ntri

Menelaos Kokolios

Distri

ms - May 2013 Exam

NTRIBUTION APPRECIATED!

1. (a)
(b)

(c)

(d)

(£)

()

(a)

L. (a)

List three good reasons to build a distributed system.

Why is a proxy server more appropriate for a search engine than a social
network?

A synchronous system has known bounds on three properties that an asyn-
chronous system does not.

i. What three properties are they?

ii. Any asynchronous system can be made synchronous simply by assuming
very large bounds which will not realistically be broken. Why i= this
not commonly done?

Two internet protocols, UDP and TCP provide message transmission with
differing failure semantics. Which of the two is used by HTTP for sending
documents (web pages) from server to client? Explain why.

Explain the difference between a process omission failure and a process ar-
bitrary failure and give an example of both.

You and a friend would like to meet up in a bar for lunch and are arranging
thiz via text messaging. Neither of you wishes to turn up alone. Assuming
that there is some possibility that a text message is dropped, devise a pro-
tocol that ensures that either both or neither of you turn up to lunch, or
explain why no such protocol exists.

My mother wishes to send me a secure message, =0 she uses my very secure
2048 bit public key to encrypt the message. The message though is simply
“Hi som”.
i. What can go wrong?
ii. What, if anvthing, should [do upon receiving this message to ensure
that further communication is secure?
iii. Assuming my mother has a public encryption key such that two-way
communication is possible, why might I send her a (possibly newly
penerated) private-shared key?

List three good reasons to build a distributed system.

Good reasons to build a distributed system:

Tasks get done faster
Can be made more resilient - if one computer fails, another takes over

[2 maris|

(2 maris|

[."f mﬂ,r.i.'.s]

IE mar.i.'.-i!]

[4 marks]

[4 marks]

[# marks]

[2 marks]

[S mﬁ.r.i.'.-i!]

[1 mark]

[3 mar.i.;s]

Q1.

Load balancing and source sharing
Sometimes systems are inherently distributed - people from different locations
collaborate on tasks
e Brings out many natural questions about how natural world ecosystems, economies,
emergent behaviours work
(all the reasons were taken from the slides...)

(b)

(b) Why i= a proxy server more appropriate for a search engine than a social
network? [2 marks]

Did we do anything this year about proxies? | don’t think so, please correct me.

(c)

() A synchronous system has known bounds on three properties that an asyn-
chronous system does not.
i. What three properties are they? [mariks]
ii. Any asvochronous system can be made synchronous simply by assuming
very large bounds which will not realistically be broken. Why is this
not commonly done? [2 marks)

i. A synchronous system has known to have bounds on:
e Transmission (message delivery) time, say m.
e Execution and computation time, say c.
e The clock’s drift rate from the real time value is bounded by a known value.
=> Round duration time m+c.
Also the clocks have to be synchronised for synchronous communication.
I don’t think it’s valid - synchronous system doesn’t assume any clock synchronisation. We
operate with time changes rather than global time.

ii. Very large bounds on asynchronous systems are not commonly used to make the system
synchronous, because such bounds are unrealistic and because in general asynchronous
distributed systems are more abstract and if they work on one system they are also likely to
work on another one.

This is all | found in Alan Clark’s slides, nothing in this year’s.

Another answer would be that the data sent in round x can only be used in round x + 1 as
synchronous systems tend to be round based. Assuming large bounds would make the system
really really slow.

(d)
(d) Two internet protocols, UDP and TCP provide message transmission with
differing failure semantics. Which of the two is used by HTTP for sending
documents (web pages) from server to client? Explain why. [4 marks]

TCP is the one used for HTTP requests, as it is connection based and used for larger requests.
Also, UDP suffers from possible omission failures, does not provide error correction, while TCP
provides error detection + correction and guaranteed message delivery service.

