Уважаемый студент, выполнение указанных заданий строго обязательно!

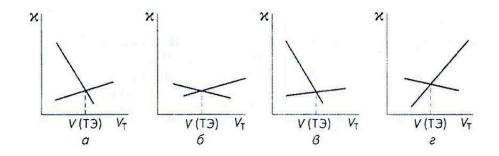
Группа ПКД2/1 Дата:13.06.2023.

Дисциплина: ЕН Химия Преподаватель: Воронкова А.А.

Практическое занятие Определение процентного содержания кислот

Цель занятия: изучить методику определения процентного содержания кислот с помощью физико-химических методов; изучить методику соответствующих расчетов.

Теоретическая часть:


Классификация электрохимических методов по измеряемому параметру

Измеряемый пара- метр	Условия применения	Метод		
Потенциал E , В	I = 0	Потенциометрия		
Ток І, мкА	I = f(E)	Вольтамперометрия		
Количество электриче-	I = const или	Кулонометрия		
ства Q , Кл	E = const			
Macca m, г	I = const или	Электрогравиметрия		
	E = const			
Электропроводность	Переменный ток	Кондуктометрия		

Кондуктометрический анализ — основан на измерении электрической проводимости растворов как функции их концентрации

Кондуктометрия (от англ. conductivity — электропроводность и метрия) — совокупность электрохимических методов **анализа**, основанных на измерении электропроводности растворов. **Кондуктометрия** применяется для определения концентрации растворов солей, кислот, оснований, для контроля состава некоторых промышленных растворов.

Кривые кондуктометрического титрования

- а титрование раствора сильной кислоты раствором щелочи;
- б титруемое вещество и титрант имеют ионы с низкой электропроводностью;
- в электропроводность титруемого вещества больше электропроводности титранта;
- г электропроводность титруемого вещества меньше электропроводности ионов титранта

Пример 1

Анализируемую смесь веществ HCl и HF массой 1,2365 г поместили в мерную колбу вместимостью 100,0 мл и довели объем до метки. При титровании аликвоты 10,0 мл раствором КОН с концентрацией 0.09999 н. получили следующие результаты:

paerbopom restre kondentpadnen 0,00000 in nosty insin estegytoidine pesysibiarbi.										
V(KOH),	5,00	6,00	7,00	8,00	9,0	10,0	11,0	12,0	13,0	14,0
МЛ										
I, MA	2,42	2,15	1,88	1,76	1,80	1,83	1,86	1,98	2,44	2,90

Построить кривую титрования и вычислить массу, массовые концентрации и массовые доли (%) анализируемых веществ.

Решение.

Запишем уравнения реакций

HC1 + KOH = KC1 + H2O

$$HF + KOH = KF + H2O$$

В первой точке эквивалентности заканчивает титроваться сильная кислота HCl, а во второй – слабая НГ. Построим кривую титрования (Рис.1).

По кривой титрования определяем объем титранта в точках эквивалентности:

$$V1 = 7,50$$
мл,

$$V2 = 11,77 \text{ мл.}$$

Значит, на титрование HCl затрачено 7,50 мл щелочи, а на HF приходится V3 = V2 - V1 = 11,77 - 7,50 = 4,27 (мл)

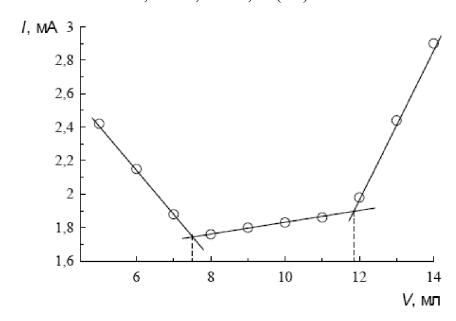


Рис.1. Кривая титрования смеси HCl и HF

Концентрации анализируемых веществ рассчитаем из закона эквивалентов

$$C_1\cdot V_1=C_2\cdot V_2\,.$$

Концентрации кислот равны

Концентрации кислот равны
$$C(\text{HCl}) = \frac{C(\text{KOH}) \cdot V_1}{V_{\text{аликвоты}}} = \frac{0,09999 \cdot 7,50}{10} = 0,07499 \text{ (н.)}$$

$$C(\text{HF}) = \frac{C(\text{KOH}) \cdot V_3}{V_{\text{аликвоты}}} = \frac{0,09999 \cdot 4,27}{10} = 0,04270 \text{ (н.)}$$

Концентрации веществ в аликвоте (10,0 мл) и в объеме мерной колбы (100,0 мл) равны. Массы анализируемых веществ найдем по формуле

$$m = C \cdot M \cdot V$$
.

