A
BootUp

Professional Development

Random Sprite Challenge

Minimum experience: Grades 3+, 1st year using Scratch, 4th quarter or later

At a Glance

Coders create a randomly generate sprite and then review how to add costumes to a sprite to simulate lifelike movements or
animations in a scene or short story. The purpose of this project is to learn how to better simulate motion/animations of a

newly created sprite.

Process objective(s):

Product objective(s):

Statement:
e | will review how to create several costumes in an
original sprite to simulate motion.
e | will learn how to use a variety of blocks to simulate
a newly created sprite’s motion.
Question:
e How can we create several costumes in an original
sprite that are used to simulate motion?
® How can we use a variety of blocks to simulate a
newly created sprite’s motion?

1B-AP-10 Create programs that include sequences, events,
loops, and conditionals
e Control structures specify the order (sequence) in

which instructions are executed within a program and
can be combined to support the creation of more
complex programs. Events allow portions of a
program to run based on a specific action. For
example, students could write a program to explain
the water cycle and when a specific component is
clicked (event), the program would show information
about that part of the water cycle. Conditionals allow
for the execution of a portion of code in a program
when a certain condition is true. For example,
students could write a math game that asks
multiplication fact questions and then uses a
conditional to check whether or not the answer that
was entered is correct. Loops allow for the repetition
of a sequence of code multiple times. For example, in

Statement:
o | will create a project that simulates lifelike motion of
an original sprite (or several sprites).
Question:
e How can we create a project that simulates lifelike
motion of an original sprite (or several sprites)?

Main standard(s): Reinforced standard(s):

1B-AP-11 Decompose (break down) problems into smaller,
manageable subproblems to facilitate the program
development process.

e Decomposition is the act of breaking down tasks into
simpler tasks. For example, students could create an
animation by separating a story into different scenes.
For each scene, they would select a background, place
characters, and program actions. (source)

1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended.

o Asstudents develop programs they should continuously
test those programs to see that they do what was
expected and fix (debug), any errors. Students should
also be able to successfully debug simple errors in
programs created by others. (source)

1B-AP-17 Describe choices made during program development
using code comments, presentations, and demonstrations.

https://bootuppd.org/
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards

a program that produces an animation about a
famous historical character, students could use a loop
to have the character walk across the screen as they
introduce themselves. (source)
1B-AP-13 Use an iterative process to plan the development of
a program by including others' perspectives and considering
user preferences.

e Planning is an important part of the iterative process
of program development. Students outline key
features, time and resource constraints, and user
expectations. Students should document the plan as,
for example, a storyboard, flowchart, pseudocode, or
story map. (source)

® People communicate about their code to help others
understand and use their programs. Another purpose of
communicating one's design choices is to show an
understanding of one's work. These explanations could
manifest themselves as in-line code comments for
collaborators and assessors, or as part of a summative
presentation, such as a code walk-through or coding
journal. (source)

Main practice(s):

Practice 3: Recognizing and defining computational
problems

e "The ability to recognize appropriate and worthwhile
opportunities to apply computation is a skill that
develops over time and is central to computing.
Solving a problem with a computational approach
requires defining the problem, breaking it down into
parts, and evaluating each part to determine whether
a computational solution is appropriate." (p. 77)

e P3.2. Decompose complex real-world problems into
manageable subproblems that could integrate
existing solutions or procedures. (p. 77)

Practice 5: Creating computational artifacts

e "The process of developing computational artifacts
embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (p._80)

e P5.2. Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (p. 80)

e P5.3. Modify an existing artifact to improve or
customize it. (p. 80)

Modularity
e "Modularity involves breaking down tasks into
simpler tasks and combining simple tasks to create
something more complex. In early grades, students

Reinforced practice(s):

Practice 6: Testing and refining computational artifacts

o '"Testing and refinement is the deliberate and iterative
process of improving a computational artifact. This
process includes debugging (identifying and fixing
errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing needs
and expectations of end users and improve the
performance, reliability, usability, and accessibility of
artifacts." (p. 81)

e P6.1. Systematically test computational artifacts by
considering all scenarios and using test cases." (p. 81)

e P6.2. Identify and fix errors using a systematic process.
(p.81)

Practice 7: Communicating about computing

e "Communication involves personal expression and
exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(p.82)

e P7.2. Describe, justify, and document computational
processes and solutions using appropriate terminology
consistent with the intended audience and purpose. (p.

