
OpenStack and HPC Workload Management 
The approach taken for managing workloads is a major difference between conventional use cases of HPC and 
cloud. 

A conventional approach to HPC workload management is likely to involve one or more head nodes of an HPC 
cluster for login, development, compilation and job submission services.  Parallel workloads would be submitted 
from a head node to job batch queues of the workload manager, which control access to parallel partitions of 
compute nodes.  Such partitions may equate to mappings of types of compute nodes and the specific resources 
(CPU, memory, storage and networking) that applications require.  Each compute node runs a workload manager 
agent which configures resources, launches application processes and monitors utilisation. 

Pain Points in Conventional HPC Workload Management 
On a large multi-user HPC system the login node is a continual source of noisy neighbour problems.  
Inconsiderate users may, for example, consume system resources by performing giant compilations with wide 
task parallelism,  open giant logfiles from their task executions, or run recursive finds across the filesystem to look 
for forgotten files. 

An HPC system must often support a diverse mix of workloads.  Different workloads may have a wide range of 
dependencies.  With increasing diversity comes an increasing test matrix, which increases the toil involved in 
making any changes.  How can an administrator be sure of the effects of any change to the software packages 
installed?  What must be done to support a new version of an ISV application?  What are the side-effects of 
updating the version of a dependency?  What if a security update leads to a dependency conflict?  As the 
flexibility of an HPC software environment grows, so too does the complexity maintaining it. 

In an environment where data is sensitive, local scratch space and parallel filesystems for HPC workloads can 
often have default access permissions with an undesirable level of openness.  Data security can be problematic in 
a shared HPC resource in which the tenants are not trusted. 

The Case for Workload Management on OpenStack Infrastructure 
The flexibility of OpenStack can ease a number of pain points of HPC cluster administration: 

●​ With software-defined OpenStack infrastructure, a new compute node or head node is created through 
software processes - not a trip to the data centre.  Through intelligent orchestrated automated 
provisioning, the administrative burden of managing changes to resource configuration can be eliminated.  
And from a user’s perspective, a self-service process for resizing their resource allocation is much more 
responsive and devolves control to the user. 

●​ Through OpenStack it becomes a simple process to automatically provision and manage any number of 
login nodes and compute nodes.  The multi-tenancy access control of cloud infrastructure ensures that 
compute resources allocated to a project are only seen and accessible to members of that project.  
OpenStack does not pretend to change the behaviour of noisy neighbours, but it helps to remove the 
strangers from a neighbourhood. 

●​ OpenStack’s design ethos is the embracing (not replacing) of data centre diversity.  Supporting a diverse 
mix of HPC workloads is not materially different from supporting the breadth of cloud-native application 
platforms.  One of the most significant advances of cloud computing has been in the effective 
management of software images.  Once a user project has dedicated workload management resources 
allocated to it, the software environment of those compute resources can be tailored to the specific needs 
of that project without infringing on any conflicting requirements of other users. 

●​ The cloud multi-tenancy implemented by OpenStack enforces segregation so that tenants are only visible 
to one another through the interfaces that they choose to expose.  The isolation of tenants applies to all 



forms of resources - compute, networking and storage.  The fine-grained control over what is shared (and 
what is not shared) results in greater data security than a conventional multi-user HPC system. 

All of this can be done using conventional HPC infrastructure and conventional management techniques, but to 
do so would demand using industry best practices as a baseline, and require the continual attention of a number 
of competent system administrators to keep it running smoothly, securely and to the satisfaction of the users. 

Organisations working on the convergence of HPC and cloud often refer to this subject as cluster-as-a-service.  
How can a cloud resource be equipped with the interfaces familiar to users of batch-queued conventional HPC 
resources? 

Delivering an HPC Platform upon OpenStack Infrastructure 
HPC usually entails a platform, not an infrastructure.  How is OpenStack orchestrated to provision an HPC cluster 
and workload manager?  

Addressing this market are proprietary products and open source projects.  The tools available in the OpenStack 
ecosystem also ensure that a home-grown cluster orchestration solution is readily attainable.  An example of each 
approach is included here. 

Broadly the cluster deployment workflow would follow these steps: 

1.​ The creation of the HPC cluster can be instigated through the command line.  In some projects a custom 
panel for managing clusters is added to Horizon the OpenStack web dashboard. 

2.​ Resources for the cluster must be allocated from the OpenStack infrastructure.  Compute node instances, 
networks, ports, routers, images and volumes must all be assigned to the new cluster. 

