Save 30-50% on AWS in Under 5 Minutes:
The Complete Setup Guide

Most articles about AWS cost optimization tell you to right-size instances, delete unused
resources, and buy Reserved Instances. They assume you have unlimited time to manage
commitments and the risk tolerance to lock in three-year contracts.

The reality is different. Your engineering team has products to build, not spreadsheets to
manage. Your usage patterns change monthly. And every day you delay optimization costs
you thousands in unnecessary spending.

We built Usage Al because we saw companies collectively wasting millions on AWS. Not
from incompetence, but from the sheer complexity of managing cloud commitments. After
helping customers save over $91 million, we've learned exactly what works and what

doesn't.

Skip to the setup guide if you want to get started right away.

Why AWS Cost Optimization Fails



AWS offers incredible discounts through Savings Plans and Reserved Instances. Compute
Savings Plans provide up to 66% discounts in exchange for a commitment to consistent
usage for 1 or 3 year terms. The problem isn't the discounts, it's the commitment risk.

Consider what happens when you buy a three-year Reserved Instance. Your architecture
evolves constantly as your business grows and technology advances, but those
commitments remain frozen in time. You committed to m5.xlarge instances in us-east-1,
but six months later, your team decides to migrate to méi instances for better
performance, or shift workloads to us-west-2 for latency reasons. Now you're stuck
paying for unused reservations while also paying on-demand rates for your new
infrastructure.

The situation gets worse when usage patterns shift. Maybe you optimized for your current
load of 100 instances running 24/7. Then a major customer churns, or you refactor an
inefficient service, and suddenly you need 60 instances. Those 40 unused reservations
become dead money bleeding from your budget every month. Before 2024, you could sell
unwanted Rls on the AWS Reserved Instance Marketplace, but AWS effectively killed that
escape route by preventing Enterprise Discount Program customers from selling and
limiting how many Rls any single customer can sell.

Most companies respond to this risk by staying on-demand, effectively paying a 50%
“flexibility tax” every month. They know they're overpaying, but the fear of
overcommitment paralysis keeps them from acting. It's a rational response to anirrational
system.

The 5 Services Eating Your Budget (And How to Fix Them)

Your AWS spend concentrates in five core services. Understanding each one's optimization
strategy is crucial for maximizing savings while minimizing risk. Let me walk you through each
service, explaining not just what to do, but why these strategies work and what pitfalls to avoid.

1. EC2: The Compute Giant (40-60% of spend)

EC2 dominates most AWS bills because every application needs compute. Whether you're running
web servers, application servers, batch processing jobs, or machine learning workloads, EC2
instances form the backbone of your infrastructure. The challenge is that EC2 offers hundreds of
instance types across dozens of regions, each with different pricing, performance characteristics,
and use cases.

Compute Savings Plans automatically apply to EC2 instance usage regardless of instance family,



size, AZ, Region, OS or tenancy, and also apply to Fargate or Lambda usage. This flexibility
fundamentally changes the optimization equation. Instead of committing to specific instance types
that might become obsolete or inappropriate for your workloads, you commit to a dollar amount
of compute usage that follows you wherever your infrastructure evolves.

The smart strategy here is using 1-year Compute Savings Plans with no upfront payment. You get
27% discounts while maintaining complete flexibility to change instance types, regions, or even
move to containers. This might seem like you're leaving money on the table compared to 3-year
commitments with 54% discounts, but that assumes your infrastructure remains static for three
years. In reality, AWS releases new instance families annually that offer better price-performance.
The méi instances released in 2021 are 15% more cost-effective than m5 instances. If you're
locked into m5 Reserved Instances, you can't take advantage of these improvements.

For coverage targets, aim for 70-80% of your baseline usage. This provides substantial savings
while maintaining surge capacity for traffic spikes or seasonal variations. If you spend $50,000
monthly on EC2, proper coverage could save you $13,500 monthly—that's $162,000 annually that
can be reinvested into growth instead of padding AWS's margins.

