
Beginner yt-dlp Guide to Download
YouTube Videos …

yt-dlp for Dummies | Download YouTube Videos /
Channels Stupidly Easy

Email / Help: teoncurt106@gmail.com

This also works for livestreams, and many other sites than Youtube.

The key benefits of yt-dlp are the compatibility with massive amounts of videos, and wild
amount of customization; making it superior to all other downloaders, but with a mild
learning curve. I think it’s worth it for average people (with how quick/simple it is to use),
and especially archivists.

To archive streams 24/7 follow this guide, even simpler than this (there’s also a section
later in this document): Easy 24/7 Stream Archive Script

To rapidly clip videos just by tapping a video player, follow this guide:
 Clipping Made Easy

A full video tutorial of this document is being considered. I did try to make this document simple,
so you shouldn’t need it necessarily.

The following guide is for Windows PCs.

1.​ Download the NEWEST VERSION of yt-dlp.exe from this link.

Don’t run it, it’s not an actual installer. It runs inside another program.

https://github.com/yt-dlp/yt-dlp/releases.

https://docs.google.com/document/d/1PxyypRqHi8BjAt1LQm7mPpBGl7lbseEA92BJj2jHfUM/edit?usp=sharing
https://docs.google.com/document/d/1IWxLyx1jcl-U3sYSDBrGLpFgOfDxVNAOBsjLHvQWTb4/edit?usp=sharing
https://github.com/yt-dlp/yt-dlp/releases

2.​ Move it to the downloads folder, or any folder you want. (Using downloads is my personal
default)

​

3.​ Download ffmpeg-git-essentials from this link:
https://www.gyan.dev/ffmpeg/builds/.

https://www.gyan.dev/ffmpeg/builds/

Scroll to “Release builds” and download the .zip file.

Extract to a windows folder and locate the “bin” directory.

4.​ Get ffmpeg.exe from the bin folder (don't run it), move to downloads folder or
whichever you choose. FFmpeg is necessary for merging videos, and
downloading music, so it's highly recommended to have around.

5.​ Open command prompt (“cmd” in the search bar).

​

6.​ ***Type “cd downloads” or “cd [filepath with yt-dlp.exe and ffmpeg”, copy it from
the windows explorer address bar, Click it then copy.

(if you need to navigate to another drive other than “C:”, you have to use this
command first: cd /d [DRIVE LETTER]:)

(then cd [folder in that directory] until you get to the right folder)

IF THIS WORKED: just copy the command and paste a URL:

yt-dlp --add-metadata --write-thumbnail --embed-thumbnail --convert-thumbnail
jpg --write-info-json --write-comments --compat-options filename-sanitization
--download-archive done.txt -i --merge-output-format "mp4" -f "bv+ba" [INSERT
URL(s) HERE, or channel URL(s)]

I.​ IF COMMAND PROMPT NAVIGATION IS TOO WEIRD, INSTALL THIS
PROGRAM: https://winaero.com/download-winaero-tweaker/

This is the best option anyway, highly recommended.

It makes it much quicker to use the program.

https://winaero.com/download-winaero-tweaker/

All you’ll have to do is right click a folder with yt-dlp.exe in it, click “Open
command window here,” and then paste your command.

Open the program and search “Command Prompt”

II.​

III.​

IV.​ Right click in the folder you have yt-dlp.exe and ffmpeg.exe.

(scroll to the next section to learn how to download videos in any folder).

V.​ Paste the command, and any videos you want to download.

VI.​ Hit enter to Download video(s).

Now you can type ”yt-dlp [INSERT_URL]” to download a video, or an entire
Youtube channel/playlist (at max quality). Scroll down for my command
templates and important tips.

IMPORTANT: if you download a large playlist or channel, you will likely run into
certain errors which are a result of youtube attempting to impede video
downloading programs to cement their monopoly (starting in 2024), getting worse
in 2025.

This is almost certainly due to AI video companies scraping videos to train their
models. Remember, Youtube wants the ability to scrape their own videos for
their AI models.

​

I have several techniques you can try to eliminate or reduce the impact of
these errors, scroll to “DISCLAIMER FOR VPN USERS” section; it doesn’t
just apply to VPNs.

It’s not that hard to combat, so I wouldn’t be discouraged. This is mandatory now
with Google being the equivalent of satan.

​

***Note: command prompt starts out from this folder “C:\Users\[USER]”

If your folder was located inside the Documents folder, you’d type these commands in order, then you can
run the command.​

​ cd documents​ ​ ​ (click enter)

​ cd [YOUR FOLDER] ​ ​ (click enter)

Set yt-dlp/ffmpeg to be Accessible Anywhere

You can also set yt-dlp.exe and FFmpeg.exe in your PATH, so it can be referenced
anywhere from your PC.

You won’t have to have yt-dlp.exe or ffmpeg.exe in the folder you’ll use it.

Like the WinAero context menu button, this will make your life easier so you
should just do it.

Set the full directory where yt-dlp is located as a new PATH variable (which you
will continually update as needed).

KEEP YT-DLP UPDATED OR IT WILL BREAK!

This is mandatory, or yt-dlp will stop working and give 403 Forbidden / nsig extraction
errors after about a month or even a few days, because Youtube continues to fight the
fruitless war against Adblockers. yt-dlp will not stand down either.

All you have to do is run this command in the folder where you have yt-dlp.exe,
the same way you’d run any other command.

yt-dlp -U

Don’t be surprised to see yt-dlp updated just a few days ago, and then stop
working with an error like 403 or nsig: this is regular at this point.

It gets updated a few times a month sometimes, and you’ll have to do this
as well to keep using it.
You can run yt-dlp Nightly Builds to be most up-to-date without a 100%
guarantee of functionality; this is generally recommended now.

yt-dlp --update-to nightly

Command I use for videos

It includes thumbnails and .jsons with comments for metadata (feel free to remove those
commands). Just copy and paste the url anywhere after the command.

Note: If you want to include the .json files for video metadata and Youtube comments, make
sure to use a VPN, or don’t publish the files publicly because they include your IP address.

You can also run this python script to instantly clear out IPs in a directory of .jsons. If you need to quickly learn how to
run scripts from Python IDLE; refer to the “SPECIAL TOOLS” section for a guide. It’s quite easy even for non-coders,
like myself.

cd downloads

yt-dlp --add-metadata --write-thumbnail --embed-thumbnail
--convert-thumbnail jpg --write-info-json --write-comments --compat-options
filename-sanitization --download-archive done.txt -i --merge-output-format
"mp4" -f "bv+ba" [URL(s) GO HERE]

●​ If you want your videos to have the channel name in front of the title, add
this command:

-o "%(uploader)s - %(title)s [%(id)s]"

Format: [Channel Name] – [Video Title] [URL ID]

●​ If you want your videos to have the upload date in front of the title, add this
command:

-o "[%(upload_date>%Y-%m-%d)s] %(title)s [%(id)s]"

https://drive.google.com/file/d/1YIhsOippNyImU7NEvz9C1mRnfN2b92hd/view?usp=sharing

Format: [YYYY-MM-DD] [Video Title] [URL ID]

Command I use for music

(in .mp3 format or whichever you prefer)

(.flac is an ideal format because it’s uncompressed, but it’s not as widely supported)

cd downloads

yt-dlp --prefer-ffmpeg --extract-audio --audio-format mp3 --add-metadata
--write-info-json --write-comments --write-thumbnail --embed-thumbnail
--convert-thumbnail jpg --compat-options filename-sanitization -i
--download-archive donemp3.txt -o "%(uploader)s - %(title)s [%(id)s]"
[URL(s) GO HERE]

^^^ this version of the -o command makes the file name like this: ^^^

​ [Channel Name] – [Video Title] [URL ID]

DISCLAIMER FOR VPN USERS / If you get “Sign in” Errors

Without getting into personal opinion, Google and Youtube are getting more and more
authoritarian when it comes to (mostly) harmless VPN users (not to mention, adblockers
in general). People simply wanting to watch geo-restricted content in their country could
now be outright blocked by Google, because of attempts to block bots.

Even one of the most common and well-respected VPNs, Mullvad, can:

●​ Get you labeled as a bot when google searching, requiring a captcha that might
not even allow you to finish it.

●​ Block attempts to login to Gmail accounts without phone verification (which won’t
happen once you turn it off). This can be solved easily with WinAuth
authentication codes, and you can enable it by turning on 2-FA in Google
(you don’t even need a phone # to set it up; there’s a skip option). Make
sure to make backup codes. Good idea with or without Mullvad.

●​ Block most attempts at making Gmail accounts without phone verification.
●​ Force “Verify it's You” popups within Youtube Studio, which show up and block

you from viewing your channel. It might force you to go through long verification
processes likely requiring a phone number, or just blocking you entirely. Again,
easy to solve using WinAuth.

●​ Show “Confirm you’re not a bot” when opening Youtube videos in a
Private/Incognito window.

This final point is especially relevant, because it now applies to many yt-dlp users who
use VPNs, and download more than a couple videos, which is kind of the point in many
cases.

If you want to download large amounts of videos with yt-dlp, there’s now a fairly
high chance you will see this exact error after some period of time. It may be within
minutes, hours, days but it’ll probably happen.

https://winauth.github.io/winauth/download.html

This can even happen WITHOUT a VPN. Yes, Youtube is now blocking home IPs that
are downloading large amounts of content with yt-dlp.

I theorize this could be related to RunwayML’s usage of yt-dlp + proxies when they
scraped thousands of youtube videos to train their AI video models, which was exposed
in July 2024. VPNs are a form of proxies. Just speculation. Fuck RunwayML.

These AI companies are probably using yt-dlp to do this in mass, and youtube knows.

Once they blacklist your IP, if you’re on a VPN you can switch servers but they can
eventually blacklist your new IP, after some period of time. You can turn your VPN off,
which typically works, but:

●​ If you’re privacy-minded or constantly connected through VPNs, you might
not want to. (Though, using another DNS server is more important anyway, it’s
free to do and you need to do it).

●​ They can blacklist your residential IP eventually, which seems to wear off
after a couple days but is still appalling.

●​ Turning off your VPN will reveal your IP address inside the .info.json files
you download. I have a python script that can delete all IP addresses in jsons,
it’s mainly a concern if you upload them anywhere public.

There are Several Strategies to Fix This.

https://drive.google.com/file/d/1rFMM-AcPW5C_aW-TshcFZnwGTBdaKApw/view?usp=sharing

The strategy I use and have success with is Browser Cookies + A Tab Refresher
(inside Firefox).

You can try this with Chrome or Brave as well, but in my case Chrome/Brave
doesn’t want to send cookies to yt-dlp, so I use Firefox exclusively (for cookies).

Add this command to your yt-dlp command; you must be signed into a Youtube
account in the browser of your choosing:

--cookies-from-browser chrome

--cookies-from-browser firefox

--cookies-from-browser brave

This alone probably won’t work for very long, so:

1.​ Install this Firefox addon. It also exists on the Chrome webstore.

https://addons.mozilla.org/en-US/firefox/addon/tab-reloader/

2.​ Now leave an open tab on youtube inside the browser (LOGGED INTO
YOUTUBE), or specific browser profile, that you are using in Firefox.

Set the tab reloader to reload every 1-4 minutes depending on the
magnitude of your downloads.

https://addons.mozilla.org/en-US/firefox/addon/tab-reloader/

As long as you leave this tab open, the cookies will be refreshed and
should work fine (almost) indefinitely.

If you are mass-downloading in multiple windows, or for long periods, you
may need to monitor your downloads for sign-in errors.