3.​ One or more head nodes must be deployed to manage the cluster node instances, provide access for end 
users and workload management.  The head node may boot a customised image (or volume snapshot) 
with the HPC cluster management software installed.  Alternatively, it may boot a stock cloud image and 
install the required software packages as a secondary phase of deployment. 

4.​ Once the head nodes are deployed with base OS and HPC cluster management packages, an amount of 
site-specific and deployment-specific configuration must be applied.  This can be applied through instance 
metadata or a configuration management language such as Ansible or Puppet.  A Heat-orchestrated 
deployment can use a combination of instance metadata and a configuration management language 
(usually Puppet but more recently Ansible provides such capability). 

5.​ A number of cluster node instances must be deployed.  The process of node deployment can follow 
different paths.  Typically the cluster nodes would be deployed in the same manner as the head nodes by 
booting from OpenStack images or volumes, and applying post-deployment configuration. 

6.​ The head nodes and cluster nodes will share one or more networks, and the cluster nodes will register 
with the HPC workload management service deployed on the head nodes. 

Open Platforms for Cluster-as-a-Service 
The simplest implementation is arguably ElastiCluster, developed and released as GPL open source by a 
research computing services group at the University of Zurich.  ElastiCluster supports OpenStack, Google 
Compute Engine and Amazon EC2 as back-end cloud infrastructure, and can deploy (among others) clusters 
offering SLURM, Grid Engine, Hadoop, Spark and Ceph. 

ElastiCluster is somewhat simplistic and its capabilities are comparatively limited.  For example, it doesn't 
currently support Keystone v3 authentication - a requirement for deployments where a private cloud is divided into 
a number of administrative domains.  A cluster is defined using an INI-format configuration template.  When 
creating a SLURM cluster, virtual cluster compute nodes and a single head node are provisioned as VMs from the 
OpenStack infrastructure.  The compute nodes are interconnected using a named OpenStack virtual network.  All 
post-deployment configuration is carried out using Ansible playbooks.  The head node is a SLURM controller, 
login node and NFS file server for /home mounting onto the compute nodes. 



Trinity from ClusterVision uses OpenStack to manage bare metal infrastructure, and creates a dynamic 
HPC-as-a-Service platform comprising SLURM workload management and Docker containers (running on bare 
metal) for the virtual cluster compute nodes.  Management of virtual clusters is more user-friendly in Trinity than in 
ElastiCluster.  A custom panel has been added to the OpenStack Horizon dashboard to enable users to create, 
manage and monitor their virtual clusters. 

Trinity is developed as open source, but has a very small group of developers.  The ‘bus factor’ of this project has 
been exposed by the recent departure from ClusterVision of Trinity’s core contributor. 

Bright Computing Cluster-on-Demand 
Bright Computing has developed its proprietary products for HPC cluster management and adapted them for 
installation, configuration and administration of OpenStack private clouds.  The product is capable of partitioning a 
system into a mix of bare metal HPC compute and OpenStack private cloud. 

 

Bright Computing also provides an OpenStack distribution with Bright-themed OpenStack web interface and an 
additional panel for management of Cluster-on-Demand deployments. 

Cluster-on-Demand uses OpenStack Heat for orchestrating the allocation and provisioning of virtualised cluster 
resources.  When a virtual cluster is created, the Nova flavors (virtualised hardware templates) for head node and 
cluster compute node are specified.  OpenStack networking details are also provided.  Bright OpenStack is 
capable of deploying OpenStack with SR-IOV support, and Cluster-on-Demand is capable of booting cluster 
compute nodes with SR-IOV networking. 

Cluster-on-Demand deployment begins with pre-built generic head node images.  Those can then be quickly 
instantiated (via optional copy-on-write semantics) and automatically customized to user’s requirements.  Bright’s 
deployment solution differs slightly from other approaches by using Bright Cluster Manager on the virtualised 
head node to deploy the virtual cluster nodes as though they were bare metal.  This approach neatly nests the 
usage model of Bright Cluster Manager within a virtualised environment, preserving the familiar workflow of bare 
metal deployment.  However, as a result it does not exploit the efficiencies of cloud infrastructure for compute 
node deployment at scale.  A virtualised cluster of “typical” size can be deployed on-demand from scratch in 
several minutes, at which point it is ready to accept HPC jobs. 