2.RDS: The Database (15-25% of spend)

Databases present unique optimization challenges because they're the foundation of your
application's data layer. Unlike stateless application servers that can be scaled up and down or
moved between regions easily, databases carry state. They run 24/7 because even a few minutes
of downtime can cascade into hours of recovery and reconciliation. This makes them perfect
candidates for commitments—except nobody wants to lock in database configurations when data
growth is unpredictable.

Think about your database growth pattern. You might have 10GB of data today, fitting
comfortably on a db.m5.large instance. But if your business takes off, you could have 100GB in six
months, requiring a db.m5.xlarge or larger. If you bought a Reserved Instance for the smaller size,
you're now paying for an unused reservation while also paying on-demand rates for the larger
instance. It's a double penalty that can cost thousands monthly.

The smart strategy for RDS focuses on Reserved Instances for production databases that haven't
changed configurations in six months. These stable databases have predictable resource
requirements and are unlikely to need sudden changes. Start with 60% coverage to maintain
flexibility for growth or architectural changes. This conservative approach still yields 30-42%
savings on one-year commitments while protecting you from overcommitment.

Keep development and staging databases on-demand. These environments need flexibility for
testing different configurations, and their intermittent usage patterns make commitments



wasteful. Many companies make the mistake of treating all databases equally, but production and
non-production databases have fundamentally different optimization profiles.

3. ElastiCache: The Hidden Optimizer (5-10% of spend)

ElastiCache often runs unnoticed in the background, quietly accumulating costs while teams focus
on more visible services. Redis and Memcached clusters typically get configured once during
application setup and then forgotten, running 24/7 at on-demand rates for years. This makes
ElastiCache one of the easiest services to optimize with minimal risk.

Cache layers rarely change configuration once optimized because their sizing is determined by
relatively stable factors: key size, number of keys, and access patterns. Unlike databases that grow
with business data or compute instances that scale with traffic, cache requirements remain
remarkably consistent. A Redis cluster sized for 10GB of hot data will likely still need 10GB six
months later—the hot dataset size doesn't typically grow proportionally with overall data growth.

Reserved Instances for all production Redis and Memcached clusters represent one of the safest
optimization moves you can make. The 35% savings from one-year Rls translate directly to your
bottom line with virtually zero risk of overcommitment. The only caveat is that ElastiCache
reservations are tied to node types, not clusters. If you need to scale from cache.m5.large to
cache.m5.xlarge, your reservation doesn't automatically adjust. But this scenario is rare enough
that the savings far outweigh the minimal risk.

4. Redshift: The Data Warehouse Drain (10-15% of spend)

Redshift poses interesting optimization challenges because data warehouses sit at the
intersection of storage and compute. Your Redshift cluster needs enough storage for your data
and enough compute for your queries, but these requirements don't always scale together. You
might need more storage without additional compute, or more compute for complex queries
without additional storage.

Redshift Reserved Nodes offer 41% savings even on one-year terms, but they're remarkably
inflexible. You're locked to specific node types (dc2.large, dc2.8xlarge, ra3.4xlarge, etc.) in specific
regions. There's no equivalent to Compute Savings Plans that let you shift between node types. If
you commit to dc2 nodes and later need the storage flexibility of ra3 nodes, you're stuck with
unused reservations.

The smart strategy acknowledges this inflexibility by only committing to clusters with stable,
predictable workloads. Your core data warehouse that's been running the same node
configuration for a year is a good candidate. The experimental cluster you're using to test new
analytics workloads should stay on-demand. Coverage recommendations of 50-60% account for
growth while avoiding overcommitment. This conservative approach still yields meaningful



savings—if you're spending $20,000 monthly on Redshift, even 50% coverage with Rls saves
$4,100 monthly.

5. OpenSearch: The Overlooked Service (5-10% of spend)

OpenSearch, previously known as Elasticsearch, often escapes optimization efforts because it falls
between teams. The operations team sees it as an application service, the application team sees it
as infrastructure, and nobody takes ownership of its cost optimization. This orphaned status
means OpenSearch clusters frequently run for years at on-demand rates despite being perfect
candidates for Reserved Instances.