You can still get Sign in errors within 2 minute intervals sometimes, but if
you use the “Cookie Auto-Rotation Script” you won’t have to worry about
this risk (scroll down for more).

​

Manually refreshing the tab, and re-running your command will fix the
issue most of the time, but not always.

At some point, you may also see this error

Video unavailable. This content isn’t available, try again later.

This cannot be fixed by switching your IP.

This seems to be tied to your browser profile itself, and not the
browser cookies, because refreshing the cookies won’t fix this error;
neither will switching to another Youtube/Gmail account.

Removing the cookies command will prevent it from happening, but again, this
won’t work for long. When you’re mass-downloading, this is almost a
deal-breaker.

The only way to fix this particular error is to switch to another
browser profile WITH tab reloader. Or wait for the blacklist to expire
(luckily, it does).

●​ In my case, I have several browser profiles open, all with tab reloader
and logged into different youtube accounts. I only will open them
when needed for yt-dlp.

●​ When one browser profile gets blocked (presumably, permanently) I just
make a new one, install the tab reloader, log into youtube, setup the
refresher, and copy the firefox browser profile name from
C:\Users\[USER]\AppData\Roaming\Mozilla\Firefox\Profiles.

You probably want to create at least 4 new profiles, especially if
you see a “DRM protected” warning when downloading
(discussed below). This may permanently block your profile.

●​ You’ll need to know how to properly identify different firefox
profiles in your YT-DLP command.

●​ Take for example, this command I use by default:

--cookies-from-browser “firefox:dwjwlir0.Crash Profile 3 Green”

You have to find the precise name of the firefox profile, from your
Firefox AppData/Roaming Folder

C:\Users\[USER]\AppData\Roaming\Mozilla\Firefox\Profiles

If you can’t find the AppData folder inside your C:\Users\[USER]
directory, you must enable “Hidden Items” under the View Tab in File
Explorer.

Take the folder name, and paste it into this command template.

Between the colon, and the end quotation mark.

--cookies-from-browser “firefox:”

--cookies-from-browser “firefox:o043hn24.Crash Profile 2 Red”

●​ If I am running a command on many channels, I make sure to have
the –download-archive file.txt command, and I run the command in

multiple firefox profiles, in order. You must use –download-archive
file.txt.

●​ Effectively, I’m running multiple yt-dlp commands on the same
channel or list of URLs. The only difference is the firefox profile
portion of the command.

I will take these commands, and paste them into Command Prompt
one after another in the same window, NOT in multiple windows.

No you don’t need to wait for the first command to finish before pasting
and hitting enter. Paste the first one and hit enter, paste the 2nd and so
on. All of them will run one after another within command prompt.

If the final URL says “already recorded in archive” then you have all
the videos in your command.

yt-dlp --add-metadata --write-thumbnail --embed-thumbnail
--convert-thumbnail jpg --write-info-json --write-comments
--compat-options filename-sanitization --download-archive
C:/Users/[USER]/Downloads/done.txt -i --merge-output-format "mp4"
--cookies-from-browser “firefox:wg9dolxv.Crash Profile 1 Purple”
https://www.youtube.com/@BestEverFoodReviewShow

yt-dlp --add-metadata --write-thumbnail --embed-thumbnail
--convert-thumbnail jpg --write-info-json --write-comments
--compat-options filename-sanitization --download-archive
C:/Users/[USER]/Downloads/done.txt -i --merge-output-format "mp4"
--cookies-from-browser “firefox:o043hn24.Crash Profile 2 Red”
https://www.youtube.com/@BestEverFoodReviewShow

yt-dlp --add-metadata --write-thumbnail --embed-thumbnail
--convert-thumbnail jpg --write-info-json --write-comments
--compat-options filename-sanitization --download-archive
C:/Users/[USER]/Downloads/done.txt -i --merge-output-format "mp4"
--cookies-from-browser “firefox:dwjwlir0.Crash Profile 3 Green”
https://www.youtube.com/@BestEverFoodReviewShow

For all the profiles I’m using, I’ll have a separate firefox window
open, logged into youtube, with tab reloading. Minimized of
course.

https://www.youtube.com/@BestEverFoodReviewShow
https://www.youtube.com/@BestEverFoodReviewShow
https://www.youtube.com/@BestEverFoodReviewShow

●​ This will work because each command, in a different firefox
profile, will pick up where the other one left off.

If the first command downloaded some and got a video unavailable
error, other commands will continue downloading. If the first
command worked perfectly, the other commands won’t re-download
anything.

(Scroll to “Cookie Auto-Rotation Script” for an automated way
to accomplish this).

If you’re taking mass-archival seriously, this is one of the best
options to avoid being subjugated by Google blacklists.

Other Methods

●​ Sleep Interval. The simplest is to add a sleep interval to your download
command. I have not had success with it but you may. Best to try this first as it's
just an extra argument.

--sleep-interval 10 --max-sleep-interval 30

●​ Switch VPN server. This is the quickest and most consistent solution (for “Sign
In” errors). But if you’re downloading large channels, it might get annoying having
to randomly switch after checking your window and seeing if there are errors.

●​ File cookies. While browser cookies generally fix most issues, using a
cookies.txt file is typically the worst option, and will expire after one or a few
uses.

➔​ Scroll down to the “To use the cookies command” section of this document
for how to use cookies.txt in your yt-dlp command.

Cookies.txt files will also expire eventually (sometimes after only a few
minutes), and (rarely) will sometimes have their data deleted. I recommend
saving cookies in a backup file to text if they’re truly expired. But I also
recommend just not using this command.

●​ PO Tokens (Proof of Origin)

This is another way to identify yourself to youtube’s servers without looking like a
bot (or at least reduce the chances). It’s more complicated to acquire but still
easy.

They expire in under a day, so if you ever rely on them you must get good
at finding them (which is fairly easy).

I haven’t

If you want to follow yt-dlp’s guide, here it is. I’ll try to break it down easier
with screenshots, as there is technical jargon spread throughout (and this might
become important in the future).

https://github.com/yt-dlp/yt-dlp/wiki/PO-Token-Guide

This guide will be for logged-In PO tokens (there doesn’t seem to be much
difference in their capabilities though), you probably want to use
–cookies-from-browser with this command.

I will be using firefox in this guide but the process is almost identical in chrome/brave.

1.​ Open a random Youtube Music video in the browser you’re using for the
–cookies-from-browser command (logged into an account, ideally a sock
account just in case youtube ever bans it which is unlikely).

https://music.youtube.com/

Right click and hit “Inspect”

https://music.youtube.com/

2.​ Click the “Network” tab.

3.​ Click the “Filter URLs” box and type: googlevideo.com

4.​ Play the video you have opened.

●​ Wait until a new result shows up at the bottom of the list, then click
it.

●​ Find the POST section at the top, and towards the bottom of the
block of text, there is a “pot=”

●​ Copy the text between “pot=” and “&”

5.​ The text you copied can be inserted into this yt-dlp command:

--extractor-args "youtube:po_token=web.gvs+YOUR_GVS_TOKEN"

Here is a fake PO token for example.

--extractor-args
"youtube:po_token=web.gvs+MnDkvfnFBU9uYeSF9HZsnzqZKtZ5bjXQjUM_
2TCtX82Zpx6ukujFchHfDgfABnIrhyY97V8aO-fIs_CJ6kDeFsdRqM_qtwouGq
JvgQ453zDdmAdQjzOKx5TuhrkJdg4LPpL7f5OuJ0IQvfNGKb0MvO9v"

6.​

DRM Format Warning

This is a new error as of March-April 2025, where yt-dlp downloads will show this error
and proceed to download a 360p quality because the TV client formats have been
temporarily blocked.

If you see this warning, a single time and it continues to download the
video, you need to change your default command to have this:

-f "bv+ba"

Adding this argument will let the warning count as an error, which is
important.

If you let it continue downloading, your video(s) will be in EXTREMELY low
quality.

And it will count as downloaded too (with the –download-archive
command), making it difficult to re-download at the correct quality without
re-making the download archive file, or removing the video IDs from the file).

This is mainly happening on attempts at downloading large youtube channels /
multiple videos in a row (on top of the “Sign In” errors, and “Video Unavailable”
errors which happen after a certain amount of time of downloading in a single
command).

If you see this error, STOP THE COMMAND IMMEDIATELY. You will end up
downloading 360p quality, and if you are running the –download-archive
command the video will save to the archive file and won’t redownload.

This will toxify your attempt at using the program (if it happens).

If you suspect multiple of your files ended up at 360p, you will have to use a new script to detect
these files by resolution, delete them, and automatically remove those IDs from the download
archive file.
(note: improve this)

I have noticed this is not IP based either, I can only fix it by either waiting a certain
amount of time (there is a timeout) or using a new browser profile. My browser profiles
are getting “DRM Blacklisted” after about 200 video downloads for example, and
those profiles won’t re-download. They also get Sign In errors, but tab refreshers
fix that.

Cookie Auto-Rotation Script (Solves all errors)

Here is a python script which runs yt-dlp within it, automatically detects the
DRM warnings and terminates the command, and rotates between different
browser profile locations.

The DRM warning skip thing isn’t relevant now that I found this command -f "bv+ba",
but you can still take advantage of the rotating browser profile cookies ESPECIALLY if
you’re mass-downloading.

The fact the script can use multiple different alternating commands lets you,
effectively, never get blocked.

This is the only way I can think of to mass-archive a large channel anymore,
because the blacklisting has gotten so strong, you can regularly run into 3
different errors.

You probably want to keep cycling between 5 or so browser profiles, once all five
of them get blacklisted, delete those 5, create another 5 all at once (with the same
tab refresher, log into youtube on all 5 of them). Rinse and repeat.

Download (single URL): Auto_yt-dlp_cookies_rotation_mkii.py

Download (multiple URLs, useful for auto-archiving many channels in 1 folder):

Auto_yt-dlp_cookies_mkiv_multiurls.py

^^ Theoretically, you could configure this script to download certain channel URLs within certain sub-folders (based on channel ID). This is possible
with AI coding, I may do it eventually. I do have a script which can auto-organize files by channel name though

1.​ Refer to the “SPECIAL TOOLS” header to run this python script using
Python IDLE, this is very easy to set up, and unfortunately necessary.

2.​ Add in your firefox browser profiles, you created from the previous section,
into the python script.

https://drive.google.com/file/d/1qWLut-6BBLDBBlv7nfZ8_A7CepuIYMfC/view?usp=sharing
https://drive.google.com/file/d/14PeW0WYcnOjaZ2es72UjxFG11QTEhizb/view?usp=sharing

3.​ Add in/replace your yt-dlp arguments, and then the playlist/channel URL
you’re trying to download.

“–download-archive” is MANDATORY, or this script will keep
re-downloading videos.

​

4.​ Call the script from within the directory you want to run the script.

python "E:\yt-dlp Demonstration\Auto_yt-dlp_cookies_rotation_mkii.py"

If it works correctly, you will see “Starting auto-archiver” and then
“Running with profile:”

5.​ This script will loop infinitely, alternating between different browser profiles
as soon as a DRM, Sign In, or Video Unavailable error is detected, until all
of the videos are downloaded.

Currently the script doesn’t skip other cases like member’s only videos, leading
the script to loop infinitely. This will be fixed soon.

List of yt-dlp Blacklist Errors

Ever since 2024, using yt-dlp to download more than a few dozen files has
become an increasingly complicated and infuriating task.

Your results may vary, but at the least you should be aware of them and know
where to look to fix them.