Bright provide configurations for a wide range of workload managers, big data services (Spark, Hadoop), deep 
learning tools, or even virtualised OpenStack clouds (OpenStack on OpenStack).  Bright Cluster-on-Demand can 
also dynamically burst to public clouds (AWS) when more resources are needed (e.g. GPU nodes) or during 
heavy load spikes. 

Cluster-on-Demand focuses on delivering the flexibility advantages of self-service cluster provisioning, but can 
also deliver performance with minimised virtualisation overhead through use of SR-IOV. 

A distinctive feature of Bright OpenStack is the ability to easily deploy virtualised HPC compute nodes next to 
physical ones, and run HPC workloads in an environment spanning mixture of physical and virtual compute 
nodes.  Doing so provides the admin with a whole new level of flexibility.  For example, it allows the assignment of 
high priority HPC job queues to physical compute nodes, and low priority job queues, or long running jobs, to 
virtual compute nodes.  This in turn allows the VMs to be live migrated across the datacentre (e.g. due to 
hardware maintenance) without impacting the long-running HPC jobs hosted on them. 

Extending SLURM and OpenStack to Orchestrate MVAPICH2-Virt Configuration 
The NOWLAB group at Ohio State University has developed a virtualised variant of their MPI library, 
MVAPICH2-Virt.  MVAPICH2-Virt is described in greater detail in the section OpenStack and HPC Network 
Fabrics. 

NOWLAB has also developed plugins for SLURM, called SLURM-V, to extend SLURM with virtualization-oriented 
capabilities such as submitting jobs to dynamically created VMs with isolated SR-IOV and inter-VM shared 
memory (IVSHMEM) resources.  Through MVAPICH2-Virt runtime, the workload is able to take advantage of the 
configured SR-IOV and IVSHMEM resources efficiently.  The NOWLAB model is slightly different from the 
approach taken in Cluster-as-a-Service, in that a MVAPICH2-Virt based workload launches into a group of VMs 
provisioned specifically for that workload. 

"The model we chose to create VMs for the lifetime of each job seems a clear way of managing 
virtualized resources for HPC workloads. This approach can avoid having long-lived VMs on compute 
nodes, which makes the HPC resources always in the virtualised state. Through the SLURM-V model, 
both bare-metal and VM based jobs can be launched on the same set of compute nodes since the VMs 
are provisioned and configured dynamically only when the jobs need virtualised environments", says Prof. 
DK Panda and Dr. Xiaoyi Lu of NOWLAB.  

The IVSHMEM component runs as a software device driver in the host kernel.  Every parallel workload has a 
separate instance of the IVSHMEM device for communication between co-resident VMs.  The IVSHMEM device 
is mapped into the workload VMs as a paravirtualised device.  The NOWLAB team has developed extensions to 
Nova to add the connection of the IVSHMEM device on VM creation, and recover the resources again on VM 
deletion. 

Users can also hotplug/unplug the IVSHMEM device to/from specified running virtual machines. The 
NOWLAB team provides a tool with MVAPICH2-Virt (details can be found in MVAPICH2-Virt userguide) to 
hotplug an IVSHMEM device to a virtual machine and unplug an IVSHMEM device from a virtual machine. 

The SLURM-V extensions have been developed to work with KVM directly.  However, the NOWLAB group have 
extended their project to enable SLURM-V to make OpenStack API calls to orchestrate the creation of workload 
VMs.  In this model of usage, SLURM-V uses OpenStack to allocate VM instances, isolate networks and attach 
SR-IOV and IVSHMEM devices to workload VMs.  OpenStack has already provided scalable and efficient 
mechanisms for creation, deployment, and reclamation of VMs on a large number of physical nodes.  

http://mvapich.cse.ohio-state.edu/userguide/virt/#_support_for_integration_with_openstack_for_vms


SLURM-V is likely to be one of many sources competing for OpenStack-managed resources.  If other cloud users 
consume all resources, leaving SLURM-V unable to launch sufficient workload VMs, then the new submitted jobs 
will be queued in SLURM to wait for available resources.  As soon as one job completes and the corresponding 
resources are reclaimed, SLURM will find another job in the queue to execute based on the configured scheduling 
policy and resource requirements of jobs. 

Combining the Strengths of Cloud with HPC Workload Management 
At Los Alamos National Lab, there is a desire to increase the flexibility of the user environment of their HPC 
clusters. 

To simplify their workload, administrators want every software image to be the same, everywhere.  LANL systems 
standardise on a custom Linux distribution, based on Red Hat 6 and tailored for their demanding requirements.  
Sustaining the evolution of that system to keep it current with upstream development whilst maintaining local code 
branches is an ongoing challenge. 