Search clusters, like cache clusters, have predictable resource requirements determined by index
size and query patterns. Once you've sized a cluster for your search workload, it rarely needs
dramatic changes. The data might grow, but search indices are typically time-bounded (last 90
days of logs, last year of transactions) or size-capped, creating natural limits on growth.

One-year Reserved Instances for production OpenSearch clusters offer 32% savings with minimal
risk. Most companies can cover 100% of their OpenSearch spend with Rls because these clusters
run continuously with stable configurations. The savings might seem smaller in percentage terms
than EC2 or RDS, but OpenSearch often represents $10,000-50,000 in monthly spend for
medium-sized companies. That's $3,200-16,000 in monthly savings from a single optimization
decision that takes minutes to implement.

The Actual 5-Minute Setup Process

Here's exactly how to connect your AWS account to Usage.Al for a free savings analysis.
Step 1: Start the Connection (30 seconds)

Navigate to usage.ai and create an account using your business email. We intentionally don't

require credit cards or lengthy forms. Just email, password, and company name. Once you're in the
dashboard, simply click AWS to begin connecting.



https://cloudopt.usage.ai/signup

\Usage.

Insured Commitments All Cloud Providers

aws AWS \ Azure é Google Cloud
4 Connec ccoul nnec unt C e unt

~—~

& Integrations

[@ silling

Step 2: Initial Configuration (1 minute)

The first screen asks for an account nickname. This is purely for your reference if you manage
multiple AWS accounts. Something like "Production Account" or "Company-AWS-Main" works
just fine. Below that, you'll see a product selection checkbox for "Insured Commitments." Make
sure this is checked—it grants permissions for EC2, RDS, ElastiCache, OpenSearch, Redshift, and
ECS/EKS Fargate. You can modify this selection later if needed, but starting with full permissions
gives you the most comprehensive analysis.

Then, copy the given code and run it to create a service linked role for elasticache.



Onboarding / Connect Account / (g

\Usage. CaiTEe AGEaU AWS ISV P, rtner

Par artner

Insured Commitments :
Security-First Solutions

int IAM Ro

5 Active Commitments

Settings

e linked role for el
COPY O

aws iam c te-service-linked-rol e-name elasticacl

MODIFY ©

AWS IAM ROLE More Options v

Click the AWS IAM ROLE button to continue. This takes you to the permissions configuration
screen where the real AWS integration begins.

Step 3: Enable Hourly Cost Data (30 seconds - skip if no Fargate)

If you use Fargate for containerized workloads, you need to enable hourly cost granularity in AWS
Cost Explorer. This sounds complex but takes seconds. Open a new browser tab and navigate to
your AWS Console. Go to Cost Explorer Settings (you can search for it in the top search bar). Look
for the section labeled "Hourly Granularity" and check the box that says "Cost and usage data for
all AWS services at hourly granularity (without resource-level data)."



Onboarding / Connect Account / (@) Conne

Usage. o ACEEu: AWS ISV Partner

Par rtner Network.

Insured Commitments Step1
Sl Security-First Solutions

$ Enable Hourly Cost Data  Create an IAM Policy ~ Add an IAM Role

()
=

Active Commitments
! __ Read-only Access

Settings
User M

& Integrations

ost Explorer Settings and under Hourly granularity (up to 14 days of past
e box for "Cost and usage data for all AWS services at hourly granularity

[@ silling

Preferences

General | CostExplorer | Cost Optimization Hub

Return to the Usage.Al dashboard and check the confirmation box saying you've enabled this
option. If you don't use Fargate, skip this entire step. The platform will still analyze your EC2, RDS,
and other services without hourly data.

Step 4: Create the IAM Policy (1 minute)

Now we need to create the read-only policy that lets Usage.Al analyze your spending. In your AWS
Console tab, navigate to the IAM service and click on Policies in the left sidebar. Click the blue
"Create Policy" button. You'll see a visual editor by default—ignore it and click on the JSON tab
instead.