(e)
(e) Explain the difference between a process omission failure and a process ar-
bitrary failure and give an example of both. [4 marks]

From EXC: Omission failure occurs when a process fails to send a message. Arbitrary failure
occurs when a process sends a wrong message at a wrong time.

(f)

(f) You and a friend would like to meet up in a bar for lunch and are arranging
this via text messaging. Neither of yvou wishes to turn up alone. Assuming
that there is some possibility that a text message is dropped, devise a pro-
tocol that ensures that either both or neither of you tum up to lunch, or
explain why no such protocol exists, [# marks]

There exists no such protocol via text messaging to ensure that neither of us turns up alone.
Even if we agree to send acknowledgment (confirmation) we need to take into account that the
confirmation may fail as well. This is the two generals’ problem.

(9)
(2) My mother wishes to send me a secure message, so she uses my very secure
2048 bit public key to encrypt the message. The message though is simply
“Hi son™.
i. What can go wrong? [2 marks]
ii. What, if anvthing, should [do upon receiving this message to ensure
that further communication is secure? [2 marks]
iii. Assuming my mother has a public encryption key such that two-way
communication is possible, why might I send her a (possibly newly
generated) private-shared key? [1 mark]
i.
Eve can eavesdrop and replay the message later. :)
The transmission can be intercepted and the message can be corrupted - changed to
garbage or modified in favour of Mallory.
ii.

You should make up an encryption key K_mom_you, add a nonce and encrypt it with
K_mom_public and send it back. | cannot understand how this prevents Mallory from
intercepting the message again.? If Mallory intercepts again, she will not be able to decrypt the
message because she doesn’'t know K_mom_private, thus she wouldn’t be able to find out
K_mom_you.

use time values- like in kerberos

iii.

In order to set up a speedier secret-key communication. +1
symmetric encryption

for sending sequence of messages

Q2.

(a)

(a)

(b)

(c)

(d)

()

(a)

A physical clock H is said to be correct with respect to a given bound p
if, for two real times ¢ and ¢, such that ¢ < ', we have: (1 — p)(t' — t) <
H(t) < H{t") < (1 + p)(t' —t). What important feature does this definition
have and how does it affect what we do when we determine a clock to be
running fast?

Suggest a way that you can synchronise clocks with a friend using only
mobile phone text messaging. You do not have any bounds on how long it
takes a message to be sent and received, nor how guickly either of you can
respond to messages. (Give a bound on how well your clocks are synchronised.

Recall from the course Lamport logical clocks and Vector clocks.

i. We are using Lamport logical clocks. Two events, e; and e; are stamped
such that: L{e;) = L{ez), what can we say about the two events e; and
Ez?

ii. Lamport clocks give a partial ordering to a set of events in a distributed
system. (ne can enforce a total ordering by using the process identifier
at each process. A colleagne suggests we do the same thing for Vector
clocks. What do you think of this idea? Explain yvour reasoning.

A Snapshot algorithm aims to record a global state of a distributed system
using local states recorded at separate times. For each of these applications
explain whether a global snapshot algorithm would be appropriate:

i. A distributed finance application stores information about customers
and their accounts. Such information may be deleted once the customer
deletes their account and any transactions involving the customer have
been fully completed.

ii. The same scenario but the user account may be reactivated within 30
days of deletion.

iii. The same distributed finance application wishes to know if two accounts
located separately were ever simultaneously negative.

iv. The same distributed finance application wishes to know if either of the
two accounts have ever been negative.

The distributed debugging algorithm that we looked at defined two relations
definitely(p) and possibly{p). For each of the following implications explain
whether or not it holds:

i. —possibly(p) = definitely(—p)
ii. definitely(p) = —possibly(—p)

A physical clock H is said to be correct with respect to a given bound p
if, for two real times f and #, such that # < ', we have: (1 — p)(t' — t) <
Ht) = H{(t") < (1 +p)(t' — t). What important feature does this definition
have and how does it affect what we do when we determine a clock to be
running fast?