“Sign In” Error

This is the most basic and common error you will see using yt-dlp. Since around
June 2024, Youtube can now temporarily blacklist your IP, and the cookies you're
using to download videos (cookies may just expire, I’m not sure).

If you use a VPN, you are effectively guaranteed to see this error at some point (if
not immediately, after downloading several videos), and must address it unless
you’re downloading only a few videos at a time. Sometimes, your VPN IP is
randomly blacklisted anyway without downloading anything, and you’ll need to use
cookies.

If you use your residential IP, you may only see this error after a long downloading
session, but you will see it at some point.

There are several reported solutions, but this is the ideal one for me:

●​ Use –cookies-from-browser “firefox:BROWSERPROFILENAME”. You must
have that firefox profile open, with a signed-in youtube window which you
have a tab refresher extension (scroll up).

You will still see this error once your cookies expire / or are blacklisted, but as
long as they’re refreshing automatically, this issue won’t hold you back. The next one
will.

“Video Unavailable” Error

Consider this a more severe blacklist. I have noticed this error after long
downloading sessions using the same –cookies-from-browser command.

Importantly, this will happen REGARDLESS of if you’re running a tab refresher.

There are only two main solutions I’ve seen:

●​ Switch to a new browser profile to use –browser-cookies from. This will always fix
the issue.

Ideally, you can use the Cookie Auto-Rotation script (scroll up) with
multiple firefox profiles open at once, so it can continually run your
command until it downloads all the videos. (If you notice your firefox profile
keeps getting a DRM protected error, you might have to stop using it and replace
it with a new one).

●​ Wait a few hours or a day or two until the blacklist expires (it always does,
to my knowledge).

“DRM Protected” Warning
(New as of March 2025)

This is another more severe blacklist, and it’s happening more regularly now. For
me, it's happening regularly starting April 17th 2025.

While this only acts like a warning, you NEED to consider it an error and
immediately terminate the program when you see it, otherwise you will download
files at 360p. This is why I made a script which can do this automatically.

While I don’t know if it’s VPN/proxy related, I do know that the list of solutions is even
lower.

There are only two main solutions I’ve seen:

DISCLAIMER FOR VIDEO EDITORS

yt-dlp does not download in a video editor compatible format by default; neither
do many video downloaders. You could blame this on Adobe and Sony Vegas for not

supporting modern codec and audio formats, like websites not supporting .webp image
formats.

But mainly blame google for creating formats nobody uses until they force them
upon you. They’re slowly phasing out h264 formats on all Youtube videos, which
has been reported to possibly destroy the video quality of old videos.

If you use DaVinci Resolve or CapCut, this doesn’t apply to you. If you’re a linux
user it probably won't apply to you. If you’re doing basic editing, it might be ideal to
just use that with yt-dlp videos, rather than continue reading.

yt-dlp will default to download with the VP9 video codec and OPUS audio. This will not
work in most video editors by default, specifically the OPUS audio format. There is
(almost) no way to download in a different format, plain and simple. Unless you want
360p resolution. Maybe there’s a way to change the embedded audio format but I’m
unaware, vp9 would still be a major problem even if OPUS audio was fixed.

There are ways to specify certain formats for videos and possibly get h264+AAC,
but this is not a universal application like not specifying the format usually is (to
my knowledge, could be wrong).

Also, if for whatever that format is not available on the video, you will get an error,
so it may not be a universally applicable command.

The MIRACLE Solution (Risky?)

Warning: This involves downloading a crack which (according to Windows Defender and
several other anti-viruses) is labelled as malware. MalwareBytes also detects various registry
edits after installing. So this may be retarded, but worth the risk to some people, if you are
willing to trust my intentions.

It is fairly common for real cracks to be false-flagged as malware, as a result of how genuine
cracks behave and/or for anti-viruses to scare people off from using them, and this is known in
piracy communities. It's also possible the registry edits, which are flagged, are a side effect of
how the crack works.

I am aware how reckless this seems to place here, but all I can say is it was out of
desperation, and because this is the only solution which worked perfectly for me. I’ve
used it for a few months now and it's worked fine. I want to be as transparent about it as
possible. I’m trying to share the best solutions to my problems.

So far, and it's been about 5 months, I’ve had no PC issues like further malware
detections on my PC. For me, it's fairly clear it's safe. For you, you might have to weigh
the risks.

Or use Davinci Resolve / Capcut, or re-encode every yt-dlp video.

——————————

For Adobe Premiere users who want to use yt-dlp, this is the one and only solution I
was able to find. And luckily it works perfectly. Minus the warnings and flags for
malware, you’d have to overlook that.

There happens to be a 3rd-party plugin (Influx) which allows Adobe Premiere to work
with VP9, MKV, and OPUS audio for which Adobe is too lazy and greedy to implement
like a worthwhile company would.

This plugin is a flat $90 fee, for something no one should have to pay to deal with.
Luckily a crack exists, but it's a hard sell.

I would advise you get a m0nkrus crack for Adobe Premiere 2025 as well,
the website is well regarded on large piracy subreddits like Pgen (for Adobe Creative
Cloud) which has over 200K members (edit: it just got banned, funnily enough, what
pieces of shit). I have installed Adobe 2023, Photoshop, and Adobe 2025 and it just
works instantly (minus the occasional adobe warning which you’d have to patch.)

Influx 1.5.3 for Adobe 2025 (Install at your own risk)

To verify a crack is safe you can usually run the file through VirusTotal for hidden
malware unless it is over a few gigabytes.

The .exe file which you run to install Influx is safe, as expected since it's the official
installer.

https://www.autokroma.com/Influx/Download
https://www.virustotal.com/gui/home/upload

There is a file “influx.exe” located in the “Autokroma Influx” directory. This file not only is
detected in half of VirusTotal’s vendors, it also will be detected by Windows Defender
when run on the directory.

On top of that, a required file to run the plugin “InfluxAdobeBase.dll” gives the
same detections.

If you don’t have this “influxAdobeBase.dll” file, it will show this:

Why this (Might) Be Safe

So why would you not just use your head and stop here? Some of it from desperation
and spite, but also because there’s a decent chance it is a false-positive (labelled as
malware to get people to fear it, which happens quite a bit). And also since
windows defender/malwarebytes haven’t detected anything else since I installed
this.

Originally I could only find a link on this mixed-reception crack site FileCR, but I asked
my friend about this who has more experience with cracks. He checked his private
crack community and found another link, which happened to look nearly identical to the
FileCR crack (with the same virus detections).

This is as close to reassurance that it’s a false positive as I can get, take it as you will. I
have nothing to gain by fabricating any of this, I was going to exclude this option here
until he helped calm my suspicions.

This version of the crack looks almost identical, except for the folder name and lack of a
password file.

(this is why you must only trust well-known cracks, or ones from reputable
communities)

MalwareBytes still finds several files and registry edits it labels as
Malware/Trojans, which are unrelated to the original 5 files for the plugin. It’s
possible these are normal for the crack.

If you want to be safe, you can just run malwarebytes, quarantine the files and
registry edits, and it will work as normal.

Quarantining the files doesn’t destroy the program. I’m not sure what this implies.

I have yet to confirm this wasn’t some malware I somehow had lying around on my PC
(less likely, but I will test it inside a virtual machine.)

Download: https://files.catbox.moe/uhqxrw.7z

Here is the original FileCR download, it doesn’t seem to be any different than the other
link, but I would personally advise against using this one because FileCR has mixed
reception on sites like reddit.

https://filecr.com/windows/aescripts-influx-for-after-effects/

(There are also older versions listed if you don’t want to use Adobe 2025, but it's a very
easy installer to use with the m0nkrus crack. Adobe 2025 also has AI transcription with
a plugin m0nkrus also offers.)

1.​ [FileCR] Download the correct version for Adobe.

If you have (or cracked) Adobe 2025, you can click “Direct Download” on the
right hand side of the page.

https://files.catbox.moe/uhqxrw.7z
https://filecr.com/windows/aescripts-influx-for-after-effects/

​

If you very well may see this error too. Crazy as it is, this may be another
false-positive.

​

If you didn’t use FileCR, this step is skipped.

2.​ Install Influx via the original installer, located inside the crack folder

3.​ Open this folder located in this directory

C:\Program Files\Adobe\Common\Plug-ins\7.0\MediaCore\Autokroma Influx

4.​ Replace the 5 files from the Influx crack directory into the official plugin’s
directory.

​

​

​

Given the crack works and it might be a false-positive, MalwareBytes finding all
these trojan.Agents and registry edits is worrying. As I warned, there’s still a
chance it's real malware. In my opinion it is worth saving 90$ to take this risk for
a bullshit problem nobody should have to pay to solve.

But, after removing all these potential malware files, somehow the program still
works (indicating the original plugin files aren’t exactly the problem). I haven’t
seen any new malware traces since installing it here.

There’s a chance some of this might be unrelated to this, as I haven’t run
MalwareBytes in awhile. But you can still see a few results related to Influx files,
not just the registry edits.

The Old Manual Solution (Definitely Safe, but Tedious)

If you’re not willing to install something detected as Malware (yes, it sucks we have to
do this):

You have to manually re-encode your videos to AVC (h264) format to import
into Sony Vegas (or Adobe if you didn’t install the crack). OPUS must also
be eliminated as the audio format (converted to .aac), but this happens
automatically.

Luckily, this is easy, but may be tedious and time consuming depending on
PC hardware. If you’re doing it consistently as a video editor, it will be even
worse.

1.​ Install FFmpeg Batch AV Converter (separate thing from FFmpeg.exe, way more
useful):

https://sourceforge.net/projects/ffmpeg-batch/files/FFBatch_AV_Converter_3.0.7
_64bit.exe/download

2.​ Drag the video file into the program.

3.​ Look at the bitrate from the top-right corner, where it says vp09 and opus. Here, it
says 389kb/s. Just remember whatever number it says.

4.​ Change the ‘parameters’ section to: -b:v (insert bitrate number + k)

https://sourceforge.net/projects/ffmpeg-batch/files/FFBatch_AV_Converter_3.0.7_64bit.exe/download
https://sourceforge.net/projects/ffmpeg-batch/files/FFBatch_AV_Converter_3.0.7_64bit.exe/download

5.​ Right click the video, and click encode. Check “Open on Completion” if you want
it to open the folder where the re-encoded video was made.

6.​ You now have a video-editor compatible video. You can do this for multiple files
at the same time, but they will have the same bitrate on all of them.

FFmpeg AV Batch Convert is also very useful for rapidly clipping segments of
videos using timestamps, this is covered more in my Easy Clipping document
(top of this document).

If you have the video file downloaded, like with yt-dlp, it's a very fast option
especially for finding relevant sections of videos you want to edit down later.

This is an extremely underrated technique for people who edit content,
like for clip channels. If I was a youtuber I would spread this info around
like gospel.

Paired with a super-fast video player like mpv, you can scrub through
hours of content in minutes, while still getting the gist of what’s being said,
and turn it into clips to edit down later.

Mass-Convert VP9 to AVC (Python Script)

The speed of this is, again, limited by your PC hardware. It’s no faster than FFmpeg
Batch Converter, it's just much more automated (works on any amount of files at
their specific maximum bitrates).

If you have more than a few files to re-encode (like a whole playlist or entire
channel), I have a script that can accomplish this for any amount of files.

(see: “Convert all VP9/OPUS Files into H264 (for video editing)” section)

You will have to install a python shell like IDLE to run the script, but it is generally quite
simple.

https://sourceforge.net/projects/mpv-player-windows/files/

Other Fixes for VP9 Bullshit?