M(HC1) = 36,461 г/моль

M(HF) = 20,006 г/моль

 $m(HC1) = 0.07499 \cdot 36.461 \cdot 0.1 = 0.2734 (r)$

 $m(HF) = 0.04270 \cdot 20.006 \cdot 0.1 = 0.0854 (r)$

Массовые концентрации определяем по формуле

$$\rho^*$$
 (HC1) = $\frac{m}{V}$ = C · M = $\frac{0.2734}{0.1}$ = 2,734 ($\frac{\Gamma}{\pi}$)

$$\rho^* (HF) = \frac{m}{V} = \frac{0.0854}{0.1} = 0.854 \left(\frac{\Gamma}{\pi}\right)$$

Массовая доля HCl составляет

$$\omega = \frac{m_{\text{вещества}} \cdot 100\%}{m_{\text{навески}}} = \frac{0.2734 \cdot 100\%}{1,2365} = 22,11\%$$

Массовая доля HF составляет

$$\omega = \frac{m_{\text{вешества}} \cdot 100\%}{m_{\text{навески}}} = \frac{0,0854 \cdot 100\%}{1,2365} = 6,91\%$$

Кулонометрия

Основана на измерении количества электричества, израсходованного на окисление или восстановление определяемого вещества. Используется электролитическая ячейка с постоянным током.

В основе кулонометрических методов лежит объединенный закон Фарадея:

$$m = \frac{I \bullet t \bullet M}{n \bullet F}$$

М – молярная масса определяемого вещества;
т – масса анализируемого вещества;
сила тока; F – число Фарадея; t – время электролиза;
п – число электронов, участвующих в ОВР

Пример 2.

Навеску пикриновой кислоты массой 0,0060 г растворили и количественно восстановили в кулонометрической ячейке по реакции

$$C_6H_2(OH)(NO_2)_3 + 18H^+ + 18\bar{e} = C_6H_2(OH)(NH_2)_3 + 6H_2O$$

Количество затраченного электричества установили по количеству выделившегося в йодном кулонометре йода, на титрование которого потребовалось 21,15 мл 0,0200 н раствора Na2S2O3. Рассчитать массовую долю(%) пикриновой кислоты в навеске. Решение.

Количество вещества пикриновой кислоты эквивалентно количеству вещества йода, выделившегося в кулонометре и равно количеству вещества тиосульфата натрия. Следовательно, массу пикриновой кислоты можно рассчитать по формуле

$$m = C_{\text{Na}_2\text{S}_2\text{O}_3} \cdot V_{\text{Na}_2\text{S}_2\text{O}_3} \cdot \frac{1}{18} M_{\text{пикр. к-ты}} =$$

= 0.02 • 0.02115 • 229.082/18 = 0.00538 г

Рассчитываем массовую долю (%) пикриновой кислоты в навеске

$$\omega = \frac{\mathbf{m}_{\textit{MIKP K-mbi}} \cdot 100}{\mathbf{m}_{\textit{Hasecku}}} = \frac{0,00538 \cdot 100}{0,0060} = 89,67\%$$

РЕФРАКТОМЕТРИЯ

В основе рефрактометрических измерений растворов лежит зависимость между концентрацией раствора вещества и его показателем преломления, которую выражают формулой:

$$n = n_0 + F \cdot C,$$

где *n* – показатель преломления раствора;

 n_0 — показатель преломления растворителя; C — концентрация раствора;

 ${\it F}$ – фактор показателя преломления, равный величине прироста показателя преломления при увеличении концентрации на 1%.

Пример 3

Определить нормальную концентрацию муравьиной кислоты, если показатель преломления 12,21 % -го раствора ее равен 1,3405, а показатель преломления исследуемого раствора равен 1,3375, с учетом того, что между концентрацией и показателем преломления в этом интервале существует прямолинейная зависимость. (п $H_2O = 1,3330.$).

