

Sets and Operations

Set: _____

Elements: _____

Set Notation:

$$B = \{2, 4, 8, 16, 32\}$$

Empty Set: The set containing no elements, denoted _____ or _____.

Universal Set: The set of all possible things (in context), denoted U .

Intersection of Sets: Denoted $A \cap B$, this new set consists of elements that are in *both* A and B simultaneously.

Example:

Mutually Exclusive: Two sets are mutually exclusive if they have *no* elements in common.

Example:

Union of Sets: Denoted $A \cup B$, this new set consists of elements that are in A or B (inclusive "or").

Example:

2.1 Notes Worksheet

Name: _____

1. Define the sets below if $A = \{d, a, i, s, y\}$, $B = \{s, a, y\}$, $C = \{b, e, t\}$, $D = \{y, a, s\}$, and $U = \{a, b, c, \dots, z\}$.

a) $A \cap B =$

d) $C \cap B =$

b) $B \cup D =$

e) $U \cap D =$

c) $A \cup B =$

f) $B \cup C =$

2. Consider sets X and Y , where $n(Y) = 4$, $n(X) = 5$, and $n(X \cup Y) = 7$.

a) Draw a Venn Diagram that illustrates this relationship, using the universal set $U = \{a, b, c, \dots, z\}$.

b) $n(X \cap Y) =$

Cardinal Number Rule for Union/Intersection of Sets:

2.1 Notes Worksheet

Name: _____

Complement of a Set: denoted by A' ; this represents every element in the universal set that is *outside* of A.

Example:

Relationship between set theory and logic:

Set Theory		Logic		Common Wording
Term	Symbol	Term	Symbol	
				or
				and
				not
				If _____, then