The Usage.Al dashboard displays a JSON policy.



\Usage.

Insured Commitments
& Savings Ov

@ Recommendations

&5 Active Commitments

Settings
User Management
& Integrations

[® Billing

F ) frederik@bussl...

Feedback

Onboarding / Connect Account / @) Connect AWS

Connect Account

Enable Hourly Cost Data  Create an IAM Policy ~ Add an IAM Role Link an IAM Role

Add a neW IAM policy to your AWS aécount

the IAM Policy Page and click on the JSON tab to replace the default JSON with the

COPY @ EXPAND /

scribex",

Create Policy

Set your policy name as UsageAlI and click on Create Policy

< BACK

AWS ISV Partner
Part of AWS Partner Network.

Security-First Solutions

Copy this entire policy from the Usage.Al dashboard and paste it into AWS, replacing any default
content. Click through to the review screen, name the policy "UsageAl" (exactly as shown, without
the quotation marks), and click Create Policy. The policy is now ready to be attached to arole.

Step 5: Create the IAM Role (1 minute)

Return to the IAM dashboard and click Roles in the left sidebar. Click "Create Role" and select
"Custom Trust Policy" as the trusted entity type. The Usage.Al dashboard provides another JSON
block—this is the trust policy that allows Usage.Al's AWS account to assume this role securely.



Onboarding / Connect Account / @ Connect AWS

\Usage. e AT AWS ISV Partner

Part of AWS Partner Network.

Insured Commitments :
rst Solutions
$ S g N Enable Hourly Cost Data Create an IAM Policy Add an IAM Role Link an IAM Role unt IAM Roles
= € es the curity when
@ Recommendations ) C ing accounts

Add a new IAM role to your AWS account

Go to the IAM Role Page and select Custom Trust Policy under "Select trusted entity"

S8 Active Commitments
Settings
Trust Policy COPY @ EXPAND /
User Management I

& Integrations

[@ Billing

21854:user/awsconnector"

*: "wtchvAm2355"

Search and select UsageAl as your policy to attach the role

Then keep clicking Next until you reach the Review stage

Click on Create Role
0 e as UsageAl

Bussler
F frederik@bussl...

Feedback

Continue

Copy the trust policy from Usage.Al and paste it into the AWS console, replacing the default
content. Click Next to move to the permissions screen. Search for "UsageAl" in the policy search
box and check the box next to the policy you just created. Click through the remaining screens,
name the role "UsageAl" (exactly as shown), and click Create Role.

Step 6: Complete Integration (1 minute)

The role is created and ready to use. In the AWS IAM Roles list, click on the UsageAl role you just
created. At the top of the role details page, you'll see the Role ARN—a string that looks like
arn:aws:iam::123456789012:role/UsageAl. Copy this entire string.

Return to the Usage.Al dashboard and paste the Role ARN into the field labeled "Paste your Role
ARN here." Click Complete Integration. Within seconds, the platform begins analyzing your AWS
usage patterns, identifying waste, and calculating savings opportunities.



Onboarding / Connect Account / @ Connect AWS

\Usage. Son ecHecont AWS ISV Partner

Part of AWS Partner Network.

Insured Commitments Step 4

s Savings Over Enable Hourly a olicy Add an IAM Role ink an IAM Role

™ Recomm ns SR
S5 Active Commitments Link your new IAM Role

. Read-only Access
Settings Find the Role ARN here y
Usa d showcases
ead-only
Userilanagement Example of a Role ARN: arn:aws:iam::826182721854:role/UsageAl

& Integrations

[@ Billing

Complete Integration

< BACK

Bussler

F frederik@bussl... el

What a Typical Analysis Reveals

Let me walk you through what you might discover in your savings analysis, using realistic numbers
based on hundreds of customer analyses we've performed.