The important feature of this definition is monotonicity, meaning that if t<t’,

[4 marks]

[4 marks]

[2 mu.r.i.'.-;]

[4 marks]

[2 marks]
[1 mark]
[2 marks]

[2 marks]

[2 mar.i.‘.s]
[2 mu.r.i.'.i!]

[4 marks]

thenH(t) < H(t’).Ifaclockis running fast, we would break monotonicity if we were to set it
back. Instead, we represent thetimeas C (t) = o H(t) + R.By decreasing beta, we retain
C(t) < C(t") fort<t’.

(b)

(b) Suggest a way that vou can synchronise clocks with a friend using only
mobile phone text messaging. You do not have any bounds on how long it
takes a message to be sent and received, nor how quickly either of you can
respond to messages. (Give a bound on how well your clocks are synehronised.

[4 mariks]

| propose Christian’s method. Suppose | send a message requesting synchronization to my
friend at time T, he receives it at time t, and sends back a response, which | receive at time
Treov- The round trip time is T,oung = Treov - Tsent- 1herefore, | would set my clock to t + T,,,n4/2,
assuming it takes approximately the same time for both messages to be delivered. Suppose min
is the minimum time needed for a message to arrive. Therefore, the time on my friends watch at
the time when | receive his reply is at least t + min, or at most t + T,,,.q- min. The interval is
therefore T,.,.q- 2min, meaning that the accuracy is T,.q/2 + min.

(what about the time for respond the question mentioned?)

(c)
(¢) Recall from the course Lamport logical clocks and Vector clocks.

i. We are using Lamport logical clocks. Two events, £) and e; are stamped

such that: L{e;) = L{ez), what can we say about the two events £; and

Ea7 [2 marks]
ii. Lamport clocks give a partial ordering to a set of events in a distributed

system. Cne can enforce a total ordering by using the process identifier

at each process. A colleague suggests we do the same thing for Vector

clocks. What do you think of this idea? Explain your reasoning,. [4 marks]

i. L(e1) = L(e2), the two events e1 & e2 are concurrent.

Quoting Murray: “It means that the real-time order of e1 and e2 is not defined. It could be that
they execute concurrently or at completely different times.

ii. That would not be suitable because if we were to break ties with process identifiers the
property of vector clocks that V(e1) < V(e2) implies e1 -> e2 would no longer be valid.

(d)

(d) A Snapshot algorithm aims to record a global state of a distributed system
using local states recorded at separate times. For each of these applications
explain whether a global snapshot algorithm would be appropriate:

i. A distributed finance application stores information about customers

and their accounts. Such information may be deleted once the customer

deletes their account and any transactions involving the customer have
been fully completed. [2 marks]

ii. The same scenario but the user account may be reactivated within 30
days of deletion. [1 mark]

iii. The same distributed finance application wishes to know if two accounts
located separately were ever simultaneously negative. [2 marks]

iv. The same distributed finance application wishes to know if either of the
two accounts have ever been negative. [2 marks]

i. A distributed finance application stores information about customers

and their accounts. Such information may be deleted once the customer

deletes their account and any transactions involving the customer have

been fully completed.

The snapshot algorithm is useful for detecting stable properties. Here, once the account is
deleted, it is deleted afterwards. Same holds for finished transactions. So, if someone takes
snapshots of the system and checks for these conditions to hold, it is enough to see the
conditions hold in a snapshot. In my opinion, it works here.

ii. The same scenario but the user account may be reactivated within 30
days of deletion.

Don’t understand what we should do here, though. | would take a snapshot and check
modification date of the client account. If it was deleted later than 30 days ago, | would check if
all transactions are finished. If so, we are free to remove the account.

iii. The same distributed finance application wishes to know if two accounts
located separately were ever simultaneously negative.