82)

Main concept(s): Reinforced concept(s):

Algorithms
e "Algorithms are designed to be carried out by both
humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world.

http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.k12cs.org
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=87
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=87
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92

learn that algorithms and programs can be designed
by breaking tasks into smaller parts and recombining
existing solutions. As they progress, students learn
about recognizing patterns to make use of general,
reusable solutions for commonly occurring scenarios
and clearly describing tasks in ways that are widely
usable." (p. 91)

® Grade 5 - "Programs can be broken down into smaller
parts to facilitate their design, implementation, and
review. Programs can also be created by
incorporating smaller portions of programs that have
already been created." (p. 104)

Program Development

e "Programs are developed through a design process
that is often repeated until the programmer is
satisfied with the solution. In early grades, students
learn how and why people develop programs. As they
progress, students learn about the tradeoffs in
program design associated with complex decisions
involving user constraints, efficiency, ethics, and
testing." (p. 91)

e Grade 5 - "People develop programs using an
iterative process involving design, implementation,
and review. Design often involves reusing existing
code or remixing other programs within a
community. People continuously review whether
programs work as expected, and they fix, or debug,
parts that do not. Repeating these steps enables
people to refine and improve programs.” (p. 104)

As they progress, students learn about the
development, combination, and decomposition of
algorithms, as well as the evaluation of competing
algorithms." (p. 91)

o Grade 5 - "Different algorithms can achieve the same
result. Some algorithms are more appropriate for a
specific context than others." (p. 103)

Control

o "Control structures specify the order in which
instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures. As
they progress, students expand their understanding to
combinations of structures that support complex
execution." (p. 91)

e Grade 5 - "Control structures, including loops, event
handlers, and conditionals, are used to specify the flow
of execution. Conditionals selectively execute or skip
instructions under different conditions." (p. 103)

Primary blocks Control, Motion, My Blocks

Supporting blocks Events, Looks, Sound

(source)

more. (source)

Iterative e Involving the repeating of a process with the aim of approaching a desired goal, target, or result

e [teration is a single pass through a group of instructions. Most programs contain loops of
instructions that are executed over and over again. The computer iterates through the loop,
which means that it repeatedly executes the loop. (source)

e The computational practice of developing a little bit, then trying it out, then developing some

(source)

Modularity ® The characteristic of a software/web application that has been divided (decomposed) into
smaller modules. An application might have several procedures that are called from inside its
main procedure. Existing procedures could be reused by recombining them in a new application

Parallel o Refers to processes that occur simultaneously. Printers and other devices are said to be either
parallel or serial. Parallel means the device is capable of receiving more than one bit at a time
(that is, it receives several bits in parallel). Most modern printers are parallel. (source)

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=114
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=114
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
https://images.ctfassets.net/1devtjk7knks/7dMJwwBnHpCe3L0aIoADxn/308459f813206d7aed7baa2d8bb5c4c9/Control.png
https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/385tNeMaefAu4i7yiXeUqC/578353cea86a0fcab3963afd6e1999d7/Sound.png
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=273
http://www.webopedia.com/TERM/I/iteration.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=273
http://www.webopedia.com/TERM/P/parallel.html

e The computational concept of making things happen at the same time. (source)

Remix ® The process of creating something new from something old. Originally a process that involved
music, remixing involves creating a new version of a program by recombining and modifying
parts of existing programs, and often adding new pieces, to form new solutions. (source)

® A creative work that is derived from an original work (or from another remix). A remix typically
introduces new content or stylistic elements, while retaining a degree of similarity to the

original work. (source)

Storyboard e Like comic strips for a program, storyboards tell a story of what a coding project will do and can
be used to plan a project before coding.