Consider a company spending $200,000 monthly on AWS. This isn't a massive enterprise—it's a
successful SaaS company or e-commerce platform with decent traffic and a modern architecture.
Here's what their analysis typically reveals:

Their EC2 spend of $94,000 monthly spreads across 40+ instance types, a testament to years of
organic growth and experimentation. Different teams launched different services with different
instance types, and nobody ever standardized. The analysis shows $31,000 monthly is completely
uncovered by any commitments—pure on-demand spending on instances that run 24/7. The
platform recommends Compute Savings Plans covering $65,000 of hourly usage, which would
save $25,000 monthly with just 27% discounts from one-year terms.

The RDS breakdown tells another story. They're running 14 databases totaling $38,000 monthly.
Three are development databases that get torn down and rebuilt regularly—these should stay
on-demand. But 11 are production databases that haven't changed size in six months. These stable
databases are perfect for Reserved Instances. With 30% discounts from one-year Rls, that's
$11,400 in monthly savings on databases alone.

ElastiCache, Redshift, and OpenSearch combine for $46,000 monthly, all running 24/7 with stable
configurations that haven't changed in a year. These services are the definition of predictable



workloads. The analysis recommends 80% coverage with one-year Rls, yielding $12,000 in
monthly savings with virtually zero risk of overcommitment.

Total potential savings: $48,400 monthly, or $580,800 annually. That's real money that could fund
several engineering salaries, accelerate product development, or extend runway. And achieving
these savings requires no architecture changes, no service disruptions, and no engineering time
beyond the initial 5-minute setup.

The Insurance That Changes Everything

Traditional commitments create an impossible dilemma. Maximum savings require three-year
terms, but predicting your infrastructure needs three years out is pure fantasy for growing
companies. You might as well predict the weather three years from now—you'll probably be just as
accurate.

Usage.Al's Insured Commitments fundamentally change this equation. Instead of you purchasing
commitments directly and bearing all the risk, we purchase optimized commitments on your
behalf. You immediately get maximum discount rates, often matching three-year commitment
discounts. But here's the crucial difference: if your usage drops and those commitments become
underutilized, we buy back the unused capacity with actual cash, not credits or vouchers.

This isn't some complex financial instrument or derivative. It's straightforward insurance. You get
the savings, we handle the risk. If your company pivots, gets acquired, migrates to Kubernetes, or
simply becomes more efficient, you're protected. The cash-back guarantee means you never lose
money on unused commitments.

Companies using this approach consistently save 30-50% with zero commitment risk. They get the
financial benefits of aggressive commitment strategies without the downside exposure that keeps
CFOs awake at night.

Manual vs Automated: Making the Choice

You have three distinct paths for implementing AWS cost optimization, each with different time
requirements, risk profiles, and savings potential.

Option 1: Manual Optimization requires significant time investment. Expect to spend 20-40
hours on initial analysis, spreadsheet building, and commitment planning. Then budget 5-10 hours
monthly for ongoing management, tracking expiration dates, and adjusting coverage. You own all
commitment decisions and their consequences. If you overcommit, the waste is yours. If you
undercommit, the missed savings are yours. Teams that execute manual optimization well typically
achieve 20-30% savings, but execution quality varies wildly based on available resources and



expertise. This approach works best for companies with dedicated FinOps teams who view cloud
cost optimization as a core competency.

Option 2: Usage.Al Free Dashboard provides the analysis and recommendations without the
automation. The 5-minute setup gives you complete visibility into your optimization opportunities.
You see exactly which Savings Plans and Reserved Instances to purchase, but you execute the
purchases yourself in AWS. The platform updates recommendations monthly as your usage
evolves, but you need to check it regularly and act on the recommendations. This hybrid approach
typically yields 25-35% savings because the recommendations are more sophisticated than
manual analysis, but you maintain full control over commitment decisions. It's ideal for teams that
want guidance but need to maintain direct control over AWS purchasing decisions for compliance
or organizational reasons.

Option 3: Usage.Al Autopilot with Insurance completely automates the optimization process.
After the same 5-minute setup, the platform continuously monitors your usage, purchases optimal
commitments, manages renewals, and provides cash-back guarantees on any underutilization. You
get 30-50% savings with zero risk and zero ongoing time investment. The platform handles
everything from initial analysis through commitment lifecycle management. This approach suits
teams that want to focus on building products rather than managing spreadsheets, especially
high-growth companies where usage patterns change rapidly.

