

Contributors

Menelaos Kokolios

Distributed Systems - May 2013 Exam

CONTRIBUTION APPRECIATED!

Q1.
(a)

Good reasons to build a distributed system:

●​ Tasks get done faster
●​ Can be made more resilient - if one computer fails, another takes over

1

●​ Load balancing and source sharing
●​ Sometimes systems are inherently distributed - people from different locations

collaborate on tasks
●​ Brings out many natural questions about how natural world ecosystems, economies,

emergent behaviours work
(all the reasons were taken from the slides...)
(b)

Did we do anything this year about proxies? I don’t think so, please correct me.
(c)

i. A synchronous system has known to have bounds on:

●​ Transmission (message delivery) time, say m.
●​ Execution and computation time, say c.
●​ The clock’s drift rate from the real time value is bounded by a known value.

=> Round duration time m+c.
Also the clocks have to be synchronised for synchronous communication.
I don’t think it’s valid - synchronous system doesn’t assume any clock synchronisation. We
operate with time changes rather than global time.

ii. Very large bounds on asynchronous systems are not commonly used to make the system
synchronous, because such bounds are unrealistic and because in general asynchronous
distributed systems are more abstract and if they work on one system they are also likely to
work on another one.
This is all I found in Alan Clark’s slides, nothing in this year’s.

Another answer would be that the data sent in round x can only be used in round x + 1 as
synchronous systems tend to be round based. Assuming large bounds would make the system
really really slow.

(d)

2

TCP is the one used for HTTP requests, as it is connection based and used for larger requests.
Also, UDP suffers from possible omission failures, does not provide error correction, while TCP
provides error detection + correction and guaranteed message delivery service.

(e)

From EXC: Omission failure occurs when a process fails to send a message. Arbitrary failure
occurs when a process sends a wrong message at a wrong time.

(f)

There exists no such protocol via text messaging to ensure that neither of us turns up alone.
Even if we agree to send acknowledgment (confirmation) we need to take into account that the
confirmation may fail as well. This is the two generals’ problem.

(g)

i.

●​ Eve can eavesdrop and replay the message later. :)
●​ The transmission can be intercepted and the message can be corrupted - changed to

garbage or modified in favour of Mallory.

ii.
You should make up an encryption key K_mom_you, add a nonce and encrypt it with
K_mom_public and send it back. I cannot understand how this prevents Mallory from
intercepting the message again.? If Mallory intercepts again, she will not be able to decrypt the
message because she doesn’t know K_mom_private, thus she wouldn’t be able to find out
K_mom_you.

3

use time values- like in kerberos
iii.
In order to set up a speedier secret-key communication. +1
symmetric encryption
for sending sequence of messages

4

Q2.
(a)

The important feature of this definition is monotonicity, meaning that if t<t’,

5

then H(t) < H(t’). If a clock is running fast, we would break monotonicity if we were to set it
back. Instead, we represent the time as C(t) = α H(t) + β. By decreasing beta, we retain
C(t) < C(t’) for t<t’.

(b)

I propose Christian’s method. Suppose I send a message requesting synchronization to my
friend at time Tsent , he receives it at time t, and sends back a response, which I receive at time
Trecv. The round trip time is Tround = Trecv - Tsent. Therefore, I would set my clock to t + Tround/2,
assuming it takes approximately the same time for both messages to be delivered. Suppose min
is the minimum time needed for a message to arrive. Therefore, the time on my friends watch at
the time when I receive his reply is at least t + min, or at most t + Tround - min. The interval is
therefore Tround - 2min, meaning that the accuracy is Tround /2 + min.
(what about the time for respond the question mentioned?)

(c)

i. L(e1) = L(e2), the two events e1 & e2 are concurrent.

Quoting Murray: “It means that the real-time order of e1 and e2 is not defined. It could be that
they execute concurrently or at completely different times.”
ii. That would not be suitable because if we were to break ties with process identifiers the
property of vector clocks that V(e1) < V(e2) implies e1 -> e2 would no longer be valid.

(d)

6

i. A distributed finance application stores information about customers
and their accounts. Such information may be deleted once the customer
deletes their account and any transactions involving the customer have
been fully completed.
The snapshot algorithm is useful for detecting stable properties. Here, once the account is
deleted, it is deleted afterwards. Same holds for finished transactions. So, if someone takes
snapshots of the system and checks for these conditions to hold, it is enough to see the
conditions hold in a snapshot. In my opinion, it works here.

ii. The same scenario but the user account may be reactivated within 30
days of deletion.

