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Executive Summary 

Background 
Systems that contain intrinsic randomness are common, and are characterized by a long 
learning curve of “hard experience” before an individual can master such a system, gaining an 
instinct for the current environment and possible outcomes by actually using the system 
hundreds or thousands of times. 
 
Lacking such a deep investment in learning a system the hard way, Monte Carlo Methods can 
provide insights and instincts into how a system behaves by exercising a model of the system in 
a way similar to a user and capturing key indicators that drive the decision making of the 
experienced individual who is successful at working with the system. 
 
This case study will use the example of “Dealer’s Choice” poker - a system where the dealer is 
allowed to vary the game played and number of wildcards to radically change the environment 
in which the game is played.  Players who understand how the game is changed by the choices 
made by the dealer will perform better than those who rely on instinct or traditional casino/online 
poker models for how to bid and bet. 

Issues 
This technique requires a model that all of intrinsic randomness, where inputs are easily 
automated which, when aggregated can describe a key decision process outcome.    

Results 
While I have most often used Monte Carlo techniques to evaluate game design (eg the 
wildpoker R package and application), the techniques are equally applicable to engineering 
domains such as failure analysis of impact of counterfeit parts or political domains such as  Nate 
Silver’s predictions of USA Presidential and Senate outcomes.  The approach is fairly common 
in any domain where the behavior of independent variables are modeled reliably but how they 
interact in a larger system is difficult to predict or calculate. 
 
 

https://en.wikipedia.org/wiki/Monte_Carlo_method
https://cran.r-project.org/package=wildpoker
https://solbergb.shinyapps.io/wildpoker
https://en.wikipedia.org/wiki/Nate_Silver
https://en.wikipedia.org/wiki/Nate_Silver
http://fivethirtyeight.blogs.nytimes.com/fivethirtyeights-2012-forecast/


The Problem 
Some systems are truly random.  This is often obvious, as in the case of games which have 
random elements such as cards, dice, or computer generated damage and critical hit ranges.  
Sometimes the model is random, because the important result is dependent on lots of smaller 
results, each of which are expressed as a percentage.  For example: 

●​ Counterfeit parts in vehicles or structures are discovered to be present by inspection and 
are significantly weaker than the specced part.  Each part has a different % chance to be 
counterfeit.  Will the vehicle or structure have a catastrophic failure? 

●​ A model has a good track record for predicting statewide elections based on state 
fundamentals and the history of polling for an election cycle.  Will the United States 
Senate or Presidency change hands?  Both depend on state-by-state results. 

●​ An array of storage devices has a predictable failure rate for each device based on the 
age of the devices and the specific brand/model purchased.  How likely is it that enough 
storage devices will fail in a short enough time period to risk the integrity of the array? 

●​ A machine learning algorithm does not settle on a final answer, but cycles between 
several based on where it begins with your data.  Is the algorithm useful anyway even 
though its output is not the same every time it is used? 

 
Intrinsic Randomness at a low level of a complex system does not mean the larger system 
can not be understood.  In absence of outside effects on the overall system system rules of 
thumb often emerge which help a novice (eg “Don’t Draw to an Inside Straight”.  “Fundraising 
Numbers are Important in Elections”.  “Broken Bones take 6 Weeks to Heal”.  “Don’t get into a 
ground war in Asia”).    True experts know when the rules of thumb don’t apply, generally based 
on an intuition gained from working with many cycles of the system over years.   Those experts 
also have a plan for when the random numbers clump and the system enters a danger zone. 
 
The goal of this exercise is to gain that intuition in minutes, rather than years, using the 
capability of modern computers to iterate over a model enough times to gain insight about how 
large numbers of independent, random events cause outcomes. 

The Dealer’s Choice Poker Problem. 
When playing poker, the player choices are limited to: 

●​ Give up on the hand (fold) 
●​ Stay in the game by paying money (call) 
●​ Make everybody else pay more money to stay in (raise) 
●​ In some games, choose which and how many cards to discard (draw) 

 
Working strictly with odds, the way a rules-based computer might play the game, the basic 
concepts behind these decisions are: 

●​ What hand I do I already have? 

https://en.wikipedia.org/wiki/Unapproved_aircraft_part
https://docs.google.com/document/d/1rHr5IW-xDU8Oar30kTp6fBapBk7uTf0GV-rOP-UxTUc/edit#


●​ How many cards are left in the deck that can improve my hand? 
●​ Is the amount of money in the pot multiplied by the odds of improving my hand larger 

than the cost to stay in the game? 
 
