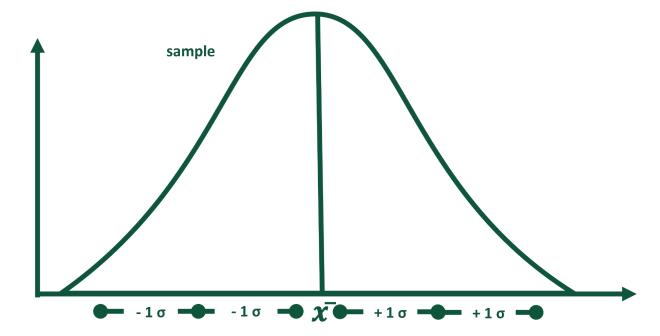
Data Analysis In-Class Worksheet #06: Distribution & CI

Turn in one completed worksheet per week for grading (based on completion). Student Name _____ TA Checked _____ _____ Attend an office hour to review your worksheet and receive full credit. **Distributions** A normal distribution has ____ SDs above the mean and ____ SDs below the mean Which of the following is an outlier? $\boxed{Z = -.3}$ $\boxed{Z = 5}$ $\boxed{Z = 0}$ Which of these is a negative skew? Skewness = -.3 1.2 0 Which of the following graphs shows a positive skew? A B C C Α В Mean Median Median Median Mode Mode - Mean Mode Mean - i Our class dataset is a(n) _____ of the ____ of all Williamsburg properties. sample, population population, sample case, variable independent variable, dependent variable The _____ test determines if the population from which a sample is drawn is normally distributed or not.

If the result of that test has a p (probability) value of .04, that means
the population is normally distributed
the population is NOT normally distributed
If the result of that test has a p (probability) value of .27, that means
the population is normally distributed
the population is NOT normally distributed
If we want to convert a non-normal variable into a normal distribution, we can try to take of the variable.
the natural log
the Z score
the standard deviation
skewness
The binomial distribution is the distribution of trials, which depends on, and
random, random number seed, sample size
Bernoulli, probability, sample size
Gaussian, Bernoulli, sample size
normal, Gaussian, probability
Confidence Interval
What's a point estimate?
What's an interval estimate?
How does the point estimate differ from an interval estimate?
What is Standard Error?
Which estimate indicates a higher level of confidence?

- I bet that Thomas will get married between 28 and 30 years old
- I bet that Thomas will get married between 18 and 95 years old

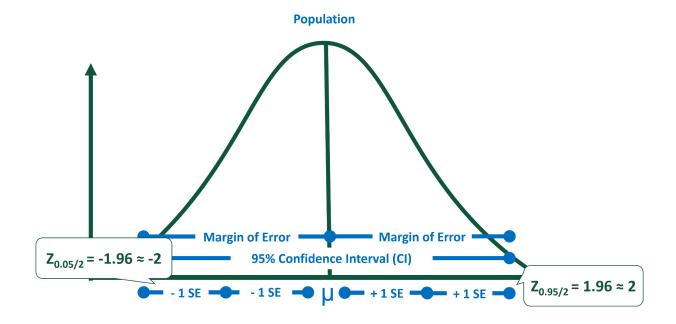

Take a sample of 16 stocks from a large population, with a sample mean return of 5.2%, and a sample standard deviation of 1.5%

The sample size n = _____

The sample mean $\bar{x} = \underline{\hspace{1cm}}$

The sample SD σ (s) = ____

Mark these values on the sample diagram below.



The Standard Error (SE) = — = _____

Calculate 95% confidence interval for the population mean μ .

How much is the margin of error?

Mark the values from above on the population diagram below.

Source:

https://financetrain.com/confidence-interval-population-mean-known-population-variance/