Don’t understand what we should do here, though. I would take a snapshot and check
modification date of the client account. If it was deleted later than 30 days ago, I would check if
all transactions are finished. If so, we are free to remove the account.

iii. The same distributed finance application wishes to know if two accounts
located separately were ever simultaneously negative.

Not sure: If it’s just one message required to transfer money from one account to the other, e.g.
acc1 sends amount to acc2 like so:

1.​ acc1.balance -= amount;
2.​ acc1.sendMsg(acc2, amount);
3.​ acc2.recvMsg(amount) { acc2.balance += amount};

then it’s a proper algorithm to do so (because we also capture the channel states). However, if
we are expecting some multi-message exchange, then no… ? (I’m supporting myself with the
example given during the lecture - we may just capture reaction to some message - one that we
don’t capture).

iv. The same distributed finance application wishes to know if either of the

7

two accounts have ever been negative.
The answer would be possibly true - not definitely. Again, not sure.

(e)

i. ¬possibly(p) ⇒ definitely(¬p)
i. Holds. If p is impossible then ¬p definitely holds.
ii. definitely(p) ⇒ ¬possibly(¬p)
ii. DOESN’T HOLD. definitely(p) means that we have at least one state in each linearization that
p is true. ¬possibly(¬p) means that for all states p is true, so we cannot infer the latter from the
former (the 1st is a subset of the second).WTF? WTF+1+1 This makes sense to me ^^ WTF - 1

“The statement definitely(p) means that for all linearization L of H, there is a consistent
global state S through which L passes such that S(p) is true”
“The statement possibly(p) means that there is a consistent global state S through
which at least one linearization of H passes such that S(p) is true.” /from slides/

Consider this possible history
 P
 / \
 Not P p
 \ /
 P
 Then definitely(P) since the first state had P, but also possibly(not P) since one history has not
P holding.

8

Q3.

(a)

I don’t think we covered data marshalling this year.

9

We have covered it briefly in the distributed objects lecture.
i) It takes objects and serialises them into XML for transfer over networks. This allows different
internal encodings to talk.
ii) (Definitely not covered this year)
(b)

We have two events:
​ a - process fails;
​ b - process doesn’t respond.
From Bayes rules P(a|b) = \frac {P(b|a)P(a)}{P(b)} and we know that process will not respond, if
it failed -> P(b|a) = 1.
Thus, . We also know P(b)=100%-90%=10%. 𝑃(𝑎|𝑏) = 𝑃(𝑎)

𝑃(𝑏)

Anyone has some idea how to finish it?
Or maybe the correct answer now is that, we need to have some statistics on how faulty the
processes are (P(a)), and our final probability is P(a|b) = 0.10 * P(a).
Should be correct, since in the other side we have written - “We can learn the probability
distribution of message delivery time, and accordingly estimate the probability of failure”
This is an example of the false-positive paradox, i.e. what we learn depends on P(a).
(c)

i. between 0 and N -1
ii. Even if processes do not require access to the critical section, the algorithm continues to
consume bandwidth.Situation when all (most) processes need short frequent access to the
critical section.
 (d)

10

i. Agreement - messages not delivered in the same order at all processes ??
Answer 2: Agreement: Basic multicast is assuming that node is not failed. If node is failed, so
the agreement will be violated because some node will not deliver the message.

ii. Process p sends a request for a sequence number to the sequencer before q does; however,
q’s request arrives first and thus receives priority over p’s request. A Lamport timestamp would
preserve the happened-before relation in regards to which request was sent first to the
sequencer.

(e)

No such condition for asynchronous system; consensus not guaranteed.
(f)

i. Threads are processes inside a process ie. they share the same memory space, hence the
communication is easier.
ii. Threads have the advantage that they have access to the same memory space, thus they
can communicate between themselves more easily. Also, threads need more or less the same
information as the process itself, hence switching execution between threads is less work for the
OS.
iii.
Client-processes can make use of threads to execute concurrently (that is one for each client),
hence if client A is slow, client B does not have to wait for A to finish, but can continue working
on a separate thread.

Thank you for your time.

Best of luck! Oh stop it you :)

11