Skilled players also do their best to not play with a predictable pattern, and in addition are 
thinking about these concepts: 

●​ Is my hand strong enough to win without improvement? 
○​ I want to keep everybody in the game 

●​ What are the chances an opponent can win on a lucky draw? 
○​ I want to drive that person out of the game 

●​ If my hand improves, how likely is it to win? 
○​ This modifies the calculation about betting cost vs size of pot 

●​ What do I know about all the other players hands and their odds of beating me? 
 
Coming in second best is really bad in Poker, it’s where you lose the most money.  On the 
contrary, luring people in when you know you have the best hand is how you win big. 
 
A common thread is “What is a good hand in this game?”  Without that key piece of 
information, the rest of standard poker skills are useless.  The odds of improving your hand, for 
example, are irrelevant if the improved hand is still likely to lose.  This dynamic is seen even in 
strict casino poker tournaments, requiring skill with 2-8 other players and often several games. 
 
Dealer’s Choice Poker is designed to make “what is a good hand” a hard question to answer.    

●​ Changing the game changes the hand.   A good hand in 5 card Stud is often a loser in 7 
Card Stud.  In Texas Hold-em if the community cards make most of a straight or flush, it 
is likely many players will have that hand, so having the best straight or flush is critical. 

●​ Adding wildcards to the deck changes the value of hands significantly.  Some games 
have wildcards that might emerge in play and a “good hand” definition will shift 
significantly once it is clear whether or not the extra wildcards will be in play. 

●​ The number of players who stay until the last card also matters..  A two person game will 
require a weaker hand to win than a 6 player game.  A 6 player game reduced to two 
players by forcing the other four to fold will still have stronger hands win than a 
two-person game, because the two who stayed in developed a decent hand or makings 
of one early, where weaker hands folded - if your hand is strong for 2 player but only 
middling for 6 player it’ll help if some of your opponents never get to see all their cards. 

 
People good at Dealer’s Choice poker have a good feel for how poker variants change the 
strength of a hand.  When they deal, they can often gain a significant advantage for that game 
simply by choosing a game that is very different in hand mix than the recently played games.   
 
This expertise is normally only gained by a lot of play, to the point where even an unfamiliar 
game can be estimated  - but the question of “what is a good hand” can also be answered via 



Monte Carlo simulation - if the question is posed properly and the results are presented 
carefully. 

Choosing a Question That Can Be Answered 
While it is impossible in a system with intrinsic randomness to reliably predict a single outcome, 
if a decent model of the system exists, it usually can answer a question helpful in understanding 
what can affect the probability space. 
 
In the case of a failure analysis problem, if you have a model of how the entire vehicle or 
structure behaves under stress, the impact of counterfeit parts can be built into the model and 
that model could be run enough times to simulate all the buildings or vehicles you are likely to 
ever build to see if random chance is likely to concentrate enough counterfeit parts on a single 
vehicle or structure to cause it to fail. 
 
In the case of elections, a good model of each of 50 states can be run with the sampling of 
outcomes in all 50 states to measure electoral college counts or Senate seats. 
 
In either case, the law of large numbers helps give a sense of the distribution, and the critical 
tipping point (eg failure of airplane or electoral control) can be used to get a probability - all of 
the measurements below the threshold measure probability of one outcome, all above the 
opposite.   
 
The model’s parameters can then be tweaked to see how they affect the overall odds.  In an 
electoral model, for example, something like the President’s popularity in polls might be a factor, 
and negative advertising could depress that, or actions by the President could improve the 
number, and the impact of a change in either direction on the overall election model might give 
insight on how to act to improve the odds of the desired electoral outcome. 

The Dealer’s Choice Poker Problem. 
The true outcome of a game of poker depends on how the players behave, not strictly what 
cards are dealt.  This requires choosing a metric which is conservative, but which provides 
guidance into correct behaviors. 
 
