google.com/document/d/1XkUDOc6085tir4D5yYEyjL2GsIGBslJBHXiNQDzJawI/edit
https://developer.chrome.com/extensions/bookmarks
https://cs.chromium.org/chromium/src/chrome/common/extensions/api/bookmark_manager_private.json


 
 

Existing MD Bookmarks data-flow model 
By responding to API listeners correctly, it’s possible to keep the JavaScript objects representing 
the current page state in sync with the bookmarks backend. However, automatically reflecting 
changes to those JS objects back to HTML-based UI requires extra work. 
 
As we were already using Polymer for UI elements, we initially decided to leverage Polymer’s 
databinding system to perform this reflection. The initial design was to create a 
<bookmarks-store> element, which is a single source of truth for the local copy of the 
bookmarks tree. The store is responsible for performing all modifications made to that tree, and 
UI components are one-way bound to the tree state: they (almost) never modify state directly. 
 
This design worked well to begin with, but as time went on we started to see some problems. It 
was difficult for us to maintain the tree state effectively, while working around the limitations of 
the Polymer data binding system and managing two different types of results (main tree results 
and search results). 

One-way data flow models 
One-way data flow is a model which has been recently popularised by React, Flux/Redux and 
friends. In particular, Redux is a tiny library focused around three principles: 

●​ The page state should have a single source of truth 
●​ UI elements should have read-only access to the page state 
●​ Changes to the page state are made with pure functions 

 
We think that sticking to these principles has the potential to simplify the Bookmarks manager 
code. 

Overview 

https://www.polymer-project.org/1.0/docs/devguide/data-system
https://www.polymer-project.org/1.0/docs/devguide/data-system
https://cs.chromium.org/chromium/src/chrome/browser/resources/md_bookmarks/store.js?rcl=6ca2541558d815ef1826107bc7cbbe3e9d7338ec
http://redux.js.org/docs/introduction/ThreePrinciples.html


In this section, we propose a way to rewrite the Bookmarks data-binding system to adhere more 
closely to the principles of Redux. In the next section, we’ll explore some of the more gritty 
details of implementing individual features in this new model. 
 
There’s a WIP CL for this design at https://codereview.chromium.org/2704983002/. 

Store 
This is a plain-JS singleton (bookmarks.Store.getInstance()) which stores the current 
state tree. It has the following API: 
 

bookmarks.Store: 
  init(initialData: Object) 
  get data(): Object 
  addObserver(observer: StoreClient) 
  removeObserver(observer: StoreClient) 
  handleAction(action: Object) 
  handleDeferredAction(action: function(function(Object))) 

 
Notably: 

●​ Store.data is the state tree for the entire application, including tree nodes, selected 
items, search terms, etc. 

●​ data is publically readable but not writable. The only way to modify it is through 
handleAction. 

●​ handleAction is called with an Action, which is an object with a name field. 
handleAction will use the Action object to produce a new data object with the state 
of the world after that action. Store then notifies observers that the page state has 
changed. Actions are the only way for page state to be modified. 

●​ handleDeferredAction is a used to dispatch Actions asynchronously (see ‘Deferred 
Actions’ below). 

Handling actions with reducers 
Actions are handled using pure functions called Reducers. A reducer (in the same sense as the 
functional programming primitive reduce) takes a state and an action and produces a new state. 
 
Reducer functions must be pure. They should not mutate existing objects: instead, they create 
new objects with any required changes implemented. They must not make any API calls, or 
touch the DOM, or use Math.random, or anything else which could cause the same input to 
produce a different output. 
 
Reducer functions may implement business logic, but they do not have to. It is acceptable to 
require the action to include extra details to remove complexity from the reducer. 

https://codereview.chromium.org/2704983002/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce


 
Reducer functions should avoid creating new objects for things which do not change. 
Unnecessary copies waste memory and can cause extra work at the UI layer. 
 
The root reducer in bookmarks is bookmarks.reduceAction, which then calls into 
specialised reducer functions to update individual parts of the state tree. 

StoreClient 
bookmarks.StoreClient is a Polymer behavior which ties the Polymer UI layer to the data 
storage layer. Every UI element which needs to pull data from the store will implement this 
behavior. 
 

bookmarks.StoreClient: 
  watch(localProperty: String, valueGetter: (Object) => Object) 
  dispatch(action: Object) 
  dispatchAsync(action: function(function(Object))) 
  updateFromStore() 
  onStateChanged(newState: Object) 

 
watch is the mechanism through which Polymer properties are tied into the store. For example, 
 

this.watch(‘item’, (state) => state.nodes[this.itemId]); 

 
Says “whenever the store changes, copy store.selectedFolder into 
this.selectedFolder and update the UI”. Importantly, the Polymer property is only updated 
if the value (or object reference) has changed: 
 

var oldValue = this[watch.localProperty]; 
var newValue = watch.valueGetter(newState); 
 
if (oldValue == newValue) 
  return; 
this[watch.localProperty] = newValue; 

 
Since our reducers only produce new objects when necessary, Polymer should only update 
when the underlying values have changed. 

