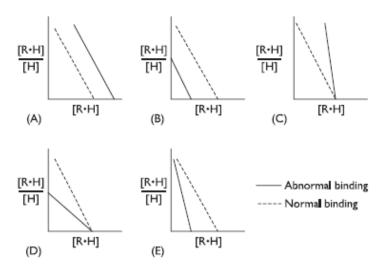
Bioengineering Study Program - School of Life Science and Technology - ITB

Second Exam

BE-2103 Biological Thermodynamics


(Termodinamika Sistem Hayati)

Date: November 27, 2017

Hours: 13.00 – 16.00 (180 minutes)

Closed book and notes. Only text book of Biological Thermodynamics (Donald T. Haynie) is allowed be opened

- 1. When [L] = Kd, Fb = 0.5. Calculate the concentration of ligand required for 90% saturation and 99% saturation?
- 2. Show that $\emptyset/[L] = nK_a \emptyset K_a$ for n identical binding sites
- 3. Consider a homotrimeric protein with three identical and independent binding sites and microscopic association constants of 10⁶. Plot the fractional saturation of the protein against the three ligand concentration. Write down equations describing the macroscropic binding constants (K₁, K₂, K₃) in terms of the microscropic binding constant.

4. Why does plant life tend to be more robust in tropical climates than closer to the poles? (Hint: There must be something about enzyme here) (10)

- 5. The rate of hydrogen exchange is a function of temperature. Assuming that the rate increase threefold for every increase in temperature of 10 °C, calculate the activation energy for exchange. (Hint: Use the intial temperature of 25 °C) (10)
- 6. Skeletal muscle is involved in maintaining body warmth. Explain how this might occur. (Hint: What drives skeletal tension? It must be something that generates heat) (10)
- 7. The rate of ATP hydrolysis to ADP and P_i is influenced by the muscle protein of myosin. The following data are tabulated at 25 °C and pH 7.0.

Velocity of reaction in µmoles	[ATP] in μM
inorganic phospate produced l ⁻¹ s ⁻¹	
0.067	7.5
0.095	12.5
0.073	12.3
0.119	20.0
0.149	32.5
0.185	62.5
0.183	02.3
0.191	155.0
0.195	320.0

Find the Michaelis constant of myosin. (10)

- 8. The following statemebts pertain to energy transfer within a cell and between a cell and its surroundings.
 - a. A cell can convert energy into useful form by allowing carbon and hydrogen to combine with oxygen).
 - b. Chemical energy is converted by acell to heat, where the energy is transferred into a more ordered form
 - c. A cell obeys the Second Law of Thermodynamics by acting like a closed system.

d. Enzymes are important for cell catabolism because they lower the change in free energy of the reaction.

Determine and **explain** whether these statement true or false. (10)