Yes this is a tutorial and I’m using swears. Sincerely, fuck Google in every way possible.

If you’re in the minority of people who need to convert a video from VP9, and don’t use
Adobe Premiere (or want to avoid the above options), these are the other options I have
tried; they’re not perfect so I’d advise you use the other solutions as a fallback at least.

None of these can download over 1080p60 quality, only vp9 can do this. If you need
over 1080p, you have to either re-encode, or use the Adobe plugin.

Forcing a List of AVC Video Formats (Max 1080p60)

This is a command which uses a list of formats in descending order of quality, all the
way down to a fallback option, to

--format (305/266/304/264/299/137/298/136/135/134/133/160/bestvideo)+140

This is probably the ideal solution to this problem, if you’re unwilling to
install an Adobe plugin crack, or have no reason to try to download over
1080p videos.

Forcing Post-Processing Transcoding (Max 1080p60, No
Embedding Thumbnail)

yt-dlp has post-processing arguments which can transcode a video after downloading it,
but before the yt-dlp command is finished. This will be GPU-dependent.

These commands were generated by yt-dlp, so I’m not sure if it’s written correctly, But
the command does not work with --embed-thumbnail.

If using --embed-thumbnail, it will always show this error and won't be able to
merge the files:

With these minor limitations, it should be able to convert to AVC+aac.

Forcing Non-VP9 Downloads (Broken)

This yt-dlp command may force yt-dlp to pick video codecs other than vp9 and
OPUS audio.

-f "bestvideo[vcodec!*=vp9][vcodec!*=av01]+bestaudio[acodec^=mp4a]"

I have tested this once, and received an AV1 file with AAC audio which is ideal.

But I tried it on another video, and it downloaded in extremely low quality per usual
(since there were no better options according to yt-dlp, because google destroyed
them).

So this option is very inconsistent and you might as well not use it because it won’t
work all the time, and each time you use it you’d have to verify the video didn’t
download at 360p (unless the video’s max quality was).

Other Useful Commands

(the first two don't download videos)

●​ yt-dlp -U​
 ​ ​
(Updates the program; this is CRUCIAL especially nowadays as Youtube
continues changing their API).

●​ yt-dlp -F [URL]​ ​
(lists available formats for video, to use them type “yt-dlp -f [format number]”).

Example: yt-dlp -f 136+251 [URL]

(136 is a video format, 251 is an audio format)

​

●​ --download-archive [FILENAME].txt​
 ​ ​
(Saves urls of downloaded videos to a text file, so it never downloads them ​again).

Make sure to save your own yt-dlp template with the correct download archive
location. I normally use sticky notes on my PC for this, otherwise a Word
document.

Highly Recommended​

●​ -a [FILENAME].txt​
 ​ ​
(Downloads a list of URLs from a .txt file).​
 ​ ​
 ​

●​ --cookies C:/Users/[USER]/Downloads/cookies.txt​
 ​ ​
(Downloads age-restricted videos, or verifies identity as a non-bot).

Scroll down for instructions on how to use this command.

●​ --compat-options filename-sanitization​
 ​ ​
(Prevents yt-dlp from using alternate unicode characters when Windows blocks
them in filenames; they look unsightly to me, and often are incompatible with
certain websites).

Examples are * < > “ : / \ |

Recommended.

●​ -o "(%(upload_date)s) %(title)s [%(id)s]"

(Lists the upload date at the beginning of the filename (raw, in parenthesis): useful
for organizing large channels in chronological order).

●​ -o "[%(upload_date>%Y-%m-%d)s] %(title)s [%(id)s]"

(Lists the upload date at the beginning of the filename [separated by dashes, in
brackets]: useful for organizing large channels in chronological order).

Recommended, especially if you don’t save info.json files for later
reference.

Sorting by date can be very helpful for archivists.

●​ -o "%(uploader)s - %(title)s [%(id)s]"

(Lists the Channel Name at the beginning of the filename like this Channel Name -
Video Title [Video ID]: useful for sorting videos by channel name, like for music or
sorting into folders).

To use the cookies command, download your Youtube cookies file

1.​ Install this extension in Google Chrome / Brave: Get cookies.txt - Chrome Web
Store (google.com)​
 ​

2.​ Or Microsoft edge: Get cookies.txt - Microsoft Edge Addons​
 ​

3.​ Open the youtube homepage (while logged in with your account).​
 ​

4.​ Click the extension in top right, then click the “Export All Cookies” button.​
 ​

5.​ Copy everything in “youtube.com_cookies.txt” and paste into the “cookies.txt” file
the command uses. Or just rename the file cookies.txt​
 ​

https://chrome.google.com/webstore/detail/get-cookiestxt/bgaddhkoddajcdgocldbbfleckgcbcid?hl=en
https://chrome.google.com/webstore/detail/get-cookiestxt/bgaddhkoddajcdgocldbbfleckgcbcid?hl=en
https://microsoftedge.microsoft.com/addons/detail/get-cookiestxt/helleheikohejgehaknifdkcfcmceeip

6.​ Add the cookies command to your full yt-dlp command and make sure to have
the correct file path listed in the command.

For More Commands

Scroll down to “General Options” or Ctrl-F it on this page: https://github.com/yt-dlp/yt-dlp

SPECIAL TOOLS

All of these were vibe-coded with AI, but it doesn’t make them less useful/functional. It makes them easily customizable, and anyone can make them with enough prompt
context. You can easily alter any of these for your own use cases. AI is very good at basic scripts, almost too good.
But as soon as you start to have to troubleshoot, expect torture, ChatGPT for instance is pathetically bad at fixing it’s own errors even if explained correctly. It may take dozens
of hours to get a really complex script, even if it’s easy on paper.

Before trying any of these, you’ll need to:

●​ Have Python IDLE or a similar shell installed (I used IDLE so that’s what I’ll
describe). It’s really easy to set up and use for script kiddies like myself.

●​ Install GitBash (not required on linux) to install packages Python will use.
For any tool, the required packages will be given so you can run the script after
you install them.

●​ Learn some of the shortcuts to use them quickly.

https://github.com/yt-dlp/yt-dlp

For Python IDLE:

1.​ Install Python IDLE. With it you’ll be able to run .py script files. This will come
in handy very much.

​

2.​ Learn how to open/run Python scripts.

●​ Open them either by opening the Python IDLE shell and pressing
CTRL-O, then CTRL-C on the script in the folder (same as copying the
file), and pressing CTRL-V inside the File name box.

​ ​

​

●​ Or by setting IDLE.exe as the default program to open .py files. This is
more complicated than it should be; setting python.exe or pythonw.exe as
default will not open the script in IDLE if the file is double-clicked, at least
in my experience.

You’ll have to find the install directory of python, it should be inside a
similar folder to this:
C:\Program Files\Python310\Lib\idlelib

Find idle.bat.

https://www.python.org/downloads/

​

●​ Right click the script and Choose another app, click “More Apps” and
scroll until “Look for another app on this PC”. Make sure the box is
checked, then click and paste the location of idle.bat into the File name
box, using the same command as copying a file.
​

3.​ Open a script in IDLE just by double-clicking the .py file, and then press F5 on
the keyboard or select “Run Module” from the Run option on the toolbar.

​
​
​
For Gitbash:
​

1.​ Install GitBash (unless you’re on Linux). Then open the terminal by right clicking
in any folder and clicking “Open Git Bash here.”

​

​
​
​

2.​ To install any required packages, just run this command:

pip install [INSERT NAME OF PACKAGE(s)]

https://git-scm.com/downloads/win

24/7 Stream Archive Loops

There’s also a separate link to this earlier in the document, but this section will have much more detail.

It’s very easy to set up a looping script on Windows/Linux which will
automatically archives Youtube/Twitch streams of any channel, as well as from
other sites. It requires even less understanding of yt-dlp to use, since it just runs
out the box.

If you’re extra serious about this, you could set these up on a Debian Linux PC / server,
or a Raspberry Pi so you don't have to think about it, until you want to upload / use the
files.

●​ It also works for Youtube live chat, which can be archived on its own using (see:
“RENDER YT-DLP LIVE-CHAT” section)

●​ And it works for youtube channels themselves, to download the videos as soon
as they’re posted (if you archive comments, this will not save any).

Windows

1.​ Place the latest yt-dlp.exe file into your directory of choice (downloaded
from here).

You can also set yt-dlp.exe in your PATH, so it can be referenced anywhere from
your PC.

https://github.com/yt-dlp/yt-dlp/releases

Set the full directory where yt-dlp is located as a new PATH variable (which
you will continually update as needed).

​

2.​ Place ffmpeg.exe into your directory of choice (or add it to PATH). If finding
the ffmpeg.exe is complex, here’s a direct download. (don’t run it, like yt-dlp
it’s not an installer)

https://drive.google.com/file/d/1-z-RTp6mPfgA5qMRVlCd-2ymblUmoPVq/view?usp=sharing

3.​ Put both .exe’s in a folder, then save the section of text at the bottom
(starting with the @, scroll down a bit for that) to a text document .txt file IN
THAT FOLDER.

4.​ Then replace the filler text with the streamer you’re trying to archive.

Typically, you want to use the channel URL in this format

https://www.youtube.com/@IShowSpeed/live

This should work almost always, but if for some reason you see an error, you can use:
​
https://www.youtube.com/@IShowSpeed/streams

Or just the channel handle:

https://www.youtube.com/@IShowSpeed

​
Using the handle isn’t perfect either, since people change their channel handles from time
to time, breaking the loop.

Ideally, you will find the channel URL, which can be found in a json file when you try to
download the entire channel of a youtuber.

https://www.youtube.com/@IShowSpeed/live
https://www.youtube.com/@IShowSpeed/streams
https://www.youtube.com/@IShowSpeed

For example, for @IShowSpeed, the channel URL is:

https://www.youtube.com/channel/UCWsDFcIhY2DBi3GB5uykGXA

Then you can add the live suffix to it. This will work universally.
​
https://www.youtube.com/channel/UCWsDFcIhY2DBi3GB5uykGXA/live

​

5.​ Make sure file extensions are enabled in the view section, then rename the
.txt part of the file to .bat. This converts it.

https://www.youtube.com/channel/UCWsDFcIhY2DBi3GB5uykGXA
https://www.youtube.com/channel/UCWsDFcIhY2DBi3GB5uykGXA/live

6.​ Simply double-click and run it when you're trying to archive streams (which
can be 24/7 if your PC stays on). Done.

It will run in a loop until it finds a stream.

NOTE: yt-dlp will not save streams over 6 hours.

There is a hard-cap to the length of the livestream file (for some reason), so if they stream more
than 6 hours your file might be split in two if it doesn’t just end abruptly (and you’ll have to join
them with a program like FFmpeg Batch AV Convert).

^^Streamlink doesn’t have this issue, read further for info on that.

Windows .bat Loop Template

@echo off
:x
yt-dlp.exe --match-filter is_live --add-metadata --write-thumbnail --embed-thumbnail
--convert-thumbnail jpg --write-info-json --compat-options filename-sanitization
--download-archive done.txt --merge-output-format "mp4" [REPLACE WITH URL OF
LIVESTREAMER, THIS CAN BE YOUTUBE, TWITCH, ETC.]
timeout /t 20
goto x

Save this as a text file, and rename the file extension to .bat.

Warning: running multiple of these may increase your idle CPU core temperatures.

Even if the script takes up a very low CPU % Usage, I have noticed (on a powerful AMD Ryzen
9950x) that running only two of these increases my idle temperatures by 10°C (~50 → ~60)

I was running 8 at the time, and the temperatures were elevated by a whopping 20°C (~50 →
~70). I have proven this myself in my case beyond all reasonable doubt, but results may vary.