Not sure: If it's just one message required to transfer money from one account to the other, e.g.
acc1 sends amount to acc? like so:

1. acc1.balance -= amount;

2. accl1.sendMsg(acc2, amount);

3. acc2.recvMsg(amount) { acc2.balance += amount};
then it's a proper algorithm to do so (because we also capture the channel states). However, if
we are expecting some multi-message exchange, then no... ? (I’'m supporting myself with the
example given during the lecture - we may just capture reaction to some message - one that we
don’t capture).

iv. The same distributed finance application wishes to know if either of the

two accounts have ever been negative.
The answer would be possibly true - not definitely. Again, not sure.

(e)
(e) The distributed debugging algorithm that we looked at defined two relations
definitely(p) and possiblyip). For each of the following implications explain
whether or not it holds:
i. —possibly(p) = definitely(—p) [2 marks]
ii. definitely(p) = —possibly(—p) [2 marks]

i. "possibly(p) = definitely(-p)

i. Holds. If p is impossible then —p definitely holds.
ii. definitely(p) = —possibly(-p)

ii.

WTF? WTF+1+1 This makes sense to me " WTF - 1
“The statement definitely(p) means that for all linearization L of H, there is a consistent
global state S through which L passes such that S(p) is true”
“The statement possibly(p) means that there is a consistent global state S through

which at least one linearization of H passes such that S(p) is true.” /from slides/

Consider this possible history

Then definitely(P) since the first state had P, but also possibly(not P) since one history has not
P holding.

Qs.

3.

(a)

3.

(a)

(b)

(c)

(d)

(e)

()

(a)

This guestion concerns data marshalling

i. What is data marshalling and why is it necessary?

ii. Some data marshalling techniques send the tyvpe of data objects to-
pether with the data ohjects themselves as a part of the marshallad
data stream, others do not. For both approaches describe one advan-
tage and the general situation in which it would be used.

It has been measured that if a failure detector process P sends an “are-you-
alive” message to process (@ it can expect a response from a live process
) within time ¢ in 90% of cases. If P sends) an “are-you-alive” message
and does not receive a response within time ¢ what can we say about the

probability that the process) has failed?

In the course we considered four distributed mutual exclusion algorithms.
We analvsed the four in terms of their performance:

i. In the Ring Based algorithm how many messages does it take to enter
the critical section?

ii. What is the disadvantage in bandwidth terms of this algorithm and in
what situation would it therefore be most applicable?

This question concerns building a multicast layer on top of a unicast mes-
saging system:

i. A simple Basic Multicast can be implemented by the sending process
sending to all processes in a loop using a send(p. m) operation. If we
assume that the send(p, m) operation is a reliable one-to-one operation
what property does this basic multicast not have and why?

ii. Suppose yvou are using a sequencer to provide a total order on all broad-

cast messages. Why might one wish senders to additionally stamp their
messages (to the sequencer) with their Lamport stamps?

For a synchronous system it is known that we cannot provide an algorithm
puaranteed to reach consensus if the number of processes which fail is greater
than or equal to the total number of processes divided by three. What, if
any, are the equivalent conditions for an asynchronous system?

This guestion concerns distributed systems and operating system concepts:
i. What are ‘threads'?
ii. Give two advantages of threads over separate processes which a server
process may utilise?
iti. How might a client-process make use of threads?

Thiz gquestion concerns data marshalling
i. What is data marshalling and why is it necessary?

ii. Some data marshalling technigques send the tvpe of data objects to-
gether with the data ohjects themselves as a part of the marshalled
data stream, others do not. For both approaches describe one advan-
tage and the general situation in which it would be used.

| don’t think we covered data marshalling this year.