More vocabulary ® Click here for more vocabulary words and definitions created by the Computer Science Teachers
words from CSTA A iation

Integration Potential subjects: History, language arts, media arts, physical education, science, social studies

Example(s): This project could be modified to animate a historical, contemporary, or fictional sprite in
a specific time period or location. For example, animating a sprite or scene from a story read in class.
As another example, animating a historical figure or event from a time period and culture coders are
learning about. Rather than having the example project give values for the parts of a creature, you
could create a project similar to the randomized synthesis project that uses words to describe a sprite’s
features, location, time period, culture, etc. that a coder will then create and animate in Scratch. Click
here to see other examples and share your own ideas on our subforum dedicated to integrating
projects or click here for a studio with similar projects.

Vocations Scientists and researchers often create models or simulations of environments in order to better
understand the processes and systems at play. In this project we are creating a fictional model or
simulation of a sprite’s movement. Click here to visit a website dedicated to exploring potential careers
through coding.

Example project

Video walkthroughs

Quick reference guides
Project files

Sample storyboard questions

Project Sequence

Suggested preparation Resources for learning more

Customizing this project for your class (10+ minutes): Remix ® BootUp Scratch Tips

the project example to include your own parts of an animal, o Videos and tips on Scratch from our YouTube
insect, monster, etc. channel

e BootUp Facilitation Tips

http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=274
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
https://www.csteachers.org/page/glossary
https://www.csteachers.org/page/glossary
https://scratch.mit.edu/projects/285575193/
https://scratch.mit.edu/projects/167175058/
https://training.bootuppd.org/login/index.php
https://training.bootuppd.org/login/index.php
https://scratch.mit.edu/studios/27630810/
https://careerswithstem.com.au/
https://scratch.mit.edu/projects/285575193/
https://www.youtube.com/playlist?list=PLV4zluvZAlMos7CqE4C2pW4B19LRR8nvz
https://drive.google.com/open?id=1QAUeZxSdGP9HzEjr3ICrrxJ5CGKxBJBc
https://drive.google.com/open?id=1QDnzJXI_OgDVKE0OZIVX13HTgxZxhjil
https://docs.google.com/document/d/15W--xEpoiPO-PMjQZHX5D76QaXlgJuxzZSFnsJjtzNU/edit?usp=sharing
https://scratch.mit.edu/projects/285575193/
https://www.youtube.com/playlist?list=PLV4zluvZAlMrBWUeo1WMmRE7IQpJ_nOJV
https://youtube.com/bootuppd
https://youtube.com/bootuppd
https://www.youtube.com/playlist?list=PLV4zluvZAlMpHQ0MbOkE52QC9f0SYNJVh

(10+ minutes) Read through each part of this lesson plan and
decide which sections the coders you work with might be
interested in and capable of engaging with in the amount of
time you have with them. If using projects with sound,
individual headphones are very helpful.

Download the offline version of Scratch: Although hopefully
infrequent, your class might not be able to access Scratch due
to Scratch’s servers going down or your school losing internet
access. Events like these could completely derail your lesson
plans for the day; however, there is an offline version of
Scratch that coders could use when Scratch is inaccessible.
Click here to download the offline version of Scratch on to
each computer a coder uses and click here to learn more by
watching a short video.

o Videos and tips on facilitating coding classes
from our YouTube channel
e Scratch Starter Cards
o Printable cards with some sample starter code
designed for beginners
e ScratchEd
o A Scratch community designed specifically for
educators interested in sharing resources and
discussing Scratch in education
e Scratch Help
o This includes examples of basic projects and
resources to get started
e Scratch Videos
o Introductory videos and tips designed by the
makers of Scratch
o Scratch Wiki
o This wiki includes a variety of explanations and
tutorials

Suggested sequence

Resources, suggestions, and connections

1. Review and demonstration (2+ minutes):

Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the previous
project.

Explain that today we are going to simulate motion (or an
animation) for a randomly generated sprite and then create a
dance, story, or game with that sprite.

Practices reinforced:
e Communicating about computing

Video: Project Preview (0:40)
Video: Lesson pacing (1:48)

This can include a full class demonstration or guided
exploration in small groups or individually. For small group and
individual explorations, you can use the videos and quick
reference guides embedded within this lesson, and focus on
facilitating 1-on-1 throughout the process.

Example review discussion questions:

e What's something new you learned last time you

coded?
o Isthere a new block or word you learned?

e What's something you want to know more about?

e What’s something you could add or change to your
previous project?