The users demand ever increasing flexibility, but have requirements that are sometimes contradictory.  Some 
users have applications with complex package dependencies that are out of date or not installed in the LANL 
distribution.  Some modern build systems assume internet access at build time, which is not available on LANL 
HPC clusters.  Conversely, some production applications are built from a code base that is decades old, and has 
dependencies on very old versions of libraries.  Not all software updates are backwards compatible. 

Tim Randles, a senior Linux administrator and OpenStack architect at the Lab, uses OpenStack and containers to 
provide solutions.  Woodchuck is LANL’s third-generation system aimed at accommodating these conflicting 
needs.  The 192-node system has a physical configuration optimised for data-intensive analytics: a large amount 
of RAM per CPU core, local disk for scratch space for platforms such as HDFS and 10G Ethernet with VXLAN 
and SDN capabilities for virtualised networking. 

Reid Priedhorsky at LANL has developed an unprivileged containerised runtime environment, dubbed 
“Charliecloud”, upon which users can run applications packaged using Docker tools.  This enables users to 
develop and build their packages on their (comparatively open) laptops or workstations, pulling in the software 
dependencies they require. 

One issue arising from this development cycle is that in a security-conscious network such as LANL, the process 
of transferring application container images to the HPC cluster involves copying large amounts of data through 
several hops.  This process was soon found to have drawbacks: 

●​ It quickly became time-consuming and frustrating.  
●​ It could not be incorporated into continuous integration frameworks. 
●​ The application container images were being stored for long periods of time on Lustre-backed scratch 

space, which has a short data retention policy, was occasionally unreliable and not backed up. 

Tim’s solution was to use OpenStack Glance as a portal between the user’s development environment on their 
workstation and the HPC cluster.  Compared with the previous approach, the Glance API was accessible from 
both the user’s workstations and the HPC cluster management environment.  The images stored in Glance were 
backed up, and OpenStack’s user model provided greater flexibility than traditional Unix users and groups, 
enabling fine-grained control over the sharing of application images. 



 

Tim developed SLURM plugins to interact with Glance for validating the image and the user’s right to access it.  
When the job was scheduled for execution, user and image were both revalidated and the application image 
downloaded and deployed ready for launch in the Charliecloud environment. 

Future plans for this work include using Neutron to create and manage virtual tenant networks for each workload, 
and releasing the plugins developed as open source contributions to SLURMs codebase. 

HPC and Cloud Converge at the University of Melbourne 
Research compute clusters are typically designed according to the demands of a small group of influential 
researchers representing an ideal use case.  Once built, however, the distribution of use cases can change as a 
broader group of researchers come onboard.  These new uses cases may not match the expected ideal, and in 
some cases conflict.  If job queues and computation times stretch out, it can drive the proliferation of isolated 
department-level clusters which are more expensive to maintain, lack scale, and are all too often orphaned when 
the responsible researcher moves on.  

Introducing Spartan 
In 2016 the University of Melbourne launched a new cluster called 
Spartan.  It takes an empirical approach, driven by the job profiles 
observed in its predecessor, Edward, in the prior year.  In particular, 
single-core and low memory jobs dominate; 76% of were single core, 
and 97% used <4 GB of memory.  High-core count, task-parallel jobs were often delayed due to competition with 
these single core jobs, leading to research funds being directed towards department level resources.  National 
peak facilities were often rejected as an option due to their long queue times and restrictive usage requirements. 



Spartan takes advantage of the availability of an existing and very large research cloud (NeCTAR) to allow 
additional computation capacity, and the provisioning of common login and management infrastructure.  This is 
combined with a small but more powerful partition of tightly coupled bare-metal compute nodes, and specialist 
high-memory and GPU partitions. 

This hybrid arrangement offers the following advantages: 

●​ Users with data parallel jobs have access to the much larger research cloud and can soak up the spare 
cycles available with cloud bursting, reducing their job wait time. 

●​ Users with task parallel jobs have access to optimised bare-metal HPC, supported by high-speed 
networking and storage. 

●​ The larger task parallel jobs remain segregated from less resource-intensive data parallel jobs, reducing 
contention. 

●​ Job demands can be continually monitored, and the cloud and bare metal partitions selectively expanded 
as and when the need arises. 

