ОЛИМПИАДНЫЕ ЗАДАНИЯ

первого тура республиканской олимпиады по учебному предмету «Математика», 2022/2023 учебный год

8 класс

Уважаемый участник олимпиады!

Вам предлагается выполнить 5 заданий по математике. За каждое правильно выполненное задание начисляется 6 баллов, максимальная сумма 30 баллов.

Задания необходимо выполнять на отдельном листе в любом удобном для вас порядке. Перед записью решения указать номер задания. Условие записывать необязательно, а вот решение запишите как можно подробнее. Пользуйтесь черновиком для поиска решения, черновик не забудьте сдать вместе с чистовиком.

Пишите разборчиво, яркой пастой!

При решении заданий можно пользоваться только ручкой, карандашом и линейкой. Использовать калькулятор, сотовый телефон, планшет и другие электронные средства, справочные материалы **HE PA3PEIIIAETCЯ!!!**

Время выполнения заданий 4 часа.

ЖЕЛАЕМ УСПЕХА!

Задание № 1:

На гранях кубика расставлены 6 различных чисел от 6 до 11. Кубик бросили два раза. В первый раз сумма чисел на четырех боковых гранях оказалась равна 36, во второй — 33. Какое число написано на грани, противоположной той, где написана цифра 10?

Задание № 2:

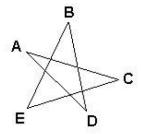
Команда из Вани и Антона на одноместном самокате участвует в гонке. Дистанция разделена на участки одинаковой длины, их количество равно 42, в начале каждого — контрольный пункт. Ваня пробегает участок за 9 мин, Антон — за 11 мин, а на самокате любой из них проезжает участок за 3 мин. Стартуют они одновременно, а на финише учитывается время того, кто пришел последним. Ребята договорились, что один проезжает первую часть пути на самокате, остаток бегом, а другой — наоборот, т.е. самокат можно оставить на любом контрольном пункте. Сколько участков Ваня должен проехать на самокате, чтобы команда показала наилучшее время?

Задание № 3:

Даны числа x и y, удовлетворяющие условию x+y=xy=17. Найдите значение выражения $(x^2-17x)\cdot(y+\frac{17}{y})$.

Залание № 4:

В пятиугольной звезде, изображённой на рисунке, углы <ACE = <ADB и <DBE = <BEC. Известно также, что >BD = CE. Докажите, что <ACD = <ADC



Задание № 5.

Мама купила коробку кускового сахара (сахар в кубиках). Дети сначала съели верхний слой – 77 кубиков, затем боковой слой – 55 кубиков, наконец, передний слой. Сколько кубиков сахара осталось в коробке?

ОЛИМПИАДНЫЕ ЗАДАНИЯ

первого тура республиканской олимпиады по учебному предмету «Математика», 2022/2023 учебный год

РЕШЕНИЯ И КРИТЕРИИ ОЦЕНИВАНИЯ

8 класс

Уважаемые коллеги!

Для единых норм проверки работ участников олимпиады в разных школах необходимо придерживаться критериев оценивания работ.

Каждая задача оценивается **целым числом** баллов от 0 до 6. Максимальная сумма 30 баллов. Итог подводится по сумме баллов, набранных участником.

Основные принципы оценивания приведены в таблице:

Баллы	Критерии оценивания решения
6	Полное верное решение с обоснованием с применением нестандартных подходов
5	Любое полное верное решение с обоснованием
4	Верное решение, но имеются небольшие недочеты, в целом не влияющие на решение.
3	Решение в целом верное. Однако оно содержит ряд ошибок, либо не рассмотрение отдельных случаев, но может стать правильным после небольших исправлений или дополнений
2	Верно рассмотрен один из двух существенных случаев (вариантов) решения. Доказаны, рассмотрены вспомогательные утверждения или обоснования, помогающие в решении задачи
1	Рассмотрены отдельные случаи при отсутствии решения (или при ошибочном решении). Приведён только верный ответ.
0	Решение неверное
0	Решение отсутствует

Любое правильное решение оценивается в 6 баллов. Недопустимо снятие баллов за то, что решение слишком длинное, или за то, что решение учащегося отличается от приведенного в методических разработках или от других решений, известных жюри; при проверке работы важно вникнуть в логику рассуждений участника, оценивается степень её правильности и полноты решения.

Любые исправления в работе, в том числе зачеркивание ранее написанного текста, не являются основанием для снятия баллов; недопустимо снятие баллов в работе за неаккуратность записи решений при её выполнении.

Баллы не выставляются «за старание участника», в том числе за запись в работе большого по объёму текста, но не содержащего продвижений в решении задачи.

Победителями олимпиады в одной параллели могут стать несколько участников, набравшие наибольшее количество баллов. Поэтому не следует в обязательном порядке «разводить по местам» лучших участников олимпиады.