If you notice temperature elevation after running these scripts, you could:

●​ Increase the “timeout /t 10”, I don’t know if this works, I think I tested it.

●​ Run these scripts on a Raspberry Pi Mini-Computer, with a sizable microSD card
(like this one, not an affiliate link).

I myself have an entire linux PC just for running my archive scripts, which I access
remotely via FileZilla, or NoMachine remote desktop.

If you run multiple scripts, you might want to set up a FileZilla FTP server (easier than it
sounds) which you can access from your main PC and transfer files from, or just upload
them from there for convenience.

●​ Convert the script to another code language like Python; if you don’t know how, it
would probably be easy to do with AI (I will do it eventually).

Linux

The main distinction here is that .bat files will not run, and you will need to use .sh files
instead.

https://www.amazon.com/SAMSUNG-Smartphones-Nintendo-Switch-MB-ME1T0SA-AM/dp/B0CWPNR918/ref=sr_1_3?sr=8-3
https://filezilla-project.org/
https://www.nomachine.com/

Also, important to note, you must create your own .sh file on linux (just save the
template in a .txt file, and change the extension to .sh).
If you download a .sh file you made on windows, and send it to linux, it will have file
permission errors.

Also, yt-dlp.exe CANNOT be referenced, it must say “yt-dlp” in the .sh file as given in the
template below.

Linux .sh Loop Template

while true
do
yt-dlp --match-filter is_live --add-metadata --write-thumbnail --embed-thumbnail
--convert-thumbnail jpg --write-info-json --compat-options filename-sanitization
--download-archive done.txt --merge-output-format "mp4" [REPLACE WITH URL OF
LIVESTREAMER, THIS CAN BE YOUTUBE, TWITCH, ETC.]
 sleep 20
done

Save this as a text file, and rename the file extension to .sh.

The Problem with Twitch Vods

Twitch automatically embeds ads into most streams, and while you can use yt-dlp to
archive Twitch streamers, it is not ideal for a few reasons:

●​ Twitch vods with ads enabled will have “Commercial Break in Progress”
pop ups, which last for the length of the ad, most of the time. (Not all
streamers include ads).

●​ These ads are embedded into the stream vod that yt-dlp creates on your
PC.

●​ If an ad happens to be at the start of the yt-dlp vod which is downloaded, it
will completely ruin the audio track; causing audio glitching &
lower-pitched audio for the entire vod (which cannot be fixed by re-encoding
it, but that may be a better option than leaving it raw).

Yt-dlp does not have a way to evade these embedded Twitch ads, so unless
you’re willing to deal with those issues, you’ll need to use another program.

Streamlink

This is the ideal program to use with Twitch streams, specifically for stream
loops. It avoids all the main issues with using yt-dlp for Twitch.

Streamlink loops will be in a .sh format, meaning you must download GitBash to operate
them on Windows (see “SPECIAL TOOLS” section).

Streamlink .sh Loop Template

while true
do
 date=$(date '+%Y-%m-%d %H;%M;%S')

 streamlink "--force-progress" https://www.twitch.tv/[INSERT CHANNEL] 1080p60
--twitch-reexec-on-ad "-o [INSERT CHANNEL NAME] (live) {time:%Y-s%m-%d
%H%M%S} [{id}].mp4"

 echo "Tried $x times"
 x=$(($x + 1))
 sleep 20
done

Just replace the whole Twitch URL with the streamer you choose, and add their
name to the filename output format.

●​ If they stream at a lower resolution than 1080p60, you can specify it like
with 720p60.

https://www.twitch.tv/[INSERT

●​ Or you can type “best” and it will typically choose the best format (but you’d want
to ensure it does, it may bug out and choose a different format nowadays).

You can also reference yt-dlp within the streamlink script, to acquire .info.json and thumbnail files
for the vod. Of course, either have yt-dlp.exe in the folder, or in your PATH.

yt-dlp --write-info-json --skip-download https://twitch.tv/https://www.twitch.tv/[INSERT CHANNEL] &&
streamlink….

^^ The yt-dlp command comes before the streamlink one, and you must have –skip-download so
it avoids using yt-dlp to download the vod.

Save this as a text file, and rename the file extension to .sh. Then install
streamlink.

Main Method (TTVLOL Re-exec)

For this example, I will be providing an older version of the program for compatibility, as
someone who tested this wasn’t able to have it work with a newer version (your results
may vary; if you try a newer version of streamlink, you have to find a newer Twitch.py
file).

1.​ Install Streamlink (version 6.0.0)

https://github.com/streamlink/windows-builds/releases/tag/6.0.0-1

https://www.twitch.tv/[INSERT
https://github.com/streamlink/windows-builds/releases/tag/6.0.0-1
https://github.com/streamlink/windows-builds/releases/tag/6.0.0-1

​

2.​ Place your streamlink looping script into the “bin” folder created by

streamlink (which contains streamlink.exe).

​

3.​ Download the Twitch TTVLOL replacement for twitch.py.

I have included the exact file for streamlink version 6.0.0:

https://drive.google.com/file/d/1CfKVNLjlpMoWzKdPkYJ5BIpNEuZww35B

4.​ Place the new twitch.py into this directory, and replace the current one:

https://github.com/2bc4/streamlink-ttvlol/releases
https://drive.google.com/file/d/1CfKVNLjlpMoWzKdPkYJ5BIpNEuZww35B

[[Folder Directory]]/pkgs/streamlink/plugins/twitch.py

5.​ Run your looping script from the “bin” directory. Probably create a shortcut
to open it elsewhere.

Here is a start to finish tutorial to set streamlink up. 2 Minute long
video

 Streamlink TTVLOL Tutorial.mp4

https://drive.google.com/file/d/1R8EV6SsjWpzX2X1DYNPhKOlaWFCn86m4/view?usp=sharing

If you still get ads, even with a newer version (if you want to try that option), you will
have to use the Oauth token method below.

Twitch Turbo OAuth Method (most reliable)

If you happen to pay for Twitch turbo, or know someone that does, this will guarantee
you can download any twitch streams without ads.

It’s non-intrusive to acquire these tokens, and nothing can be done with them besides
verifying your identity to Twitch’s API, so I usually ask other people for Oauth tokens, and
when they expire I can just ask them to get a new one for me.

All you have to do is be logged into the Twitch account with Twitch Turbo (on PC, for
this guide it will be in Chrome/Brave browsers), and find it by inspecting element.

Then just copy the auth-token line within the cookies. Nothing else.

 Oauth Acquisition.mp4

https://drive.google.com/file/d/1sQV4Gp_zzTsX6cCNxwG9XbG3WafmY5Sc/view?usp=sharing

The person who obtained the Oauth must NOT log out of their account where they
obtained it (like a browser), otherwise the Oauth will become invalid, and they’ll have to
find another one.

An Oauth might look like this, this is a scrambled example:

r4mkfayczgv9qs2aizo1e31nhvw760

To use this, add this argument to your streamlink .sh loop

"--twitch-api-header=Authorization=OAuth [INSERT OAUTH TOKEN]"

Streamlink Oauth .sh Loop Template

while true
do
 date=$(date '+%Y-%m-%d %H;%M;%S')

 streamlink "--force-progress" "--twitch-api-header=Authorization=OAuth [INSERT
OAUTH TOKEN]" https://www.twitch.tv/[INSERT CHANNEL] 1080p60 "-o [INSERT
CHANNEL NAME] (live) {time:%Y-s%m-%d %H%M%S} [{id}].mp4"

 echo "Tried $x times"
 x=$(($x + 1))
 sleep 20
done

If the Oauth expires, either because Twitch Turbo was cancelled/not paid for, or most
notably, the person logged out of their twitch account where the Oauth was obtained,
you will have to find another one, but it only takes a minute to find.

This is what the error looks like: it’s not readily apparent this is what it means.

https://www.twitch.tv/[INSERT

Kick Streams

Kick streams can have more issues when downloaded with yt-dlp stream loops, but they
are manageable.

This is not universally the case, as my friend has this work completely fine. I used to be
unable to get it to work on linux, despite not using a VPN. But all you have to do is
install curl-cffi.

In my case, it would:

●​ Will typically give this error:

While this has been patched by yt-dlp before, I’ve noticed this error acutely, and they may have a
mechanism to block certain IPs, because connecting to NordVPN actually fixed my issue in that case
(adding cookies with a Kick account logged in did not work). But other times, the VPN makes no difference
(such as on my linux PC).

●​ Will split the entire stream into hundreds/thousands of files which cannot
be joined practically, making this entirely useless.

To Fix the 403 Forbidden Errors:

On linux, just paste this command:

pip install curl-cffi

This immediately fixed the 403 forbidden error on my end.

You can also try these other options if needed:

●​ Update yt-dlp. This fixed it for me at least one time
●​ --cookies-from-browser firefox (logged into a Kick account)
●​ --user-agent "[USERAGENTSTRING]"

This can be used in conjunction with your --cookies-from-browser
command to include more info to pass checks.
Find your UserAgentString:
https://whatismybrowser.com/detect/what-is-my-user-agent/

To deal with the split stream issues of yt-dlp (which you may want to avoid
the risk of entirely), I’ve had a new script coded in which yt-dlp can ‘pipe’
the m3u8 url (from the kick stream) to send into streamlink. Streamlink will
then download the vod with the format command it’s given.
The script loops at a set interval of your choosing.

Streamlink is not coded to work with kick.com directly (rather it finds the m3u8 url on
the backend of kick and then uses that to download the stream), so this uses the best
functions of both programs for this.

Kick Python-yt-dlp-Streamlink Loop Template

●​ This script requires a python shell (like IDLE), yt-dlp, and streamlink from
previous steps.

●​ You must have yt-dlp.exe and streamlink.exe in your PATH.
If you haven’t set them up, see the “Set yt-dlp/ffmpeg to be Accessible
Anywhere” section at the beginning. It’s always best to have yt-dlp, ffmpeg,
and streamlink all listed in your environmental variables.

https://whatismybrowser.com/detect/what-is-my-user-agent/
http://kick.com

You can also download Kick vods after the fact, with the links to the vods, just
like any other videos.

RENDER YT-DLP JSONS AS A FAKE YOUTUBE PAGE
(v4.17.8)

This is the most unique, and complex, script I’ve generated so far.
The best feature is being able to sort comments by Most Likes, Most Replies, and
Longest Length, and fully-simulate a youtube video page, with embedded audio and
thumbnails all in a standalone file.

It allows you to actually visualize what the .info.json files store from downloaded
Youtube videos. Without needing the video itself, or anything else for that matter (once
the HTML file is created). Though I highly recommend including thumbnails, and channel uploader images,
in the same directory you’re running this script (all jsons, all thumbnails, and a single channel pfp metadata file in one
folder).

Most useful for archiving deleted videos/terminated channels that you proactively
backed up. For a more detailed guide, make sure to read the comment block at the
top of the script.

Python Script Download

Render YouTube Comments as an HTML Webpage v4.17.8.py

https://drive.google.com/file/d/1XohTqR7tLAfh4T69VRaNsYEmONXD9b_b

Since Version 3.8.8, a bunch of UI and User Experience improvements have been made. Audio and
thumbnails and uploader images can be embedded, and a dark mode toggle was added. This took much
longer than you’d expect; AI is not fun to troubleshoot with when you don’t know any web developers.