Common Objections Addressed

Every company considering AWS optimization raises similar concerns. Let me address them
directly with complete transparency.

1. "We're planning to migrate to Kubernetes soon, so commitments don't make sense for us right

now.

This is one of the most common misconceptions. Compute Savings Plans work perfectly with EKS
because EKS nodes are just EC2 instances with Kubernetes installed. Your Savings Plan discounts
transfer automatically to your containerized workloads. Whether you're running applications
directly on EC2, in ECS tasks, EKS pods, or even Lambda functions, Compute Savings Plans apply
equally. The only thing that changes is how you deploy applications—the underlying compute still
needs optimization.

2."Our usage is too variable and unpredictable for commitments."

Variable usage is exactly why we recommend 70% coverage with one-year terms instead of 100%
coverage with three-year terms. This conservative approach ensures you're only committing to
your true baseline—the resources that run consistently regardless of traffic spikes or seasonal
variations. The remaining 30% stays on-demand to handle variability. With Insured Commitments,
even this conservative approach becomes unnecessary because underutilization gets bought back,



but understanding the principle helps you see why commitment optimization works even for
variable workloads.

3. "We already have some Reserved Instances that our previous team purchased."

Existing commitments aren't a problem—they're a head start. Usage.Al's analysis works around
your current Rls and Savings Plans, identifying optimization opportunities in your remaining
on-demand spend. There's no conflict between old and new commitments. The platform shows
you exactly when existing commitments expire and what to replace them with. Many companies
find they're sitting on expired commitments they forgot about, paying on-demand rates for
resources that were previously covered.

4."Our finance team needs to approve any commitment purchases, and they're very
risk-averse."

The free analysis report includes everything your finance team needs for approval: detailed ROI
calculations showing payback periods, risk assessment based on usage volatility, cash flow impact
analysis comparing different payment options, and audit trails showing exactly how
recommendations were generated. Finance teams actually love the Insured Commitments model
because it transforms unpredictable cloud costs into predictable operational expenses with
guaranteed savings and zero downside risk.

5."What if we get acquired or need to shut down services quickly?”

This is where traditional commitments become nightmares and Insured Commitments shine. With
standard AWS commitments, you're stuck paying whether you use the resources or not. With
Insured Commitments, we buy back unused capacity immediately with cash. Companies going
through acquisitions, divestitures, or major pivots get complete protection from stranded
commitments. You focus on your business transformation while we handle the financial
optimization.

Why Companies Leave Millions on the Table

The mathematics of cloud waste are staggering when you aggregate them across the industry. The
average company wastes 35% of their cloud spend through a combination of unused resources,
suboptimal pricing, and missed commitment opportunities. For a company spending $100,000
monthly on AWS, that's $35,000 in pure waste—$420,000 annually that could be recovered with
proper optimization.

Yet most companies do nothing. They're paralyzed by the complexity of AWS's pricing model,
which includes thousands of SKUs across hundreds of services. They're scared of making
three-year commitments when they can barely predict next quarter's infrastructure needs.



They're too busy building products and serving customers to become experts in cloud financial
management.

The result is a massive transfer of wealth from growing companies to AWS. Every month of
inaction is money you'll never recover. While you're evaluating options, running pilots, and seeking
approvals, your competitors are reinvesting their cloud savings into product development,
marketing, and growth. The opportunity cost compounds over time, creating competitive
disadvantages that become harder to overcome.

Start Your Savings Analysis Now

You can know your exact savings potential in the next 5 minutes. No credit card required. No
commitment necessary. No sales pressure. Just connect with read-only access and see real
numbers based on your actual usage patterns.

The analysis itself often reveals surprising insights beyond just savings opportunities. You'll see
which services consume the most resources, which instance types are overprovisioned, and where
architectural improvements could yield additional savings. Many companies discover forgotten
resources running for months, test environments that became pseudo-production, and instance
types that haven't been right-sized since launch.