Задание № 1:

На гранях кубика расставлены 6 различных чисел от 6 до 11. Кубик бросили два раза. В первый раз сумма чисел на четырех боковых гранях оказалась равна 36, во второй — 33. Какое число написано на грани, противоположной той, где написана цифра 10?

Ответ: 8.

РЕШЕНИЕ:

Сумма чисел на всех гранях равна 6+7+8+9+10+11=51. При первом броске сумма на верхней и нижней гранях равна 51-36=15, при втором — 51-33=18. Значит, на третьей паре противоположных граней сумма равна 51-15-18=18. Сумму 18 можно получить двумя способами: 11+7 или 10+8. Значит, на парах граней с суммой 18 напротив 11 находится 7, а напротив 10-8.

Задание № 2:

Команда из Вани и Антона на одноместном самокате участвует в гонке. Дистанция разделена на участки одинаковой длины, их количество равно 42, в начале каждого — контрольный пункт. Ваня пробегает участок за 9 мин, Антон — за 11 мин, а на самокате любой из них проезжает участок за 3 мин. Стартуют они одновременно, а на финише учитывается время того, кто пришел последним. Ребята договорились, что один проезжает первую часть пути на самокате, остаток бегом, а другой — наоборот, т.е. самокат можно оставить на любом контрольном пункте. Сколько участков Ваня должен проехать на самокате, чтобы команда показала наилучшее время?

Ответ: 18 РЕШЕНИЕ:

Достаточно обозначить число проезжаемых Ваней участков через х, составить по условию и решить уравнение:

$$x \cdot 3 + (42 - x) \cdot 9 = (42 - x) \cdot 3 + 11x,$$

 $x = 18$

Если Ваня проедет 18 участков и пробежит оставшиеся 42 - 18 = 24, он затратит $18 \times 3 + 24 \times 9 = 270$ мин. При этом Антон, наоборот, достанется проехать 24 участка, а пробежать 18, на что уйдет $24 \times 3 + 18 \times 11 = 270$ мин — то же самое время. Если же Ваня проедет меньшее число участков, то его время (и, соответственно, время команды) увеличится. Если Ваня проедет большее количество участков, то увеличится время Антона (и время команды).

Задание № 3:

Даны числа x и y, удовлетворяющие условию x+y=xy=17. Найдите значение выражения

$$(x^2-17x)\cdot(y+\frac{17}{y}).$$

Ответ: - 289.

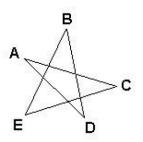
РЕШЕНИЕ:

Обозначим x - 17 = -y, $\frac{17}{y} = x$. Тогда искомое выражение равно:

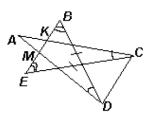
$$x \cdot (x - 17) \cdot (y + x) = -xy \cdot 17 = -289.$$

Задание № 4:

В пятиугольной звезде, изображённой на рисунке, углы <ACE = <ADB и <DBE = <BEC. Известно также, что BD = CE. Докажите, что <ACD = <ADC



<u>Доказательство.</u> Пусть AC и AD пересекают отрезок BE в точках K и M соответственно (см. рис.). Из условия задачи следует, что треугольники CEK и DBM равны по стороне и двум прилежащим углам. Следовательно, CK = DM и $\angle CKE = \angle DMB$. Тогда $\angle AKE = \angle AMB$ (углы, смежные с равными). Получим, что в треугольнике AMK равны углы, прилежащие



к стороне MK, поэтому этот треугольник — равнобедренный (AK = AM). Следовательно, AC = AK + CK = AM + DM = AD, то есть треугольник ACD — также равнобедренный (с основанием CD). Поэтому $\angle ACD = \angle ADC$, что и требовалось доказать.

Задание № 5.

Мама купила коробку кускового сахара (сахар в кубиках). Дети сначала съели верхний слой – 77 кубиков, затем боковой слой – 55 кубиков, наконец, передний слой. Сколько кубиков сахара осталось в коробке?

Ответ. 300 или 0.

РЕШЕНИЕ:

У коробки есть три измерения: высота, ширина и глубина. Чтобы узнать, сколько кубиков в верхнем слое, нужно ширину умножить на глубину, в боковом – высоту на глубину. После того, как был съеден верхний слой, высота уменьшилась на 1, а глубина осталась прежней. Т.е. 77 и 55 должны делиться на глубину исходной коробки. Т.к. у 77 и 55 общие множители только 1 и 11. Если глубина равна 1, то после съедания переднего слоя ничего не осталось. Если считать, что сахар все же остался, то глубина коробки 11. Тогда ширина 77:11=7 кубиков, а высота после того, как верхний слой съеден, 55:11=5 кубиков. После того, как будет съеден боковой слой, ширина уменьшится на 1 (и станет равна 7-1=6 кубиков), а после того, как съедят передний слой, глубина уменьшится на 1 и станет равна 11-1=10. Итого высота оставшегося в коробке сахара 5, ширина – 6, глубина – 10 кубиков. Т.е. в коробке осталось 5*6*10=300 кубиков сахара.