Much of poker is mechanical - the deck is shuffled, it does or does not have wildcards and the 
hands are dealt in a way prescribed by the rules of the game.   Each player who stays in the 
game for the showdown has a certain number of cards and tries to make the best hand.  What 
is the best hand is also determined by the rules of a specific game - in some games a “high” 
hand is desired, in others “low” in others the pot is split based on criteria having little to do with 
normal poker hand values. 
 
The “best” hand in a given deal of poker therefore is defined as “the hand that won if all players 
stayed in the game until the end”.  While it will not always match what happens in play, 



especially for a hand that develops late in the draw, it is the hand to match or beat in order to be 
safe.  This has a number of advantages for the model - it doesn’t depend on player skill, and 
secondary considerations such as splitting the pot and multiple hands of same type can be 
managed. 

Inputs Must Be Easily Automated 
Monte Carlo techniques can be thought of as “heck with analysis, just measure it”.  In this 
respect they have some similarity to my approach for black box testing complex systems. 
 
Ideally, you have a model that can predict a single event reliably, whether it is a fixed value 
(such as % of parts that are counterfeit, or odds that a Democratic Senator candidate can win in 
Texas) or requires sampling (such as rolling dice, drawing cards or sampling from a theoretical 
normal distribution).   In this situation you can simply put a loop around your model, capture 
output in a data frame, summarize and graph it. 
 
Sometimes the model is static but input data has a random element.  That also is fine, as long 
as you can reliably generate the random data, and the generation algorithm matches reality 
well. 
 
Dealer’s Choice Poker is clearly a good candidate for this criteria - every element of the deal is 
easily simulated with a computer program, as long as player tactics are left out.   Different 
games will deal differently and evaluate differently, which means more games will increase 
model complexity.  Player tactics are a significant worry, as the modeling is much more difficult 
and far more likely to introduce bias, based on how the programmer prefers to play poker. 
 

Analysis of Alternatives 
At this point the thought processes in building the model will be explored using the Dealer’s 
Choice Poker Problem. 
 
There are four key variables that affect “best hand” outcomes in the poker model: 

●​ How many players exist.  There must be two players to have a contest, and no more 
than can be dealt a full had given the size of a deck (usually 52 cards).  This is easy. 

●​ Number of extra wildcards.  This is relatively easily introduced at the time of the shuffle. 
●​ Supported games.  This is where most of the work in the model will reside, as while the 

basic rules of poker and hand value are fairly easy to code, many of the games have 
victory conditions or extra wild cards or additions/subtractions to hand size that require 
the model to understand the order the cards were dealt, which cards are “hole” cards 
and which cards, in the end, belong to each player. 

●​ Player tactics.   In Draw Poker and variants where the player has the option to pass 
cards, steal cards, bid on cards or otherwise interact with the deal player behavior would 
have to be modeled.   As players vary widely in skill and have a strong interest in not 

https://docs.google.com/document/d/1DWYgspMT3Gyw_bYO4NDMUPAxSOnKHYAsHLTuZnnUJmk/edit


behaving predictably, any purely probabilistic set of player tactics will likely bias the 
model, although even a biased model is likely better than approximating the outcome 
based on less tactical games, but that approximation is still better than nothing. 

 
I created a rapid prototype of the model incorporating the player and wildcard logic, but only 
supporting three games (5 card stud, 7 card stud, Texas Hold-Em).  This took only about two 
days to put together and test.  I gained the following insights: 

●​ R is too slow to perform the hand value logic in real-time for hundreds or thousands of 
simulations, although it is fast enough to pre-calculate the numbers. I had visualized 
something with sliders to let a user rapidly evaluate changes based on player, wildcard 
and game, and the result 

●​ The problem of competing hands is significant - some games are likely to end up with 
everybody having, say, a Flush, and in such situations it is extremely important to know if 
you have the best hand of that type.  I attempted to show this with “high flush” vs “flush” 
bars but I was not happy with that approach and needed to improve the visualization. 

●​ Most of the model complexity was in the supported game logic, and to expand to the list 
of games I wished to explore, I had to exclude player tactics, which would both be 
expensive in time to code and less reliable than simply supporting every type of game 
that did not rely on player tactics. 