Решение:

Так как зависимость между показателем преломления и концентрацией прямолинейна, в данном можно использовать для расчетов рефрактометрический фактор. Расчитаем рефрактометрический фактор, приняв в качестве п0 показатель преломления воды Рассчитаем рефрактометрический фактор, приняв В качестве преломления воды

$$F = \frac{1,3405 - 1,3330}{12.21} = 0,000614$$

Рассчитываем процентную концентрацию муравьиной кислоты.

$$\omega_X = \frac{(n_X - n_0)}{F} = \frac{(1,3375 - 1,3330)}{0,000614} = 7,33\%$$

Находим по справочнику плотность 7,33 %-го раствора муравьиной кислоты $\rho = 1,1776$ г/мл. Рассчитываем массу 1 л раствора

$$m = \rho \cdot V = 1,1776 \cdot 1000 = 1177,6 \text{ r.}$$

В одном литре раствора содержится муравьиной кислоты

$$m = \frac{m \cdot \omega}{100} = \frac{7,33 \cdot 1177,6}{100} = 86,3 \text{ r.}$$

Рассчитываем нормальную концентрацию муравьиной кислоты

$$C = m / M = 86,3 / 46,0257 = 1,875$$
 моль/л.

АЛГОРИТМ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКОГО ЗАДАНИЯ

1. Изучить теоретический материал по теме практической работы

- 2. Записать на листе для отчета дату, тему занятия, цель практической работы
- 3. Выполнить задания для самостоятельного решения
- 4. Ответить на контрольные вопросы
- 5. Сделать вывод по работе
- 6. Прислать отчет на проверку преподавателю

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Решите задачу

Задание 1

Анализируемую смесь веществ HCl и HF массой 1,1325 г поместили в мерную колбу вместимостью 100,0 мл и довели объем до метки. При титровании аликвоты 10,0 мл раствором КОH с концентрацией 0,09999 н. получили следующие результаты:

V(KOH),	6,00	7,00	8,00	9,00	10,0	11,0	12,0	13,0	14,0	15,0
МЛ										
І, мА	2,42	2,15	1,88	1,76	1,80	1,83	1,86	1,98	2,44	2,90

Построить кривую титрования и вычислить массу, массовые концентрации и массовые доли (%) анализируемых веществ.

Задание 2.

Навеску пикриновой кислоты массой 0,0054 г растворили и количественно восстановили в кулонометрической ячейке по реакции

$$C_6H_2(OH)(NO_2)_3 + 18H^{\dagger} + 18\bar{e} = C_6H_2(OH)(NH_2)_3 + 6H_2O$$

Количество затраченного электричества установили по количеству выделившегося в йодном кулонометре йода, на титрование которого потребовалось 20,13 мл 0,0200 н раствора $Na_2S_2O_3$. Рассчитать массовую долю(%) пикриновой кислоты в навеске.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. На чем основан кондуктометрический метод анализ?
- 2. В чем сущность кулонометрического метода анализа?
- 3. Каков измеряемый параметр и условия применения при потенциометрическом методе анализа?

Общий вывод к работе: На этой практической работе мы....

Задание: выполнить практическую работу, согласно указанного алгоритма. Для максимальной оценки задание нужно прислать до 15.00 ч. 13.06.2023г.

Выполненную работу необходимо сфотографировать и отправить на почтовый ящик *voronkova20.88@gmail.com*, <u>Александра Александровна (vk.com)</u>, добавляемся в <u>Блог преподавателя Воронковой А.А. (vk.com)</u> -здесь будут размещены видео материалы –ОБЯЗАТЕЛЬНО ПОДПИСЫВАЕМ РАБОТУ НА ПОЛЯХ + в сообщении указываем дату/группу/ФИО

Рекомендуемая литература

1. Аналитическая химия: уч. для студ. учреждений СПО / [Ю.М.Глубоков, В.А. Головачева, Ю.А.Ефимова и др.]: под ред. А.А.Ищенко. — 12-е изд., стер.- М. : Издательский центр «Академия», 2017. — 464с.

- 2. Бабаевская Г.П. и соавторы. Сборник задач по количественному анализу. Минск, 1973.
- 3. Валова (Копылова), В. Д. Аналитическая химия и физико-химические методы анализа : практикум / Валова В. Д. (Копылова), Е. И. Паршина. 2-е изд. Москва : Дашков и К, 2020. 199 с.
- 4. Золотов Ю.А. Основы аналитической химии. Методы химического анализа (2 кн.). М.: Высшая шола. 1996.
- 5. Я.И. Коренлеан, Р.П. Лисицкая. Практикум по аналитической химии. Ворнежская государственная технологическая академия. Воронеж, 2002.
- 6. Хаханина, Т. И. Аналитическая химия: учебник и практикум.-4-е изд., перераб. и доп.- М.: Юрайт, 2017.- 394 с.-