® What’s something that was easy/difficult about your
previous project?

2. Di (7+ mi):
Display and demonstrate the challenge project (or your own
remixed version). Quickly draw a sprite (use vector mode) with
the randomly generated body parts. Have coders talk with
each other about how what kind of project they might create
with the randomly generated sprite. Indicate that each coder
will run the random sprite generator on their own, so we
should all end up with different sprites.

Practices reinforced:
e Communicating about computing

Note: Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think
through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

https://scratch.mit.edu/download
https://youtu.be/M0MoF-OI48A
https://youtube.com/bootuppd
https://scratch.mit.edu/info/cards/
http://scratched.gse.harvard.edu/
https://scratch.mit.edu/help/
https://scratch.mit.edu/help/videos/
https://wiki.scratch.mit.edu/wiki/Scratch_Wiki:Table_of_Contents
https://youtu.be/8Yq3JP0zQxA
https://youtu.be/B2sPAmQxiGc
https://scratch.mit.edu/projects/285575193/

After the discussion, coders will begin working on their project
as a class, in small groups, or at their own pace.

Example discussion questions:
e What kind of project could we create with this
randomly generated sprite?
o What kind of blocks might we use to animate this
sprite?
o What kind of costumes would the sprite have?
o How would the sprite move?
m What kind of code would we use to
simulate this movement?

3. Login (1-5+ minutes):
If not yet comfortable with logging in, review how to log into
Scratch and create a new project.

If coders continue to have difficulty with logging in, you can
create cards with a coder’s login information and store it in
your desk. This will allow coders to access their account
without displaying their login information to others.

Alternative login suggestion: Instead of logging in at the start
of class, another approach is to wait until the end of class to
log in so coders can immediately begin working on coding;
however, coders may need a reminder to save before leaving
or they will lose their work.

Why the variable length of time? It depends on comfort with
login usernames/passwords and how often coders have signed
into Scratch before. Although this process may take longer
than desired at the beginning, coders will eventually be able to
login within seconds rather than minutes.

What if some coders log in much faster than others? Set a
timer for how long everyone has to log in to their account
(e.g., 5 minutes). If anyone logs in faster than the time limit,
they can open up previous projects and add to them. Your role
during this time is to help out those who are having difficulty
logging in. Once the timer goes off, everyone stops their
process and prepares for the following chunk.

Suggested sequence

Resources, suggestions, and connections

4.Cr random sprite (15+ min

5+ minute review and demonstration

Review the various vector tools in Scratch (see this video) to
create a new sprite. Have everyone open up a second
tab/window and navigate to the Random Sprite Challenge. Ask
coders to click the green flag and then the backdrop, draw the
sprite in vector mode in their own project, and then give the
sprite a name.

9+ minute drawing

Give coders time to create randomly generated sprite.
Encourage peer-to-peer assistance and facilitate 1-on-1 as
needed. If coders finish their costumes early, encourage them
to begin working on their storyboard.

Standards reinforced:

e 1B-AP-12 Modify, remix, or incorporate portions of an
existing program into one's own work, to develop
something new or add more advanced features

e 1B-AP-13 Use an iterative process to plan the
development of a program by including others'
perspectives and considering user preferences.

Practices reinforced:

o Creating computational artifacts

® Recognizing and defining computational problems

e Testing and refining computational artifacts

Concepts reinforced:
® Program development

Video: Create a random sprite (1:39)

Quick Reference Guide: Click here

Video: Image editor: Vector mode (5:00)

https://youtu.be/0QgM-5jZzjQ
https://scratch.mit.edu/projects/285575193/
https://youtu.be/YMQpOmvQACc
https://drive.google.com/open?id=1Pe0FUHB5cHfXVb4_Y2AGWDKEBRvoF-oB3smKZOjkhcw
https://youtu.be/0QgM-5jZzjQ

A note on using the “Coder Resources” with your class: Young
coders may need a demonstration (and semi-frequent friendly
reminders) for how to navigate a browser with multiple tabs.
The reason why is because kids will have at least three tabs
open while working on a project: 1) a tab for Scratch, 2) a tab
for the Coder Resources walkthrough, and 3) a tab for the
video/visual walkthrough for each step in the Coder Resources
document. Demonstrate how to navigate between these three
tabs and point out that coders will close the video/visual
walkthrough once they complete that particular step of a
project and open a new tab for the next step or extension.
Although this may seem obvious for many adults, we
recommend doing this demonstration the first time kids use
the Coder Resources and as friendly reminders when needed.