Detailed Design 



Data flowchart 

 

State tree structure 

MdBookmarksState: 
    nodes: Object<String, BookmarkNode> 
    selectedFolder: String 
    closedFolders: Set<String> 
    search: 
        term: String 
        inProgress: Boolean 
        results: Array<String> 
    selection: 
        items: Set<String> 
        anchor: String 

 
Note that nodes is flattened out to a Map keyed by Node ID (which we had already done in 
idToNodeMap). Each node has its children replaced with an Array of IDs . Normalising the data 
in this way makes it easier to access and modify. 

Initialization 
The store should be initialized in one go, using Store.init(). This should be called with the entire 
initial state of the world, including: 

●​ The normalized tree structure from chrome.bookmarks.getTree() 
●​ The selected folder or search term from the URL, if there is one 
●​ The folder open status from localstorage 

These initialization tasks can be kicked off as the page is loading. No actions are allowed before 
init() has been called, so we should hide the UI (in a similar way to MD History) before this. 

https://cs.chromium.org/chromium/src/chrome/browser/resources/md_bookmarks/store.js?l=437&rcl=6ca2541558d815ef1826107bc7cbbe3e9d7338ec


Writing UI elements 
At this stage, it’s useful to consider how an existing UI element needs to change to fit into the 
new system. Previously, <bookmarks-item> needed to be provided with an entire item for it to 
render. Now it just needs an item ID: 
 

<bookmarks-item item-id=”[[id]]”></bookmarks-item> 

 
Using this ID, it is able to update the item for itself whenever the item changes: 
 

attached: function() {​
  this.watch('item', (store) => store.nodes[this.itemId]); 
  this.watch('isSelectedItem',  
      (store) => store.selection.items[this.itemId])​
  this.updateFromStore();​
}, 

 
And since the ID can be changed externally, we need to update from the store whenever it 
changes: 
 

properties: { 
  itemId: { 
    type: String, 
    observer: ‘updateFromStore’, 
  }, 
  ... 
}, 

 
That’s it! As before, item can be bound to UI and will update whenever the store changes. 

Writing actions 
Actions should be created by functions which live in a shared actions.js file. These can be 
very simple, or if necessary, they can include logic based on the current state of the store: 
 

function selectItems(store, baseId, isAdd, isRange) { 
  var toSelect = []; 
  // Look up the store to determine the items that need to be 
  // selected. 



  return { 
    name: ‘select-folder’, 
    items: toSelect, 
  }; 
} 

 
Creating actions like this has the useful side-effect of documenting all possible actions and their 
parameters. 

Deferred Actions 
We also support ‘DeferredActions’, which are special in a couple of ways: 

●​ DeferredActions can group multiple action dispatches into a single action creator 
function. 

●​ DeferredActions allow action creators to perform work asynchronously before 
dispatching the action (useful for getting results from the chrome.bookmarks APIs). 

 
To write a DeferredAction, return a function which has a single callback parameter from your 
action creator. 
 

function setSearchTerm(term) { 
  return function(dispatch) { 
    // dispatch can be at any time to dispatch an action to the Store 
    dispatch(startSearch(term)); 
 
    // dispatch can be called multiple times (even asynchronously). 
    chrome.bookmarks.search(term, function(results) { 
      dispatch(finishSearch(results)); 
    }); 
  } 
} 

 
These are then dispatched using the special functions StoreClient.dispatchAsync and 
Store.handleDeferredAction. 

Writing reducers 
Reducers live in a shared reducers.js file. The root reducer divides work up between the 
different subtrees: 
 

function reduceAction(state, action) { 



  return { 
    nodes: bookmarks.NodeState.updateNodes(state.nodes, action), 
    search: bookmarks.SearchState.updateSearch(state.search, action), 
    ... 
  }; 
} 

 
Each subtree should be treated independently. For example, updates to store.nodes are made 
in the bookmarks.NodeState module. This module should not need to look at other parts of the 
state tree. 
 
When writing reducers, the Object.assign method is a useful helper for creating a new Object 
with part of the subtree changed, but leaving everything else untouched: 
 

return Object.assign({}, node, {‘title’: changeInfo.title}) 

Key subsystems 

Search 
Search is implemented with three actions: 

●​ start-search: sets search.term and search.inProgress 
●​ finish-search: sets search.results and unsets search.inProgress 
●​ clear-search: unsets all search values 

These three actions are created by the one function: 
bookmarks.actions.setSearchTerm(term). Depending on the term, it will create a start 
or clear action, then asynchronously (using a deferred action) perform a search and generate a 
finish-search action when results are available. 

Selection 
Selection is implemented as a Set of IDs of all selected items. This is cleared after any action 
which causes the display to change (select-folder, search-results). The select-items action adds 
additional items to the selection. 
 
UI elements can check if an ID is selected by listening to 
store.selection.items.has(itemID), which is a constant-time operation whenever the 
store updates. Similarly, UI elements can listen to store.selection.items.size to 
determine how many items are selected. 