 
My rapid prototype logic could already support an infinite variety of wildcard combinations and 
about half of the commonly used Dealer Choice combinations such as “Deuces”.  It was a 
simple matter to resolve to include the others I’d encountered or heard of.   Likewise the player 
variable was pretty thoroughly nailed down.  What remained was the type and variety of games I 
could support - at a minimum any game used in professional poker competitions and any 
non-tactics based game I’d encountered in my years of playing “Dealer’s Choice” poker were to 
be included.  Beyond that any variation that didn’t require new logic was included, and a few 
more got with only minor changes required also got included and in one case (The Good The 
Bad and The  Ugly) I added the game simply because it had a discard rule that did not rely in 
player tactics, so I could build the framework for future draw/discard/pass games should I 
someday upgrade the model to include player tactics. 
 
In the end, over 50 games were supported, and I had to include all of the following into the 
overall model logic: 

●​ Split hand logic (as in Hi-Lo, Chicago, Count your Diamonds, Spots) 
●​ Low Hand Wins logic (Lowball, Razz) with several variations (A-5, A-6, 2-7) 
●​ Omaha-like logic where you can make a hand out of only part of hole+community cards 
●​ Multiple community layouts, as in Iron Cross or Double Flop Hold-Em 
●​ Floating wildcard logic such as Follow the Queen or Dirty Schultz 
●​ Hand-specific wildcard logic such as Kankakee or Little Ones 
●​ High hands with less than 5 cards as in 3 Card Monte or Hurricane 

 

https://solbergb.shinyapps.io/pokerapp


In contrast to the 2 days to make the prototype, all of these variations and exceptions took 
nearly 3 weeks to code and thoroughly test, with the “low hand” logic combined with “aces can 
be low or high” causing the most quality assurance headaches. 

Solution Approach 
In addition to simply modeling the games, other functions had to be written to perform the Monte 
Carlo method of playing many games and capturing statistics on their results in a form suitable 
for visualization.  Some of the game variants result in variable numbers of wildcards, so the 
progress of wildcards also had to be tracked.  Because some games split the pot, and ties are 
increasingly possible as wildcards increase, the percent of the pot won by a winning hand also 
had to be tracked.  (decisions on betting are made by comparing the cost to draw to the size of 
the pot you might win if your draw prospers, so if the pot will be fragmented this needs to be part 
of the decision process) 
 
The R package exposes only three functions, and the application primarily uses only wpgraphs. 

●​ wpgame - plays a single game, shows the card layout and which hands were used by 
each player to try to win, plus some basic summary statistics.  Used to show that the 
model is following the rules and for debugging, beyond its use as a building block of the 
later functions 

●​ wpstats - plays as many games as desired, with option to reset the default random 
number seed.  Organizes data either into a raw data frame or a summary “gstat” object 
used by the reporting module. 

●​ wpgraphs - shows a set of graphs tied to a “gstat” object, which vary a bit depending on 
whether or not the game has pot splitting or variable wildcards.  While the function 
produces a canned 4x4 array of graphs, it will alternately return the raw graphics object 
to allow generation of other graphs based on the same data.  This is important because 
the package also includes precalculated gstat data for every supported game, (see 
Implementation, below) and accessing the raw gstat list for a given game instead of 
publishing the 4x4 graph can be done with a simple parameter change to “TRUE”. 

Implementation 

Changes from Initial Approach 
The rapid prototype imagined a user would only interact with the application.  Converting the 
model to a R package meant that there had to be tools allowing others to use the model from 
the R console, and to validate the results. 
 
The hand evaluation program took the bulk of the time, about .006 seconds per hand to run. 
This means 1000 games of 7-player, Seven Card HI-LO means evaluating 14k hands and takes 
about  90 seconds to run, and a game like Courchevel Hi-Lo for the same number of players 



means evaluating 980000 hand combinations, or a bit under 2 hours to run.  This is clearly 
unacceptable for a decision support application, so a utility function was written to loop through 
all supported game, player and wildcard combinations, limited only as follows: 

●​ Player maximum was 8 even if the game allowed more - it’s hard to physically fit more 
around a table, and this matches casino tournament limits. 

●​ Wild card combinations were from zero to 7, and were made up only of combinations of 
Deuces, Suicide King and One-Eyed Jacks.  Beyond 7 additional wildcards results tend 
to skew very strongly to maximum strength hands unless the game is very limited, which 
is why you see Pregnant Threes and Dr Pepper (both 12 wildcard combinations) 
normally only called in 5 card draw poker. 

