
Reference Guide for R

Links to jump to…

-​ Useful R commands from Notebook 1 (Basic R & Data Exploration)
-​ Useful R commands from Notebook 2 (Simple Linear Regression)
-​ Useful R commands from Notebook 3 (Multiple Regression)
-​ Useful R commands from Notebook 4 (Machine Learning)

Helpful tips for using notebooks

●​ Avoid opening multiple notebooks in separate tabs, as this can lead to memory overload,
forcing you to restart your session.

How to run a code cell

Click into the code cell and then click the “Run”
button in the top toolbar:

Or use keyboard shortcuts:

●​ For PCs and Chromebooks: Hold Ctrl and
press Enter (on PCs)

●​ For Macs: Hold Command (⌘) and press
Enter

Running all code cells from top down

Although clicking the “save” button will save any
code or text you’ve written, it won’t save your data in
its memory. So, whenever you return to a notebook,
make sure to re-run all code cells from the top down.

Shortcut:
To re-run all code cells (top down) in notebook, go to
“Restart & Run All” under “Kernel”

Adding new code or text cells

To add code or markdown cells, use the “+” in the top toolbar:

Then change type as needed (choose “code” for code and “markdown” for text).

Useful R Commands

Notebook 1: Basic R & Data Exploration

<- - store values

Example: x <- 10

●​ stores the value 10 in the object x

head() - display head of dataset

Example: head(dat)

●​ displays the head of a dataset named dat

dim() - display dimensions of dataset

Example: dim(dat)

●​ displays dimensions of a dataset named dat
●​ first number is the number of rows

(horizontal), next is the number of columns
(vertical)

select() - select only certain variables
(columns) from dataset

Example: example_dat <- select(dat, name,
median_debt, ownership, admit_rate,
hbcu)

●​ selects the columns name, median_debt,
ownership, admit_rate, and hbcu from a
dataset named dat and stores the results in
a new dataset named example_dat

subset() - filter dataset to obtain certain
observations (rows), based on conditions

Example: subset(example_dat, hbcu ==
"Yes" & admit_rate < 40)

●​ Filters dataset example_dat to only include
observations (rows) that are HBCUs and
that have an admit rate lower than 40%

Conditions

●​ == means equals exactly
●​ != means does not equal
●​ < means less than
●​ > means greater than
●​ <= means less than or equal to
●​ >= means greater than or equal to
●​ | means or
●​ & means and

arrange() - order data based on values

desc() - modifies arrange() to put data in
descending order

Example: arrange(example_dat, admit_rate)

●​ Orders the rows in dataset example_dat
based on admission rates, with lowest
admission rates first.

Example: arrange(example_dat,
desc(admit_rate))

●​ Orders the rows in dataset example_dat
based on admission rates, with highest
admission rates first.

$ - selects a single variable from a dataset

table() - find counts of a categorical variable

Example: table(dat$highest_degree)

●​ dat$highest_degree selects the
highest_degree column from dat.

●​ The table() command then displays the
number of colleges in dat that have different
types of highest degrees

gf_histogram() - creates histogram of a
quantitative variable

Example: gf_histogram(~admit_rate, data =
dat)

●​ Creates histogram of the admit_rate
variable from the dataset dat

gf_bar() - creates barplot of a categorical
variable

Example: gf_bar(~highest_degree, data =
dat)

●​ Creates barplot of the highest_degree
variable from the dataset dat

~ - often used to delineate the outcome variable
(y) and the predictor variable (x) in graphs and
models, like this: outcome ~ predictor

gf_boxplot() - creates boxplots

Example: gf_boxplot(admit_rate ~
highest_degree, data = dat)

●​ admit_rate ~ highest_degree signifies
that admit rate is the outcome (y) variable
and highest degree is the predictor (x)
variable

●​ The gf_boxplot() command then
generates the full boxplot, plotting admit rate
on the y-axis and highest degree on the
x-axis

Useful R Commands

Notebook 2: Simple Linear Regression

~ - often used to delineate the outcome variable
(y) and the predictor variable (x) in graphs and
models, like this: outcome ~ predictor

gf_point() - creates scatterplots

Example: gf_point(default_rate ~
pct_PELL, data = dat)

●​ default_rate ~ pct_PELL signifies that
default rate is the outcome (y) variable and
percent PELL is the predictor (x) variable

●​ The gf_point() command then generates
the full scatterplot, plotting default rate on
the y-axis and percent PELL on the x-axis

●​ data = dat tells the command that the
data is come from the dataset named dat

%>% - used to pipe (overlay) models on top of
graphs

gf_lm() - plots linear model

Example: gf_point(default_rate ~
pct_PELL, data = dat) %>% gf_lm(color =
"orange")

●​ The gf_point(default_rate ~
pct_PELL, data = dat) part creates a
scatterplot with default rate as the outcome
(y) variable and percent PELL as the
predictor (x) variable

●​ The %>% gf_lm(color = "orange") part
graphs the linear model on top of the
scatterplot. command then generates the full
scatterplot, plotting default rate on the y-axis
and percent PELL on the x-axis

●​ color = "orange" sets the color of the
linear model to orange

lm() - fits a linear regression model

Example: PELL_model <- lm(default_rate ~
pct_PELL, data = dat)

●​ The lm(default_rate ~ pct_PELL,
data = dat) part fits a linear model with
default rate as the outcome (y) variable and
percent PELL as the predictor (x) variable,
using the dataset dat

●​ The PELL_model <- part stores the linear
model in an object called PELL_model

●​ If we create a new line of code and run
simply PELL_model (the name of our stored
model), it will print the coefficients of the
model

summary() - displays detailed information about
a regression model

Example: summary(grad_model)

●​ Prints out detailed information (including R2)
about a previously fit linear model named
grad_model

●​ Look for Multiple R-squared in the
output to find the R2 value

Useful R Commands

Notebook 3: Multiple Regression

lm(y ~ x1 + x2 + x3 + ..., data = dat)
 - syntax for a multiple regression model

Example: tuition_grad_model <-
lm(default_rate ~ net_tuition +
grad_rate, data = dat)

●​ The lm(default_rate ~ net_tuition +
grad_rate, data = dat) part fits a
regression model with default rate as the
outcome (y) variable and two predictors: net
tuition (x1) and grad rate (x2)

●​ The tuition_grad_model <- part stores
the regression model in an object called
tuition_grad_model

●​ If we create a new line of code and run
simply tuition_grad_model (the name of
our stored model), it will print the coefficients
of the model

Useful R Commands

Notebook 4: Machine Learning

poly(variable, degree) - adds polynomial
terms to a model

Example: lm(default_rate ~ poly(SAT_avg,
2), data = sample_dat)

●​ Fits a regression model with default rate as
the outcome (y) variable and SAT average
as the predictor (x). The SAT average will
have two polynomial terms: x and x2

predict(model,newdata = dat) - gives
predictions from model on new data

Example: predict(my_model, newdata =
test)

●​ Will use a previously fit model named
my_model to make predictions on a dataset
named test