The script takes a directory full of yt-dlp JSON files (ideally with comments written) and
makes HTML versions out of most of the unique data contained inside.

Audio and thumbnails, when containing the yt-dlp formatting for filenames, will be
embedded as well if provided in the same directory for each .info.json (using base64).

It Features:

●​ A fully-functional comment section, with some unique features not
available on YouTube. This is not replicated by the closest alternative, the Wayback
Machine. And Raw yt-dlp jsons may contain comments, but are not enough.

●​ 4 Unique ways to sort comments (Chronological order/‘Top’ not included,
dependent on info only youtube owns), as well as an “Invert” button to flip
results for large files.

●​ Various buttons to copy uploader/video info, download embedded

audio/thumbnails, download profile pictures, etc.

●​ A fully-functional audio player, quite similar to Youtube with similar
toolbars and keyboard shortcuts. Accomplished via base64 HTML
embedding. Audio can be boosted by right-clicking the mute button.

●​ Various links to open relevant Youtube links (video url, channel url,
commenter URL and/or channel handle).

●​ A dark mode toggle, and links to this document, a related one and the
script itself on Pastebin.

Three Minor Limitations

1.​ Comments AND replies cannot be sorted chronologically. Unfortunately
.info.jsons files don’t store comment timestamps accurately for some reason –
likely Youtube’s proprietary system, so they don’t convert to UTC time correctly to
be sorted. Sometimes they convert to the correct date on the comments, but this
is inconsistent between jsons, and no matter what the UTC time is always
00:00:00. So I scrapped showing timestamps entirely for comments.

2.​ Uploader profile pictures are not guaranteed to display, because the links are
not stored in the JSON files unless the uploader made a comment/reply on their
own video (this is why commenters have profile pictures, and you can open them
in a new tab).

3.​ Video files cannot be embedded into the HTML.

Previously, thumbnails/audio wasn’t embedded, nor uploader profile pics, but base64
has made this possible and very easy to accomplish at the scale of hundreds of
thousands, when you use the appropriate yt-dlp arguments.

Video files wouldn’t work due to base64 limitations. Even if it did, only
smaller videos would work well. And having HTML files in hundreds of mb
would get messy, playback slowly or break, and be impractical to archive at
a grand scale.
If the video still exists on youtube, you can just click on the open in new tab button, or
manually play the video file often included alongside the HTML for archival.

I can think of two best use-cases for this

●​ You want to get more info on individual videos, such as unique comment sorting
(Most Likes, Most Replies, Longest Length, Alphabetically) or tags/categories
and other info.

Or you just like the idea of viewing a fake youtube HTML page.
(You can get the same info retrieved in mass across hundreds of videos with this
script, but it won’t visualize, and it doesn’t save/sort comments).

●​ You proactively archive channels which may get terminated in the future, and
want to simulate what the video looks like if/when that ever happens. So you can
archive a video, with an HTML file, for the video to simulate its main
elements, asides from the actual video playback (which is a minor
downside).

This is objectively superior to The Wayback Machine for two reasons:

1.​ Wayback Machine doesn’t archive comments correctly (ever), and sorting
wouldn’t work anyway if it did. Although, this script can't sort by top
comment/newest; this effectively isn't possible anyway with Youtube’s
system.

2.​ Not every single video gets a snapshot stored on the site. You can create
json files for every video on a youtube channel without even downloading
the videos, and simulate the comments.

​

I archive some controversial Youtube channels for preservation, so if they get
terminated, I can simulate what the page looked like and view the comments,
and potentially play the audio on its own.

The same goes for video game music channels which are often maliciously
flagged by Nintendo, which need to be preserved at scale and mirrored, but I
digress.

I’ll start uploading HTML files with all my Internet Archive posts, as well as the jsons and
thumbnails; that’s one potential use I recommend. Google Drive (free 15gb) is decent for huge
amounts of HTML files, but only if audio isn’t embedded, then Internet Archive is best.

If you just want metadata files on an entire channel’s videos, run this
command.
This is how you can make these WITHOUT downloading an entire channel’s
actual videos.

yt-dlp --skip-download --write-info-json --write-comments
<<CHANNEL/PLAYLIST URL>>

●​ If you only want videos, not shorts or live streams from a channel, click into their videos
tab and then copy the URL like this: https://www.youtube.com/@channelname/videos

●​ It should also include a file with the channel name as the title, that has public channel

metadata like subscribers and the about section. It isn’t relevant to this script but has
some unique info.

RENDER YT-DLP LIVE-CHAT JSONS AS A FAKE CHAT PAGE

This is a lesser-known feature of YT-DLP. You can archive a chat for any livestream,
which itself can be automated within a looping .bat or .sh that runs on a youtube
channel’s live stream tab (to auto-archive all livestream chats).

Here is a live_chat .bat file which runs on Windows, you can insert the handle of
the youtuber who you want to automatically archive the stream chats of.

It will automatically save the live chats, which you can use later.

This script, much like the other “RENDER YT-DLP JSONS” script, will render all of
the useful information stored inside the .livechat.json file into a functional
representation of the stream chat.

Download

Render YouTube Livechat as an HTML Webpage MkII.py

There are some limitations

1.​ Channel profile pictures are dependent on the original person not changing
their profile picture, or deleting/losing their account. Old HTML live chats will
likely contain several “N/A” alt texts as placeholders.
There is no way to make this work, besides screen recording, since livechat files
don’t create their own thumbnail files stored within the json. It relies on the
original google URL.

2.​ Channel profiles cannot be opened in a new tab, like with the .info.json
HTML script. This is simply due to .live_chat.json files not saving uploader
handles or channel IDs of chat users.

https://drive.google.com/file/d/1Z9qYLmWNuFZi9BDQoPkuEOSI0Cql2sHS/view?usp=sharing
https://drive.google.com/file/d/1o76XlnH6YAx2opsnJNs8_wdICmxHPiY7
https://drive.google.com/file/d/1o76XlnH6YAx2opsnJNs8_wdICmxHPiY7

You’d have to backtrace their channel name to find the original on youtube,
which is quite difficult given Youtube’s shoddy search engine.

3.​ There are only a few data points per live_chat comment:
Thumbnail URL, author name (no links), timestamp (relative to the stream, not a
universal time), and message text.

INSTANT METADATA VISUALIZATION HACK

(if you use the script, you’d probably want to delete the dislike column, unless you have old pre-2022 json files)

yt-dlp has the ability to export all public metadata from any youtube video. Views,
likes, upload date, tags, description and more.

This can be done using the “--write-info-json” command. I would recommend using
“--write-comments” too, it saves all of them. Very few archivists use this, and they miss the
chance to save comments of a (later on) terminated Youtube channel.

If you just want metadata files on an entire channel’s videos, run this
command.
This is how you can make these WITHOUT downloading an entire channel’s
actual videos.

yt-dlp --skip-download --write-info-json --write-comments
<<CHANNEL/PLAYLIST URL>>

●​ If you only want videos, without including shorts or live streams from a channel, click into
their videos tab and then copy the URL like this:
https://www.youtube.com/@channelname/videos

●​ It should also include a file with the channel name as the title, that has public channel

metadata like subscribers and the about section. It isn’t relevant to this script but has
some unique info.

————

Designed with GPT-4o, this script takes all the json metadata files for a channel,
and converts them into a convenient Excel spreadsheet.
If you don’t have excel, it's not hard to get. I have a guide in the script, and later on.

If you’re on linux, here’s an alternate script for .ods files [insert here]

Using this script you can see and organize the most popular / liked videos, when it was
posted, tags, descriptions and more.

Download

Extract All Metadata from Json Files in Directory to Spreadsheet.py

https://drive.google.com/file/d/1gUUjWWYNIucIspHn_htgGRJ93u_qrked/view?usp=sharing
https://drive.google.com/file/d/1gUUjWWYNIucIspHn_htgGRJ93u_qrked

Requirements to Use (just follow the steps below):

●​ Folder with all the .json files you want to run on.
●​ Python IDLE to run the program.
●​ GitBash to install “pandas” and “openpyxl” packages, only takes a single

command to do once gitbash is installed. Really simple.
●​ Excel, Libreoffice, or OnlyOffice to open .xlsx files. I highly recommend just

running an Office activation script, it only takes a minute. Or if you’re on linux,
you can use OpenOffice or Libreoffice.

1.​ Install Python IDLE. With it you’ll be able to run .py files.

2.​ Install GitBash (unless you’re on Linux). Then open the terminal by right clicking
in any folder and clicking “Open Git Bash here.”

https://www.python.org/downloads/
https://git-scm.com/downloads/win

3.​ Run this command and hit enter to install the necessary packages to use the
script. Without these it can’t function.

pip install pandas openpyxl

4.​ Install (preferably) Microsoft Office. You can use these activation scripts. Don’t
take my word for it, they’re trusted widely on forums like reddit.

●​ Setup the base Office program. You’ll get Word, Excel, Publisher, Access,
Outlook, and OneNote.
https://www.microsoft.com/en-us/microsoft-365/download-office#download

●​ Open Windows Powershell

●​ Paste this command and hit enter:
irm https://get.activated.win | iex

​ ​
●​ Type the number 2 in the new window to activate office, let it run and

you’re done, excel will work.

https://massgrave.dev/
https://www.microsoft.com/en-us/microsoft-365/download-office#download

5.​ Download the script from here.
https://drive.google.com/file/d/1gUUjWWYNIucIspHn_htgGRJ93u_qrked/view?us
p=sharing
​

●​ Open it either by opening the Python IDLE shell and pressing CTRL-O,
then CTRL-C on the script in the folder (same as copying the file), and
pressing CTRL-V inside the File name box.

●​ Or by setting IDLE.exe as the default program to open .py files. This is
more complicated than it should be; setting python.exe or pythonw.exe as
default will not open the script in IDLE if the file is double-clicked, at least
in my experience.

You’ll have to find the install directory of python, it should be inside a
similar folder to this:
C:\Program Files\Python310\Lib\idlelib

https://drive.google.com/file/d/1gUUjWWYNIucIspHn_htgGRJ93u_qrked/view?usp=sharing
https://drive.google.com/file/d/1gUUjWWYNIucIspHn_htgGRJ93u_qrked/view?usp=sharing

Find idle.bat.

●​ Right click the script and Choose another app, click “More Apps” and
scroll until “Look for another app on this PC”. Make sure the box is
checked, then click and paste the location of idle.bat into the File name
box, using the same command as copying a file.

6.​ Open the script in IDLE just by double-clicking, press F5 on the keyboard or
select “Run Module” from the Run option on the toolbar. Then copy the directory
you have all of the .info.json files downloaded with yt-dlp.

7.​ Done. The spreadsheet is saved in the same folder as the jsons.

Tips

●​ Delete the dislikes column, it only works if you have json files you
downloaded prior to 2022. On the homepage: Cells -> Delete ->
Delete Sheet Columns.
I only coded it in because I have some left from before Youtube removed
the dislike button. There might be some way to program ‘Return Youtube
Dislike’ functionality into yt-dlp, I have no idea, but I doubt it.

●​ Each column has a small arrow at the bottom right of the top cell, this
allows you to sort the rows Alphabetically, or numerically if applicable.

https://chromewebstore.google.com/detail/return-youtube-dislike/gebbhagfogifgggkldgodflihgfeippi?hl=en&pli=1
https://chromewebstore.google.com/detail/return-youtube-dislike/gebbhagfogifgggkldgodflihgfeippi?hl=en&pli=1

●​ Double-click between the columns/rows to expand them to fit the longest
string of text. Or drag them to fit how you’d like.