5. Create a storyboard (10-15+ minutes):

Walk through the process of creating a storyboard by asking
the following questions, then giving coders time to document
their answers through physical or digital means:
1. What kind of project are you going to create?
a. Adance?
b. Agame?
c. Astory?
d. Something else?
2. What kind of animations will your randomly generated
sprite have?
3. What other sprites and backdrops will you include in
your project?
a. What will each of these sprites do?
i What algorithms can you create to do
that?
4. Will users be able to interact with your project?
a. Ifso, how?

When coders are ready, have them show you their storyboard
and ask questions for clarification of their intent (which may
change once they start coding and get more ideas). If
approved, they may continue on to the next steps (logging in
and creating their story); otherwise they can continue to think
through and work on their storyboard.

Note: Coders may change their mind midway through a
project and wish to rethink through their original storyboard.
This is part of the design process and it is encouraged they
revise their storyboard to reflect their new ideas.

Standards reinforced:

e 1B-AP-13 Use an iterative process to plan the
development of a program by including others'
perspectives and considering user preferences

Practices reinforced:

e Communicating about computing
Concepts reinforced:

® Program development

e Modularity

Resource: Example storyboard templates
Resource: Storyboard questions for displaying

Note: Some coders do really well with open projects, while
others thrive within constraints. It may make more sense to
suggest a range of sprites and backdrops so coders aren’t
overwhelmed with possibilities. This can also help with better
predicting how long it might take to create the story.

Storyboarding Tip: Coders can color their storyboard (or mark
with symbols) what they know, have questions about, and
don’t know. For example: mark something green if coders
know how to create the algorithm for that sprite/action; mark
yellow if a coder has questions; mark red if a coder is unsure
how to do something.

Suggestion: If coders need additional help, perhaps pair them
with someone who might help them with the storyboarding
process. Or, you could have coders meet with a peer to discuss
their storyboard before asking to share it with yourself. This
can be a great way to get academic feedback and ideas from a
peer.

6. Create a dance, story, or game (45+ minutes

Give coders time to animate their dance, game, or short story
and ask coders to use My Blocks or message blocks to create
functions for each motion or animation for each of their
sprites. Encourage peer-to-peer assistance and facilitate
1-on-1 as needed. When necessary, provide friendly reminders

Standards reinforced:
e 1B-AP-10 Create programs that include sequences,
events, loops, and conditionals
e 1B-AP-11 Decompose (break down) problems into
smaller, manageable subproblems to facilitate the
program development process.
Practices reinforced:

http://creately.com/blog/examples/storyboard-templates-creately/
https://docs.google.com/document/d/15W--xEpoiPO-PMjQZHX5D76QaXlgJuxzZSFnsJjtzNU/edit?usp=sharing
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png

that the more costumes there are with small motions, the
smoother the animations might appear.

Note: Coders will spend a good amount of time creating
several costume variations, so expect to see the image editor
up on the screen for much of the class.

o Creating computational artifacts

® Recognizing and defining computational problems

e Testing and refining computational artifacts
Concepts reinforced:

e Modularity

Video: Create a dance, story, or game (1:33)
Quick Reference Guide: Click here

Video: Create costumes for animations (4:22)
Quick Reference Guide: Click here

Video: Image editor: Vector mode (5:00)
Video: Animated gif (2:38)

Facilitation Suggestion: Some coders may not thrive in inquiry
based approaches to learning, so we can encourage them to
use the Tutorials to get more ideas for their projects; however,
we may need to remind coders the suggestions provided by
Scratch are not specific to our projects, so it may create some
unwanted results unless the code is modified to match our
own intentions.