●​ Departments and research groups can co-invest in Spartan.  If they need more processing time or a 
certain type of hardware, they can attach it directly to Spartan and have priority access. This avoids the 
added overheads of administering their own system, including the software environment, login and 
management nodes. 

●​ Management nodes can be readily migrated to new hardware, allowing us to upgrade or replace 
hardware without bringing the entire cluster down. 

●​ Spartan can continue beyond the life of its original hardware, as different partitions are resized or 
replaced, a common management and usage platform remains. 

Spartan does not have extraordinary hardware or software, and it’s peak performance does not exceed that of 
other HPC systems.  Instead, it seeks to segregate compute loads into partitions with different performance 
characteristics according to their demands.  This will result in shorter queues, better utilisation, cost-effectiveness, 
and, above all, faster time to results for our research community. 

Job and Resource Management 
Previous HPC systems at the University utilised Moab Workload Manager for job scheduling and Terascale 
Open-source Resource and QUEue Manager (TORQUE) as a resource manager.  The Spartan team adopted the 
SLURM Workload Manager for the following reasons:  

●​ Existing community of users at nearby Victorian Life Sciences Compute Initiative (VLSCI) facility. 
●​ Similar syntax to the PBS scripts used on Edward, simplifying user transition. 
●​ Highly configurable through add-on modules. 
●​ Importantly, support for cloud bursting, for example, to the Amazon Elastic Computing Cloud (EC2) or, in 

Spartan's case, the NeCTAR research cloud. 

Account Management 
Integration with a central staff and student Active Directory was initially considered, but ultimately rejected due to 
the verbose usernames required (i.e. email addresses).  The Spartan team reverted to using an LDAP-based 
system as had been the case with previous clusters, and a custom user management application. 

Application Environment 
EasyBuild was used as a build and installation framework, with the LMod environmental modules system selected 
to manage application loading by users.  These tools tightly integrate, binding the specific toolchains and 
compilation environment to the applications loaded by users.  EasyBuild's abstraction in its scripts sometimes 



required additional administrative overhead, and not all software had a pre-canned script ready for modification, 
necessitating them to be built from scratch. 

Training 
Training been a particular focus for the implementation of Spartan.  Previous HPC training for researchers was 
limited, with only 38 researcher/days of training conducted in the 2012-2014 period.  The Spartan team now 
engage in weekly training, rotating across the following sessions: 

●​ Introductory, targeting researchers with little or no HPC or Linux experience. 
●​ Transition, targeting existing Edward users who need to port their jobs to Spartan. 
●​ Shell scripting. 
●​ Parallel programming. 

The team collaborate closely with researchers to drive this curriculum, serving a range of experience levels, 
research disciplines, and software applications. 

The Future 
Bernard Meade, Spartan project sponsor, adds: 

“The future configuration of Spartan will be driven by how it is actually used.  We continue to monitor what 
applications are run, how long they take, and what resources they require.  While Spartan has 
considerable elasticity on the cloud side, we’re also able to incrementally invest in added bare-metal and 
specialist nodes (high memory, GPU) as the need arises.  Given the diversity in HPC job characteristics 
will only grow, we believe this agile approach is the best means to serve the research community.” 

Cloud Infrastructure Does Not (yet) Provide All the Answers 

OpenStack Control Plane Responsiveness and Job Startup 
Implementations of HPC workload management that create new VMs for worker nodes for every job in the batch 
queue can have consequential impact on the overall utilisation of the system if the jobs in the queue are 
comparatively short-lived: 

●​ Job startup time can be substantially increased.  A fast boot for a VM could is of the order of 20 seconds.  
Similarly, job cleanup time can add more overhead while the VM is destroyed and its resources 
harvested. 

●​ A high churn of VM creation and deletion can add considerable load to the OpenStack control plane. 

The Cluster-as-a-Service pattern of virtualised workload managers does not typically create VMs for every 
workload.  However, the OpenStack control plane can still have an impact on job startup time, for example if the 
application image must be retrieved and distributed, or a virtual tenant network must be created.  Empirical tests 
have measured the time to create a virtual tenant network to grow linearly with the number of ports in the network, 
which could have an impact on the startup time for large parallel workloads. 

Workload Managers Optimise Placement Decisions 
A sophisticated workload manager can use awareness of physical network topology to optimise application 
performance through placing the workload on physical nodes with close network proximity. 



On a private cloud system such as OpenStack, the management of the physical network is delegated to a network 
management platform.  OpenStack avoids physical network knowledge and focuses on defining the intended 
state, leaving physical network management platforms to apply architecture-specific configuration. 