 
The approach of capturing Monte Carlo simulations for all combinations allowed about 5 days of 
processing to be compressed into a list with a few thousand rows, each row corresponding to a 
legal game, and each a valid target for the wpgraph program. 
 
The Shiny application was modified to turn player and wildcard input into a slider, and the 
supported games into a radio button allowing both the game and equivalent variants to be 
visible at a glance.   The change to simply pointing wpgraph at a list instead of actually playing 
100-1000 games made the application performance instant. 

Lessons Learned 
The game variations were captured in a single data frame, and were treated as inputs to 
switching logic among the basic functions which shuffled the deck, dealt the cards and 
evaluated player cards to find the best main hand and best split hand (where required).   
 
This architectural decision allowed a great deal of flexibility in adding new game variants.  If a 
new row could be added for a new game, it is likely little or no new coding would be needed.  If 
new logic was needed, it would be captured in a new column and affect either the deck 
manipulation or hand evaluation logic, sometimes both.  A few variants violated the assumptions 
of the basic framework and would require significant rework to include, even though they did not 
involve player tactics.  Those variants were left out of the 1.0 release. 
 
Graph structures also had to be redefined for each split hand variant that deviated from a 
standalone game.  Low-hand variants in HI-LO games can fail to have anybody win the low half 
if hands aren’t good enough (so the Main Hand winner gets it all), and some of the other split 
variants also have the possible outcome of no legal split hands.  Any hand structure where legal 
values didn’t match normal high or normal low order or legal hands required extra graphic work. 



Results 

Questions Answered 
With the new application, it is very easy to see the strength of a player’s hand for a particular 
game.   It shows whether that player might have rivals for the best hand, whether or not the 
“best hand” matches the wildcard situation, whether ties or a split pot might reduce the 
winnings.. 

Insights Gained 
With a decision support tool like the Wild Poker application (or wildpoker package, which can do 
the same thing from the R command line), it is possible to quickly familiarize yourself with 
whichever games you expect to encounter and either memorize or make a quick cheat-sheet of 
how hands shift as players arrive or leave the table, or as the game called changes. 
 
This will reduce the chance of paying into a losing hand, one that will lose even if you draw out 
an improvement to the hand.  It will also let you know whether or not it is to your advantage to 
drive rival players out of the game, or try to keep them in the game only to be defeated by you - 
because you know you’ve already made a hand that is quite strong in this environment. 
 
Similar tools, such as for the failure analysis of vehicles or buildings with counterfeit parts, or 
electoral analysis of national elections based on statewide models give a sense for “Where you 
are” in even when at the bottom level, your overall system has random elements. 
 
Actions Taken 
Sometimes you will be in a position to affect destiny, and want to know the likely impact of your 
actions to the overall range of outcomes.   A change in aircraft design perhaps, or a new round 
of political advertising.  Or in the case of Dealer’s Choice, you are the dealer. 
 
While I lacked the Wild Poker application, I’ve been using similar if sometimes less sophisticated 
Monte Carlo techniques to gain insight into games for most of my life, including for Dealer’s 
Choice poker.  My approach to Dealer’s Choice when it was my deal was to call a radically 
different game, where a “good hand” was nothing at all like what it had been in recent games.   
 
Players who did not have an intuition for the shift in “good hand” would make mistakes well 
below their usual level of play, and that, combined with avoiding similar errors when other 
people called the significantly different games meant that in 25 years I’ve never walked away 
from a “friendly” Dealer’s Choice game behind, and was often one of the table’s big winners.  



Conclusion  
Monte Carlo techniques are the first tool I reach for when evaluating game design, whether 
because I wish to participate in the game and play at a high level even as a newcomer, or as an 
abstract exercise, comparing different games evaluating a new game’s possibilities. 
 
I have found it useful in other arenas which contain either random elements in the model or in 
the input data, because truly random behavior is not intuitive.  Random events “clump” and 
causes “outlier” events that are often the most interesting (or risky) thing about the system.  
 
When you have a good model of many small events that together predict behavior of a larger 
system, it is often very hard to calculate the impact of those events but often quite easy to 
simply measure them with Monte Carlo Techniques.  This approach provides intuition about the 
behavior of the larger system normally gained only with long experience and allows some ability 
to predict the impact of changes to either the macro environment or individual components on 
overall behavior of the system. 
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