7. Add in comments (the amount of time depends on typing
speed and amount of code):

1 minute demonstration

When the project is nearing completion, bring up some code
for the project and ask coders to explain to a neighbor how the
code is going to work. Review how we can use comments in
our program to add in explanations for code, so others can
understand how our programs work.

Quickly review how to add in comments.

Commenting time

Ask coders to add in comments explaining the code
throughout their project. Encourage coders to write clear and
concise comments, and ask for clarification or elaboration
when needed.

Standards reinforced:

e 1B-AP-17 Describe choices made during program
development using code comments, presentations,
and demonstrations

Practices reinforced:

e Communicating about computing
Concepts reinforced:

e Algorithms

Video: Add in comments (1:45)
Quick reference guide: Click here

Facilitation suggestion: One way to check for clarity of
comments is to have a coder read out loud their comment and
ask another coder to recreate their comment using code
blocks. This may be a fun challenge for those who type fast
while others are completing their comments.

Standards reinforced:
demonstrations

Practices reinforced:
e Communicating about computing

below:

Summative

Assessment of Learning

e 1B-AP-17 Describe choices made during program development using code comments, presentations, and

Although opportunities for assessment in three different forms are embedded throughout each lesson, this page provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see

Formative
Assessment for Learning

Ipsative
Assessment as Learning

https://youtu.be/VDgn73SNZFo
https://docs.google.com/presentation/d/1W6nCliuf8-B6vszpC6KojloECsg5Wl2Nf0B-phUa3Ig/edit?usp=sharing
https://youtu.be/NYjxrEyxLP8
https://drive.google.com/open?id=15DjANRRmJWs_k1tst5Wmq2sP4wtlAE7R2OuTpqqpU34
https://youtu.be/0QgM-5jZzjQ
https://youtu.be/fxwMPoJtpFU
https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif
https://youtu.be/Fr7jvGfasFM
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk

The debugging exercises, commenting
on code, and projects themselves can all
be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

e Can coders debug the
debugging exercises?

e Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

e Did coders include descriptive
comments for each event in all
of their sprites?

e Can coders explain how they
used broadcast blocks or My
Blocks as functions to make
their code more organized and
easier to read (modularity)?

® Can coders explain how their
project is similar to their
storyboard?

e Did coders create at least ##
randomly generated sprites with
different algorithms?

o Choose a number
appropriate for the
coders you work with
and the amount of time
available.

The 1-on-1 facilitating during each
project is a form of formative
assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

e What are three different ways
you could change that sprite’s
algorithm?

e What happens if we change the
order of these blocks?

e What could you add or change
to this code and what do you
think would happen?

e How might you use code like
this in everyday life?

e See the suggested questions
throughout the lesson and the

assessment examples for more
questions.

The reflection and sharing section at the
end of each lesson can be a form of
ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

e How is this project similar or
different from previous
projects?

e What new code or tools were
you able to add to this project
that you haven’t used before?

e How can you use what you
learned today in future
projects?

e What questions do you have
about coding that you could
explore next time?

e See the reflection guestions at
the end for more suggestions.

Suggested extensions

Add even more (30+ minutes, or at least one

Extended Learning

Resources, suggestions, and connections

Standards reinforced:

class):

If time permits and coders are interested in this
project, encourage coders to explore what else

and conditionals
Practices reinforced:

e 1B-AP-10 Create programs that include sequences, events, loops,

they can create in Scratch by trying out new e Testing and refining computational artifacts
blocks and reviewing previous projects to get e Creating computational artifacts

ideas for this project. When changes are made, Concepts reinforced:

encourage them to alter their comments to reflect e Algorithms

the changes (either in the moment or at the end e Control

of class).

Facilitation Suggestion: Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the Tutorials to

https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.h5oq13i5ouia
https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif

While facilitating this process, monitor to make
sure coders don’t stick with one feature for too
long. In particular, coders like to edit their
sprites/backgrounds by painting on them or
taking photos, or listen to the built-in sounds in
Scratch. It may help to set a timer for creation
processes outside of using blocks so coders focus
their efforts on coding.

get more ideas for their projects; however, we may need to remind coders
the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match
our own intentions.

Suggested questions:
e What else can you do with Scratch?
e Can you add another random sprite to your project?
e What have you learned in other projects that you could use in this
project?