API Listeners 
Chrome.bookmarks API listeners are no longer registered in the store directly. Instead, we will 
have a new module, bookmarks.ApiListener, which listens to the API and translates calls 
to the listeners into actions which are dispatched to the store. 

Performance analysis 
Initial analysis indicates that the new system performs similarly to the old system. 
Measurements were taken in a folder with ~500 bookmark items, which is particularly relevant 
when deleting an item, as it means all other items must be moved. 
 

Test Old System New system 

Deleting an item 80ms (but could be reduced 
to <10ms with some 
refactoring) 

70ms 

Ctrl-Selecting an item 3-5ms 3-5ms 

Editing an item 3-5ms 3-5ms 

 
It’s promising that we have similar performance with little effort. However, we should continue to 
monitor this by: 

●​ Monitoring the number of elements that need to observe the store 
●​ Only performing constant-time operations in the valueGetter() critical path 

Code Location 
Code location: chrome/bookmarks/resources/md_bookmarks 

●​ store.js: Definition of bookmarks.BookmarksStore 
●​ actions.js: Definitions of bookmarks.actions.* 
●​ store_client.js: Definition of bookmarks.StoreClient. Depends on store.js 
●​ reducers.js: Definition of bookmarks.*State reducer functions 
●​ api_listener.js: Definition of bookmarks.ApiListener. Depends on store.js/actions.js 

Test code: chrome/test/data/webui/md_bookmarks 

Caveats/Alternative Approaches 
We see this model as having several advantages: 

●​ We rely less on Polymer specifics: We no longer need notifyPath or linkPaths. 



●​ Many operations are conceptually simpler, since we can either operate on a list of IDs or 
on nodes directly. 

●​ Search can be treated the same as displaying a regular list of results, since both are just 
a list of IDs. 

●​ Page UI state is no longer coupled to BookmarkTreeNodes (eg, we separate out folder 
open/closed state), which makes bulk-updating the tree easier 

●​ It is easier to test how the page state changes, since reducers are pure functions. 
There’s no more uncertainty about whether our path notifications are actually correct. 

 
However, it has significant caveats: 

●​ We are reimplementing part of the data-binding system for ourselves. Our system will 
undoubtedly run into problems that either Polymer or Redux have already solved. 

●​ Writing correct reducers involves being very careful about copying/mutating data 
●​ We are preventing Polymer from performing certain performance optimisations 

○​ This particularly affects arrays, where dom-repeat and iron-list rely on receiving 
splice notifications to optimise rendering. Replacing the array on each update 
means that we no longer send splices. It is possible to work around this, but 
there’s no particularly nice solution. 

 
We think the tradeoffs make sense in this case, due to the type of data that we have (a 
database of ID-keyed nodes) and the type of operations that we want to do 
(modifying/rearranging those nodes). This approach may not make sense for other pages with 
different data structures/actions (eg: History). 

Alternatives considered 

Two-way data binding 
Two-way data-binding is the well-lit path for Polymer applications. However, due to the nature of 
the data structure and API, we would not benefit greatly from this: we would still need a 
centralised place to perform updates in response to API listeners and would run into the same 
problems with path notifications. 

Improve Polymer-based one-way binding 
We would be able to substantially improve our current system by careful refactoring. Specific 
improvements: 

●​ Move tree modifications into helper functions 
●​ Pull item selection into a separate module 
●​ Create a reloadSubtree() function which can be used to update sections of the tree 

https://gist.github.com/tgsergeant/ad2bdb7d662f99e350a38cd8599d9ca5


Test Plan 
Unit tests: 

●​ Existing store tests are replaced with unit tests of everything in actions.js and 
reducers.js. These are easy to test, since everything in them is a pure function. 

●​ We should migrate existing tests of UI elements to use a TestStore, which would allow a 
state to be specified and to check that the correct actions are dispatched. 

Integration tests: 
●​ We should add an integration test for Store/StoreClient 
●​ And add the UI/backend integration tests which we’ve been talking about for a while 

Document History 
●​ 2017-05-03: Updated with explanation of deferred actions, which we added in this CL, 

and changes selection and closedFolders to Sets. 
●​ 2017-03-15: Updated with some API changes that we made during code review. At this 

stage the code has almost entirely landed, so this document can be considered ‘final’. 
●​ 2017-02-28: Updates to “near-final draft” 
●​ 2017-02-22: First draft 

https://codereview.chromium.org/2813503002/#

	MD Bookmarks Data flow  
	Objective 
	Background 
	MD Bookmarks project 
	Bookmarks Extension API 
	Existing MD Bookmarks data-flow model 
	One-way data flow models 

	Overview 
	Store 
	Handling actions with reducers 

	StoreClient 

	Detailed Design 
	Data flowchart 
	State tree structure 
	Initialization 
	Writing UI elements 
	Writing actions 
	Deferred Actions 

	Writing reducers 
	Key subsystems 
	Search 
	Selection 
	API Listeners 


	Performance analysis 
	Code Location 
	Caveats/Alternative Approaches 
	Alternatives considered 
	Two-way data binding 
	Improve Polymer-based one-way binding 


	Test Plan 
	Document History 