The companies that have collectively saved $91 million didn't have special advantages or insider
knowledge. They just started. They connected their accounts, reviewed the analysis, and made
informed decisions about optimization. Whether they chose manual implementation or full
automation, they took action instead of accepting the status quo.

Get Your Free Savings Analysis —

What Happens After You Connect

The moment you complete the connection, Usage.Al begins analyzing your entire AWS
infrastructure. Within seconds, you see a comprehensive dashboard showing your current spend,
identified waste, and savings opportunities across all services. The platform doesn't just show you
numbers—it explains them. You understand why certain commitments are recommended, what
risks they carry, and how they align with your usage patterns.

The personalized recommendations go beyond generic AWS suggestions. The platform factors in
your actual usage volatility, growth trends, and service dependencies. If you have highly variable
workloads, it recommends lower coverage levels. If you have rock-solid baseline usage, it suggests
more aggressive optimization. Every recommendation includes risk scores and confidence levels
so you can make informed decisions.


https://docs.usage.ai/guides/aws-integration

The risk assessment is particularly valuable for finance teams and executives. You see exactly how
much money is at risk with different commitment strategies, what events could trigger
underutilization, and how the insurance mechanism protects against losses. This transparency
transforms cloud optimization from a mysterious black box into a clear business decision with
guantifiable risks and returns.

Implementation options remain flexible even after analysis. You might start with manual
implementation to build confidence, then switch to automation once you see the results. Or you
might go straight to full automation if you're comfortable with the model. The platform supports
whatever approach aligns with your organization's culture and requirements.

Ongoing optimization happens automatically if you choose the autopilot option. The platform
continuously monitors your usage, identifies new savings opportunities, and adjusts commitments
as needed. You receive monthly reports showing realized savings, upcoming renewals, and
optimization recommendations. It becomes a set-and-forget solution that continuously improves
your cloud economics without consuming engineering resources.

The Bottom Line

Don't let confusion, fear of commitments, and your lack of time to optimize cost you big money. A
one-year commitment might yield savings of 20-30%, while a three-year commitment offers twice
the savings, but that three-year commitment could become a financial disaster if your business
evolves.

With Usage.Al, you get maximum savings with zero commitment risk. Our Insured Commitments
deliver 30-50% savings while protecting you from any downside through cash-back guarantees.
The technology platform handles all the complexity of optimization while the insurance
mechanism eliminates financial risk.

The setup takes 5 minutes. The savings last as long as you're on AWS. The risk is completely
eliminated through insurance. Every day you wait costs money you'll never recover.

Start Savingin 5 Minutes —



https://docs.usage.ai/guides/aws-integration

	Save 30-50% on AWS in Under 5 Minutes: The Complete Setup Guide 
	Why AWS Cost Optimization Fails 
	The 5 Services Eating Your Budget (And How to Fix Them) 
	1. EC2: The Compute Giant (40-60% of spend) 
	2. RDS: The Database (15-25% of spend) 
	3. ElastiCache: The Hidden Optimizer (5-10% of spend) 
	4. Redshift: The Data Warehouse Drain (10-15% of spend) 
	5. OpenSearch: The Overlooked Service (5-10% of spend) 

	The Actual 5-Minute Setup Process 
	Step 1: Start the Connection (30 seconds) 
	Step 2: Initial Configuration (1 minute) 
	Step 3: Enable Hourly Cost Data (30 seconds - skip if no Fargate) 
	Step 4: Create the IAM Policy (1 minute) 
	Step 5: Create the IAM Role (1 minute) 
	Step 6: Complete Integration (1 minute) 

	What a Typical Analysis Reveals 
	The Insurance That Changes Everything 
	Manual vs Automated: Making the Choice 
	Common Objections Addressed 
	Why Companies Leave Millions on the Table 
	Start Your Savings Analysis Now 
	What Happens After You Connect 

	The Bottom Line 