Similar projects:

Have coders explore the code of other peers in
their class, or on a project studio dedicated to this
project. Encourage coders to ask questions about
each other’s code. When changes are made,
encourage coders to alter their comments to
reflect the changes (either in the moment or at
the end of class).

Watch this video (3:20) if you are unsure how to
use a project studio.

Standards reinforced:
e 1B-AP-10 Create programs that include sequences, events, loops,
and conditionals
e 1B-AP-12 Modify, remix, or incorporate portions of an existing
program into one's own work, to develop something new or add
more advanced features
Practices reinforced:
e Testing and refining computational artifacts
Concepts reinforced:
e Algorithms

Note: Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, not to simply play around. For example,
“look for five minutes,” “look at no more than five other projects,” “find
three projects that each do one thing you would like to add to your
project,” or “find X number of projects that are similar to the project we
are creating.”

Generic questions:
e How could you add your newly created sprite to this project?
a. How would this change the project?
e What are some ways you can expand this project beyond what it
can already do?
e How is this project similar (or different) to something you worked
on today?
e What blocks did they use that you didn’t use?
a. What do you think those blocks do?
e What'’s something you like about their project that you could add
to your project?

micro:bit extensions:

Note: the micro:bit requires installation of Scratch
Link and a HEX file before it will work with a
computer. Watch this video (2:22) and use this
guide to learn how to get started with a micro:bit
before encouraging coders to use the micro:bit
blocks.

Much like the generic Scratch Tips folder linked in
each Coder Resources document, the micro:bit
Tips folder contains video and visual walkthroughs
for project extensions applicable to a wide range
of projects. Although not required, the micro:bit
Tips folder uses numbers to indicate a suggested

Standards reinforced:
e 1B-AP-09 Create programs that use variables to store and modify
data
e 1B-AP-10 Create programs that include sequences, events, loops,
and conditionals
e 1B-AP-11 Decompose (break down) problems into smaller,
manageable subproblems to facilitate the program development
process
e 1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended
Practices reinforced:
e Recognizing and defining computational problems
e Creating computational artifacts
e Developing and using abstractions

https://youtu.be/hudasCRlwLI
https://youtu.be/LO6m6bBmxW8
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://drive.google.com/open?id=0B342uiaCLSS3X0JZNHVSOEJVR1E
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX

order for learning about using a micro:bit in e Fostering an inclusive computing culture

Scratch; however, coders who are comfortable e Testing and refining computational artifacts
with experimentation can skip around to topics Concepts reinforced:
relevant to their project. e Algorithms

e Control

e Modularity

® Program Development

e \Variables

Folder with all micro:bit quick reference guides: Click here
Additional Resources:
® Printable micro:bit cards
o Cards made by micro:bit

o Cards made by Scratch
e Micro:bit’s Scratch account with example projects

Generic questions:

e How can you use a micro:bit to add news forms of user
interaction?

e What do the different micro:bit event blocks do and how could you
use them in a project?

e How could you use the LED display for your project?

e What do the tilt blocks do and how could you use them in your
project?

e How could you use the buttons to add user/player controls?

e How might you use a micro:bit to make your project more
accessible?

More experienced coders

Less experienced coders

If coders struggle with this kind of challenge, pair them with
other coders with more experience or understanding. Just
make sure the lesser experienced coder “drives” the mouse
and the more experienced coder can “navigate.” It might also
help less experienced coders if they have time to see what
others are creating with the blocks; encourage coders to walk
around and see what others are doing and then adding similar
code in their projects.

If coders are very comfortable with this kind of challenge, pair
them with other coders with less experience or understanding.
Just make sure the lesser experienced coder “drives” the
mouse and the more experienced coder can “navigate.”

Debugging exercises

Resources and suggestions

This project does not have any associated
debugging challenges; however, click here for °

hundreds of debugging exercises.