In a Cluster-as-a-Service use case, there are two scheduling operations where topology-aware placement could 
be usefully applied: 

●​ When the virtual cluster compute node instances are created, their placement is determined by the 
OpenStack Nova scheduler. 

●​ When a queued job in the workload manager is being allocated to virtual cluster compute nodes. 

Through use of Availability Zones, OpenStack Nova can be configured to perform a simple form of 
topology-aware workload placement, but without any hierarchical grouping of nodes.  Nova’s scheduler filter API 
provides a mechanism which could be used for implementing topology-aware placement in a more intelligent 
fashion. 

OpenStack’s Flexibility is Stretched by the Economics of Utilisation 
With its decoupled execution model, batch queue job submission is an ideal use case for off-peak compute 
resources.  The AWS spot market auctions time on idle cores for opportunistic usage at up to a 90% discount 
from the on-demand price. 

There is no direct equivalent to the AWS spot market in OpenStack.  More generally, management of pricing and 
billing is considered outside of OpenStack’s scope.  OpenStack does not currently have the capabilities required 
for supporting opportunistic spot usage. 

However, work is underway to implement the software capabilities necessary for supporting preemptible spot 
instances, and it is hoped that OpenStack will support this use case in due course.  At that point, 
Cluster-as-a-Service deployments could grow or shrink in response to the availability of under-utilised compute 
resources on an OpenStack private cloud. 

The Difficulty of Future Resource Commitments 
HPC facilities possess a greater degree of oversight and coordination, enabling users to request exclusive 
advance reservations of large sections of an HPC system to perform occasional large-scale workloads. 

In private cloud, there is no direct mainstream equivalent to this.  However, the Blazar project aims to extend 
OpenStack compute with support for resource reservations.  Blazar works by changing the management of 
resource allocation for a segregated block of nodes.  Within the partition of nodes allocated to Blazar, resources 
can only be managed through advance reservations. 

A significant drawback of Blazar is that it does not support the intermingling of reservations with on-demand 
usage.  Without the ability to gracefully preempt running instances, Blazar can only support advance reservations 
by segregating a number of nodes exclusively for that mode of usage. 

Summary 
OpenStack delivers new capabilities to flexibly manage compute clusters as on-demand resources.  The ability to 
define a compute cluster and workload manager through code, data and configuration plays to OpenStack’s 
strengths. 



With the exception of some niche high-end requirements, OpenStack can be configured to deliver 
Cluster-as-a-Service with minimal performance overhead compared with a conventional bare metal HPC 
resource. 

Further Reading 
The ElastiCluster project from University of Zurich is open source.  Online documentation is available here: 
https://elasticluster.readthedocs.io/en/latest/index.html  

The Trinity project from ClusterVision is developed as open source: http://clustervision.com/solutions/trinity/  

Bright Computing presented their proprietary Bright OpenStack and Cluster-as-a-Service products at the 
OpenStack Austin summit in April 2016: 
https://www.openstack.org/videos/video/bright-computing-high-performance-computing-hpc-and-big-data-on-dem
and-with-cluster-as-a-service-caas  

The NOWLAB’s publication on Slurm-V: Extending Slurm for Building Efficient HPC Cloud with SR-IOV and 
IVShmem: http://link.springer.com/chapter/10.1007/978-3-319-43659-3_26  
Tim Randles from Los Alamos presented his work on integrating SLURM with Glance on the HPC/Research 
speaker track at the OpenStack Austin summit in April 2016: 
https://www.openstack.org/videos/video/glance-and-slurm-user-defined-image-management-on-hpc-clusters 

The Spartan OpenStack/HPC system at the University of Melbourne: 
http://newsroom.melbourne.edu/news/new-age-computing-launched-university-melbourne 
http://insidehpc.com/2016/07/spartan-hpc-service/  

Topology-aware placement in SLURM is described here: http://slurm.schedmd.com/topology.html  

Some research describing a method of adding topology-aware placement to the OpenStack Nova scheduler: 
http://charm.cs.illinois.edu/newPapers/13-01/paper.pdf  

HPC resource management at CERN and some current OpenStack pain points are described in detail here: 
http://openstack-in-production.blogspot.co.uk/2016/04/resource-management-at-cern.html  

OpenStack Pre-emptible Instances Extension (OPIE) from Indigo Datacloud is available here: 
https://github.com/indigo-dc/opie  
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