[2 mﬂr.i.:.-;]

[4 marks]

[2 mﬂ.r.i.:-;]

[2 marks]

[2 marks]

[2 marks]

[# marks]

[2 marks]

[2 mﬂr.i.;-;]

[2 marks]
[2 marks]

[2 mu.r.i.:s]

[4 marks]

We have covered it briefly in the distributed objects lecture.

i) It takes objects and serialises them into XML for transfer over networks. This allows different

internal encodings to talk.
ii) (Definitely not covered this year)
(b)
(b} It has been measured that if a failure detector process P sends an “are-you-
alive” message to process ¢ it can expect a response from a live process
) within time ¢ in 90% of cases. If P sends) an “are-you-alive” message
and does not receive a response within time f what can we say about the
probability that the process () has failed?
We have two events:
a - process fails;
b - process doesn’t respond.

[!3 ma,r.i!.:ﬁ]

From Bayes rules P(a|b) = \frac {P(bla)P(a)}{P(b)} and we know that process will not respond, if

it failed -> P(bja) = 1.
Thus, P(alb) = % We also know P(b)=100%-90%=10%.
Anyone has some idea how to finish it?

Or maybe the correct answer now is that, we need to have some statistics on how faulty the

processes are (P(a)), and our final probability is P(alb) = 0.10 * P(a).

Should be correct, since in the other side we have written - “We can learn the probability
distribution of message delivery time, and accordingly estimate the probability of failure”
This is an example of the false-positive paradox, i.e. what we learn depends on P(a).

(c)

(c) In the course we considered four distributed mutual exclusion algorithms.
We analysed the four in terms of their performance:

i. In the Ring Based algorithm how many messages does it take to enter
the critical section?

ii. What i= the disadvantage in bandwidth terms of this algorithm and in
what situation would it therefore be most applicable?

i. between 0 and N -1

[3 ma,r.i!.:ﬁ]

[2 marks]

ii. Even if processes do not require access to the critical section, the algorithm continues to
consume bandwidth.Situation when all (most) processes need short frequent access to the

critical section.
(d)

{d) Thiz gquestion concerns building a multicast layer on top of a unicast mes-
saging systemn:

i. A =simple Basic Multicast can be implemented by the sending process
sending to all processes in a loop using a send(p, m) operation. If we
assume that the send(p. m) operation is a reliable one-to-one operation
what property does this basic multicast not have and why?

ii. Suppose you are using a sequencer to provide a total order on all broad-
cast messages, Why might one wish senders to additionally stamp their
messages (to the sequencer) with their Lamport stamps?

[!3 ma,r.i!.:ﬁ]

[.":’ ma,r.i!.:ﬁ]

10

i. Agreement - messages not delivered in the same order at all processes ??
Answer 2: Agreement: Basic multicast is assuming that node is not failed. If node is failed, so
the agreement will be violated because some node will not deliver the message.

ii. Process p sends a request for a sequence number to the sequencer before q does; however,
g’s request arrives first and thus receives priority over p’s request. A Lamport timestamp would
preserve the happened-before relation in regards to which request was sent first to the
sequencer.

(e)

(e) For a synchronous system it is known that we cannot provide an algorithm
guaranteed to reach consensus if the pnmber of processes which fail i= greater
than or equal to the total number of processes divided by three. What, if
any, are the equivalent conditions for an asynchronous system? [2 marks]

No such condition for asynchronous system; consensus not guaranteed.

(f)
(f) This question concerns distributed systems and operating system concepts:
i. What are ‘threads'? (2 marks|
ii. Give two advantages of threads over separate processes which a server
process may utilise? [2 marks]
iii. How might a client-process make use of threads? [2 marks]

i. Threads are processes inside a process ie. they share the same memory space, hence the
communication is easier.

ii. Threads have the advantage that they have access to the same memory space, thus they
can communicate between themselves more easily. Also, threads need more or less the same
information as the process itself, hence switching execution between threads is less work for the
OS.

iiii.

Client-processes can make use of threads to execute concurrently (that is one for each client),
hence if client A is slow, client B does not have to wait for A to finish, but can continue working
on a separate thread.

Thank you for your time.

Best of luck! Oh stop it you :)

11