Standards reinforced:
1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended
Practices reinforced:
e Testing and refining computational artifacts
Concepts reinforced:
e Algorithms
e Control

https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://microbit.org/scratch/
http://bit.ly/scratchmicrobitcards
https://scratch.mit.edu/users/microbit_edu/
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://scratch.mit.edu/studios/4149066/
https://scratch.mit.edu/studios/4149066/

Suggested guiding questions:
e What should have happened but didn’t?
e Which sprite(s) do you think the problem is located in?
e What code is working and what code has the bug?
e Can you walk me through the algorithm (steps) and point out
where it’s not working?
Are there any blocks missing or out of place?
e How would you code this if you were coding this algorithm from
Scratch?
® Another approach would be to read the question out loud and
give hints as to what types of blocks (e.g., motion, looks, event,
etc.) might be missing.

Reflective questions when solved:
e What was wrong with this code and how did you fix it?
e |s there another way to fix this bug using different code or tools?
® [fthis is not the first time they’ve coded: How was this exercise
similar or different from other times you’ve debugged code in
your own projects or in other exercises?

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach
core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.

List of 100+ unplugged lessons and resources

Incorporating unplugged lessons in the middle of a multi-day project situates understandings within an actual project;
however, unplugged lessons can occur before or after projects with the same concepts. An example for incorporating
unplugged lessons:

Lesson 1. Getting started sequence and beginning project work

Lesson 2. Continuing project work

Lesson 3. Debugging exercises and unplugged lesson that reinforces concepts from a project
Lesson 4. Project extensions and sharing

Reflection suggestions Sharing suggestions
Coders can either discuss some of the following prompts with | Standards reinforced:
a neighbor, in a small group, as a class, or respond in a physical e 1B-AP-17 Describe choices made during program
or digital journal. If reflecting in smaller groups or individually, development using code comments, presentations,
walk around and ask questions to encourage deeper responses and demonstrations
and assess for understanding. Here is a sample of a digital Practices reinforced:
journal designed for Scratch (source) and here is an example of e Communicating about computing
a printable journal useful for younger coders. e Fostering an inclusive culture
Concepts reinforced:
Sample reflection questions or journal prompts: ® Algorithms
e How did you use computational thinking when e Control
creating your project? e Modularity

https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://docs.google.com/spreadsheets/d/1IRAs7iRxQnUmpH9aJ2q4INx8f3JOWwSzJl8sRnI7lVA/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view

What’s something we learned while working on this
project today?
o What are you proud of in your project?
o How did you work through a bug or difficult
challenge today?
What other projects could we do using the same
concepts/blocks we used today?
What'’s something you had to debug today, and what
strategy did you use to debug the error?
What mistakes did you make and how did you learn
from those mistakes?
How did you help other coders with their projects?
o What did you learn from other coders today?
What questions do you have about coding?
o What was challenging today?
Why are comments helpful in our projects?
How is this project similar to other projects you’ve
worked on?
o How is it different?
How do you think the example project uses variables
to select the parts of a sprite?
More sample prompts

® Program development

Peer sharing and learning video: Click here (1:33)

At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
guestions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

Publicly sharing Scratch projects: If coders would like to
publicly share their Scratch projects, they can follow these
steps:
1. Video: Share your project (2:22)
a. Quick reference guide
2. Video (Advanced): Create a thumbnail (4:17)
a. Quick reference guide

http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://scratch.mit.edu/projects/285575193/
https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/WC4qykY3OPI
https://youtu.be/hgaLsGbe2gA
https://docs.google.com/presentation/d/1nmV0T4i6DwsW3QWYSxOzhOTkskPVHW1Kb-RuTqMJoPg/edit?usp=sharing
https://youtu.be/ZSmeRyaWITc
https://docs.google.com/presentation/d/1Kl3a_Y_ahtOVNn-Wm4CgGC2L3ep6cdaM49KzC262tag/edit?usp=sharing

	 ​​​ ​
	Random Sprite Challenge
	At a Glance
	Overview and Purpose
	Objectives and Standards
	Process objective(s):
	Practices and Concepts
	Scratch Blocks
	Vocabulary
	Connections
	Resources

	Project Sequence
	Preparation (20+ minutes)
	Getting Started (10-15+ minutes)
	Project Work (70-75+ minutes; 2+ classes)
	Assessment

	Extended Learning
	Project Extensions
	Differentiation
	Debugging Exercises (1-5+ minutes each)
	Unplugged Lessons and Resources
	Reflection and Sharing

	