●​ If you want to change the formatting of the spreadsheet, go ahead. This
can be done inside the script itself. You can just drag the script into an AI
like Claude 3.5, and ask it to change formatting of the columns or header
rows. Results may vary but AI excels at simple coding like this.

THE VIDEO AUTOCLIPPER

Ever wanted to automatically make up to thousands of clips out of any words
someone said in a video (or thousands of videos)? Probably not, but it’s very
overpowered for making compilation videos.

I figured out a way to do it pretty easily; all you have to do is edit the clips together in a
video editor at the end.

●​ Remember, you’ll need the video files you downloaded with YT-DLP to do this, and
plenty of free space. You’ll probably want a few hundred GBs of free space if
you’re doing a large Youtube channel (mainly to download the channel; making
clips will be relatively low on space).

●​ Also you must install Python, OpenAI Whisper, and GitBash (on Windows) to
download a few packages the scripts will use.

●​ You’ll want to know how to use Python IDLE or another shell to run .py scripts,
just follow the guide under the “SPECIAL TOOLS” section.

This is a workflow I came up with by accident messing around with ChatGPT. There are
4 relatively simple scripts you’ll run in this process, and it can be done in only about 6
steps on your end. Once you get the hang of it, you can make mega-compilations
of anything someone said in their videos.

You must have around 8GB of graphics card VRAM to use OpenAI Whisper, and in this
case it's the “Small” model. I haven’t figured out how to get the Medium model working
in Python yet; if you set it to medium the script will freeze while running.

There is one optional script you’ll probably want to download to use this with
YT-DLP:

●​ (The Mass ‘Re-encode to h.264/AAC’ Script)

This is crucial if you’re manually editing videos out of the clips, UNLESS you edit
with DaVinci Resolve. Adobe Premiere and Sony Vegas still don’t support VP9
video formats, or OPUS audio, which is the YT-DLP default.

There are 4 scripts you’ll need to download to use this:

●​ (The OpenAI Whisper Transcription Script)

You MUST install OpenAI Whisper first, use this video.

●​ (The Transcription ‘Cleaner’ Script)

●​ (The Word Detector Script)

●​ (The FFmpeg ‘AutoClipper’ Script)

https://drive.google.com/file/d/1t9XWsfznf_GK1LO_IitGRA_ivW7qvAkC/view?usp=sharing
https://drive.google.com/file/d/1ldvhAmeNDhgH-DetIcwRUwAI7TcMn06u/view?usp=sharing
https://youtu.be/ABFqbY_rmEk
https://drive.google.com/file/d/1qhDEgcKGbMajWh1kL-xhEQQ2miSY7V7k/view?usp=sharing
https://drive.google.com/file/d/1ZpL4H5IzY1t8rrYuswMOsrmIwGaulfwh/view?usp=sharing
https://drive.google.com/file/d/1WuApllPx4ELiBZJvQsSxzbYa7BKhG3g9/view?usp=sharing

I highly recommend that if you're making compilations of clips using this
autoclipper, you download your yt-dlp videos with the upload date in front
of the filename.

This is particularly useful if you want the compilations to be in
chronological order.
It’s very easy to set it up this way, because the transcripts are already
timestamped in order, so even clips from the same video/day will be in order.

-o "[%(upload_date>%Y-%m-%d)s] %(title)s [%(id)s]"
​
​
​

1.​ Install the necessary packages the scripts will need, this can be easily done
through GitBash (follow guide under the “SPECIAL TOOLS” section).

pip install whisper json shutil

Hit enter and wait.

2.​ Transcribe video files you downloaded with yt-dlp. This can be done with this
Python script: follow these instructions to install OpenAI whisper on your
computer, it’s surprisingly simple.
I also had different functions coded where you can choose whether to have subtitle files
made alongside the .txt file transcription.

https://youtu.be/ABFqbY_rmEk

You might want to re-encode all the VP9/OPUS audio files you downloaded
with yt-dlp, provided you edit with Adobe Premiere/Sony Vegas, before
transcribing the files (scroll down to step 5). Or you can do it every time you
have the clips generated, or just edit with another program like DaVinci Resolve.

​ ​
●​ Make sure to specify the language (unless your videos are in varying

languages), or it’ll have to guess what language the video is and it can
misdetect about 10% of the time, which is why it will output the language
in the front of the filename if you don’t specify the language.

●​ Make sure to type yes on this option “Include timestamps?

(yes/no):”, otherwise this won’t work. You are only going to use .txt
transcription files, so unless you want subtitles, just type no two
times after that.

You will be left with .txt files, with timestamps, with the identical filename as the
.mp4 files (don’t rename the mp4 files, or txt files after running this script, or the
Autoclipper won’t function).

3.​ Run the ‘Cleaner’ Script on the directory with the transcript files you

generated.

This script will remove duplicate lines in the transcription generated by
accident (most common with videos that have gaps in audio, and moments
of silence; especially livestreams).

https://drive.google.com/file/d/1qhDEgcKGbMajWh1kL-xhEQQ2miSY7V7k/view?usp=sharing

This is the main vulnerability of this method. OpenAI Whisper can sometimes
completely ruin transcripts because of silence; there might be a solution but I
haven’t looked into it yet. I would wager this ‘Auto-Clipping’ method is ~95%
Accurate, so almost perfect.

Check the filesize of your transcriptions after running this script, sometimes one
or two will be only a few KB, effectively useless. I’d mark them elsewhere, or just
delete because re-running it might not work.

You might want to remove the “[Cleaned]” part from the new files (after deleting
the old ones, because they’re inferior); you can do this easily and by the
hundreds by downloading ReNamer and setting a “Remove” rule for “ [Cleaned]”.

4.​ Run the Detections Script on the folder where you have the .txt
transcription files.
The detection script searches for exact matches; you can search single
word or exact quotes.

Scroll down to the end of the Word Detector script to change it.

You will include a comma between each additional word or series of words you’re
detecting: if you only want one, then there will be no comma.

https://www.den4b.com/download/renamer/installer
https://drive.google.com/file/d/1ZpL4H5IzY1t8rrYuswMOsrmIwGaulfwh/view?usp=sharing

Then run the script using F5, copy/paste the folder directory with your
Transcription files, and you’ll get .txt files with [Detections] in the filename.
They’ll only have the sentence where the word was detected.

5.​ Copy the directories you have your .mp4 files into the “Clip Stream Vods BUFFER,

Transcript Timestamps, in TONS of Directories 20” script. The transcript files will connect
back to your .mp4 files using these directories.

All you have to do is click on the file path on the directory and paste the output
between the quotation marks.

Be very careful to make sure there is no extra comma after the final directory you include; a
comma must be included if you use more than one directory (you can use up to hundreds). If you
only use one directory, remove the first r"insert directory file path", which includes the
comma at the end.

Run the FFmpeg Autoclipper Script on the directory where you have the
Transcript Detection files.

https://drive.google.com/file/d/1WuApllPx4ELiBZJvQsSxzbYa7BKhG3g9/view?usp=sharing

By default the script searches for .mp4 files in the directories you provide, but
you can add more filetypes to be searched for.

You will be given the option to set the ‘buffer period’ for each clip; this
refers to the amount of extra time surrounding the timestamp that the
detection file used.

●​ If your detection file has 00:01:15:000 - 00:02:15:000, and you set the buffer
period for 60 seconds, the clip will start 60 seconds earlier on both sides at
00:00:15:000 - 00:03:15:000.
This is very useful for different tasks, and making sure clips have enough context.

●​ You MUST have some level of a buffer period, otherwise the autoclipper will

ruin many clips and not include enough context. I’d always recommend at
least 5 seconds.

This makes it effectively impossible to not have to do at least some editing
at the end, but that’s an issue with video keyframes, and cannot be solved.
If you’re clipping something where you want a full conversation, a higher buffer period is
ideal.

Just wait depending on how many clips you’re making, and you’ll get .mp4 files
created for every video you clipped. Might take hours depending on the bitrate of
the video files, buffer period, power of your CPU/GPU, and number of individual
detections per .txt file.
By the way, each line in the detection file gets clipped, so make sure to not use
the original OpenAI transcript files, or it will make hundreds/thousands of clips.

6.​ If you haven’t already converted the video files you downloaded with yt-dlp
to h.264/AAC, then you’ll need to do it before you start editing (unless you
use DaVinci Resolve to edit). If you use Adobe Premiere or Sony Vegas this
is mandatory, or the video files are un-editable.

Mass-convert the VP9/OPUS files into h.264/AAC using the “RE-ENCODE ALL OPUS MP4

IN A DIRECTORY” script.
​
​

7.​ (Optional, recommended workflow for Adobe Premiere)
[If you don’t have it, just find a reputable crack so you don’t have to pay;
https://www.reddit.com/r/GenP]. M0nkrus Adobe cracks are well known on Reddit and
very simple to install.

If you’re editing these clips into a single video in Adobe, this can be
automated by importing all of the files at once into a Bin in the project
panel.

●​ Back in the directory with your clip files, sort the folder by filetype to
separate the .mp4s from the .txt files in the directory, move them to a
new one, and re-sort them by Name.

●​ Drag all of the clip files into the bin; not the timeline.

●​ CTRL-A to select them all, make sure there is an empty timeline
already existing (otherwise the next selection is greyed out), and
then select “Automate to Sequence.”

https://drive.google.com/file/d/1t9XWsfznf_GK1LO_IitGRA_ivW7qvAkC/view?usp=sharing
https://drive.google.com/file/d/1t9XWsfznf_GK1LO_IitGRA_ivW7qvAkC/view?usp=sharing
https://www.reddit.com/r/GenP

●​ Set the ordering as “Sort Order” if you have the already organized
chronologically (if they’re auto-dated).

Every clip will be in order instantly, so all you have to do next is edit
the clips down and export.

●​ If you’re editing clips to be watchable (i.e. you used any sort of buffer
period in the autoclipper script), just zoom in and use the “C” key to trim
each clip individually and delete the filler surrounding the clip.

Tip: Press the “L” Key and then Multiple “Shift+L” presses to
increase preview playback speed (two L presses is a little too quick,
so one L and then 4-5 Shift-L’s is ideal). There is no other way to
speed up the speed like this in Premiere, without editing the actual
clip.

Incredibly useful when having to sit through each clip to find new
start and end times.

●​ Finally, while you’re editing the clips down, to re-join them into a unified
timeline just select them all, click Sequence on the Menu, and “Close
Gap.”

​ ​
​ ​

Notes

Theoretically, having 0 buffer period would let you have the exact
timestamp for the sentence the word is contained in, but this doesn’t work
in practice due to FFmpeg having issues with trimming off timestamps.
You’ll want at least 4 seconds for a buffer period, or a clip could end
up with a shorter clip than the actual timestamp it should’ve clipped.

There might be some method to ‘intelligently’ trim the clips automatically
using some external script, who knows, but you’ll always have to do a little
editing for each clip depending on your buffer period, unless you’re okay
with some gaps.

I’ve explored this concept a little with AI, but it seems it wouldn’t
work due to OpenAI Whisper having entire sentences with timestamp
ranges. Specifically, it uses “sentence-level timestamps” instead of
“word-level timestamps.”

You actually can set word-level timestamps as a function in OpenAI
Whisper. So with a modified script you could have detections for an
exact word with exact timestamps.

But again, you have to have a buffer period, which makes it not much
of an improvement over the existing script. Effectively, all that would
change is it’s clipping around a word instead of a whole sentence,
meaning you’d need a larger buffer period. No advantage.

If this concept even worked, it would also mess up compatibility with more
than a single word because words won’t be right next to each other
anymore, instead being on separate lines.

The reason a buffer period is required is because of ‘keyframes’ in videos.
All video files have keyframes and FFmpeg cannot avoid this.

You cannot clip less than 5 seconds using FFmpeg (vast majority of the time), so
if you’re trying to clip exact words, it can’t be done using this method.

https://stackoverflow.com/questions/73822353/how-can-i-get-word-level-timestamps-in-openais-whisper-asr

SPLIT VIDEO EVENLY INTO TWO (Superior to Re-Rendering)

Remove IPs From yt-dlp info.jsons

This script will run on a directory of your choosing, and remove all instances of
IP addresses stored in .json files made by YT-DLP.

Download

Delete IPs in Directory of Jsons (newest5.24.25).py

This was mentioned earlier, but I don’t advise uploading the .info.json files anywhere
without either using a VPN, or running this script to erase them.

https://drive.google.com/file/d/1rFMM-AcPW5C_aW-TshcFZnwGTBdaKApw

Transcribe All Video Files Automatically (OpenAI
Whisper)

Refer to the “VIDEO AUTOCLIPPER” section, the setup for it is the same as this.

You can follow the instructions in this video first:

 How to Install & Use Whisper AI Voice to Text

But in this case, you want to install the prerequisites and avoid using WhisperAI
as shown in the video; my python version operates much more effectively than
manually through the command line.
Unlike through the command line, my script can run iteratively on any number of files
without needing to reference them manually, and lets you choose whether to save
timestamps, subtitles, and jsons.

Convert All VP9/OPUS Files into H264 (for video editing)

This is tailored more towards people that use the typical video editors like Adobe or
Vegas, these programs somehow even in 2025 don’t support the VP9 video codec and
OPUS audio codec. More context in the “Disclaimer for Video Editors” section.

You can use DaVinci Resolve if you don’t want to bother doing this, but it's
relatively simple.

https://youtu.be/ABFqbY_rmEk

This is also useful to make mega compilation videos of a youtuber, clips, etc. Otherwise
you, more or less, have to use DaVinci Resolve or another editor.

(note: improve this)

Required Packages:

●​ shutil
●​ time

Download

https://drive.google.com/file/d/1t9XWsfznf_GK1LO_IitGRA_ivW7qvAkC

Say you downloaded an entire youtube channel’s worth of videos, but you can’t
drag them into a video editor because Adobe is shit.

https://drive.google.com/file/d/1t9XWsfznf_GK1LO_IitGRA_ivW7qvAkC/view?usp=sharing

All you must do is run this script on the directory of video files you want to turn into
usable content, and it will automatically separate VP9 videos into a new subfolder, and
within that sub-folder it will re-encode those to h264 (into another subfolder).

Convert All WEBP/JFIF To JPG Files

Simple script that lets you replace all .webp and .JFIF files in a directory with a
converted .JPG. If you don’t want a particular file converted or want .png as the output
file, those can be set in the script yourself.

Currently, it will create files with a new Date Modified value, so if you sort your images
by date modified, this will put them at the top.

Required Packages:

●​ shutil

Download

https://drive.google.com/file/d/1FVo6jE6iZtLtZv1eWl3ESjgWNyQmYfhy

Run the script, paste the directory you want to convert, and it will work
immediately.

Add Dates to mp4s Using info.json Files (etc.)

Perfect for chronological sorting

If you download the info.json files when using yt-dlp, youtube and rumble saves
the video upload_date inside the file. This can easily be used to rename your
video files to sort chronologically, like this:

https://drive.google.com/file/d/1FVo6jE6iZtLtZv1eWl3ESjgWNyQmYfhy/view?usp=sharing

[2025-04-01] jgiojosdg [etjsp0djgs].mp4

This is a nice option to have, as it's more customizable to your own interests,
compared to setting a fixed output command like -o "[%(upload_date>%Y-%m-%d)s]
%(title)s [%(id)s]".

Required Packages:

●​ json

I’ve made several variants of this script for my use cases, so just pick the one
you want. You can also add more file extensions, or replace them, within the script to
apply to certain file types (for example, mp3/wav files for audio).

1.​ Rename YT-DLP MP4s using (YYYYMMDD):

​ Download: Rename YT-DLP MP4s using (YYYYMMDD) in Jsons 3.py

https://drive.google.com/file/d/1pdnlNJKPNRUB2vZMBxH6CxQvQ1ueHliJ

●​ Format (20250401) FILENAME.mp4

​

2.​ Rename YT-DLP MP4s using [YYYY-MM-DD]:

​ Download: Rename YT-DLP MP4s using [YYYY-MM-DD] in Jsons 2.py

https://drive.google.com/file/d/1DJNd3xbWUSLDVAsAIJ5o9RwelsYdXy0e

●​ Format [2025-04-01] FILENAME.mp4

​ ​
​

​ You can change which files it applies to here.

​
​

The following scripts apply to all the file types I typically encounter. It also
renames the json file itself.

3.​ Rename YT-DLP MP4s, JPGs, AND INFOJSONS using (YYYY-MM-DD):

Download: Rename YT-DLP MP4s, JPGs, AND INFOJSONS using
(YYYYMMDD) in Jsons 3.py

https://drive.google.com/file/d/15v4IW3geTl_h_964BxtpS2WKt8ql4b13
https://drive.google.com/file/d/15v4IW3geTl_h_964BxtpS2WKt8ql4b13

●​ Format (20250401) FILENAME.mp4

4.​ Rename YT-DLP MP4s, JPGs, AND INFOJSONS using [YYYY-MM-DD]:

​ Download: Rename YT-DLP MP4s using [YYYY-MM-DD] in Jsons 2.py

https://drive.google.com/file/d/1DJNd3xbWUSLDVAsAIJ5o9RwelsYdXy0e

​
●​ Format [2025-04-01] FILENAME.mp4

​ ​
​

You can change which files it applies to here.

●​ .info.txt is a file created by my “EXTRACT COMMENTS FROM JSON”
script in the next section. It contains all the youtube comments in a raw
text format.

●​ .info.html in a file created by my “Render YouTube Comments as an HTML
Webpage” script. It contains all the metadata + youtube comments in a
formatted fake youtube page.

Extract Youtube Comments from info.jsons as an .info.txt.

This was the predecessor to the “Render YT-DLP Jsons as Fake Youtube Page” script,
which does it much better than this.

All this script does is extract the comments from the .info.json files yt-dlp makes, and
makes a .txt file with each comment (the channel name, and the comment, in no
particular order).

Download: [EXTRACT COMMENTS FROM JSON] Extract Comments V6.py

https://drive.google.com/file/d/1DJ01MmjOW3i1kRlxOPZ8hhc2xgvqnVJj

Merge them into a Single Comment File (for an entire channel)

There are some interesting use cases for this, such as extracting the comments of a
video, or an entire channel, and finding text patterns. Or searching for commenters.

I have another script which can combine all the .info.txt files into a single one. I
can use that combined comment file, with an AI chatbot, to gauge the ‘average’

comment on any youtube channel, or draw conclusions about what people talk
about on a video/channel.

Download

Merge Extracted Youtube Comment .info.txts INTO ONE.py

On top of that, you may want this version of the Comment Extraction script, which
appends the video ID at the end of each comment, so you can actually trace each
comment (to the video it was posted on) after you merge the comments into a single
file.

Download

[EXTRACT COMMENTS FROM JSON] Extract Comments V7 (Display ID).py

https://drive.google.com/file/d/1O4GdLpg3wfPlRMXIw4mqvcun5bHnQBy6
https://drive.google.com/file/d/1mPod_QVafH09t8t22XwZtlHe-za7W3I8

Search yt-dlp info.jsons for Comments from a Specific Author

Here is a script which can find matches for any one commenter, in a single
comment section (one .info.json with –write-comments enabled), or an entire
youtube channel.

You must specify the @ handle before the username you’re searching for, unless
the .info.json was created before youtube replaced commenter names with handles in
2024.

(note: improve this)

Required Packages:

●​ json

Download: Extract Comments by Author from yt-dlp JSON.py

This section of the code controls what goes in between each comment match.
Customize to your liking.

Unrelated Scripts

Here is a script which can easily calculate new calories and macros for a product,
for a different serving size. You could do this with AI, but this is quicker.

Just type in the name, serving size (g), calories, fat, carbs, protein, and new serving
size.

https://drive.google.com/file/d/17wBakE4vMkO4tPkZ8ZzE-3Bio9BAUvv0

Download

Serving Size Calculator MkII.py

It could probably be turned into a GUI using python.

Here is a script which can easily calculate the midpoint between two (or multiple)
hex color values. I haven’t found a website which can do multiple at a time, and I’ve
had a generally hard time getting website versions to work so I always use this.

Download

hexmerge.py

Here is a script which can quickly convert a word to a unicode lookalike. This can
be done on other websites, but this can make it quick as well.

Test word → Τе�𝚝 ԝо𝗋𝚍

Download

Convert to Text to Homoglyph (Unicode Lookalikes).py

https://drive.google.com/file/d/1SyEnuz4rwMM3CtKTO91A1I5Nha6dQ-EB
https://drive.google.com/file/d/11pGVhCozncYVy7KCWSHIV8i8qDyPL-9R
https://drive.google.com/file/d/15eKUPCoDT5NMG3XzbEKXLUGFNTjx6mOJ

Updated 7/11/25

	Beginner yt-dlp Guide to Download YouTube Videos …
	yt-dlp for Dummies | Download YouTube Videos / Channels Stupidly Easy
	I.​IF COMMAND PROMPT NAVIGATION IS TOO WEIRD, INSTALL THIS PROGRAM: https://winaero.com/download-winaero-tweaker/

	​
	Set yt-dlp/ffmpeg to be Accessible Anywhere

	KEEP YT-DLP UPDATED OR IT WILL BREAK!
	Command I use for videos
	Command I use for music

	DISCLAIMER FOR VPN USERS / If you get “Sign in” Errors
	There are Several Strategies to Fix This.
	●​PO Tokens (Proof of Origin)

	DRM Format Warning
	Cookie Auto-Rotation Script (Solves all errors)

	List of yt-dlp Blacklist Errors

	DISCLAIMER FOR VIDEO EDITORS
	The MIRACLE Solution (Risky?)
	Why this (Might) Be Safe

	The Old Manual Solution (Definitely Safe, but Tedious)
	Mass-Convert VP9 to AVC (Python Script)

	Other Fixes for VP9 Bullshit?

	Other Useful Commands
	To use the cookies command, download your Youtube cookies file
	For More Commands

	SPECIAL TOOLS
	24/7 Stream Archive Loops
	The Problem with Twitch Vods
	Streamlink

	Kick Streams

	RENDER YT-DLP JSONS AS A FAKE YOUTUBE PAGE (v4.17.8)
	RENDER YT-DLP LIVE-CHAT JSONS AS A FAKE CHAT PAGE
	INSTANT METADATA VISUALIZATION HACK
	THE VIDEO AUTOCLIPPER
	SPLIT VIDEO EVENLY INTO TWO (Superior to Re-Rendering)
	
	Remove IPs From yt-dlp info.jsons
	Transcribe All Video Files Automatically (OpenAI Whisper)
	Convert All VP9/OPUS Files into H264 (for video editing)
	Convert All WEBP/JFIF To JPG Files
	Add Dates to mp4s Using info.json Files (etc.)
	Extract Youtube Comments from info.jsons as an .info.txt.
	Search yt-dlp info.jsons for Comments from a Specific Author
	Unrelated Scripts

