
Project 3: 2048
Version 2.0. Last Updated: 2024-07-02.

We highly recommend reading through this spec in its entirety before you begin.

We also recommend you complete all labs up to and including Lab 7: Boards

You can find a walkthrough here, PDF.

Contents

I. Introduction

II. Helper Blocks

III. Suggestions

IV. Part 1: Populating the

Board

V. Part 2: Rotating the Board

VI. Part 3: Merging

VII. Part 4: Ending the Game

VIII. Part 5: Tests

IX. Feedback Form

X. Grading

Submission Guidelines

Please submit on Gradescope

using these instructions, and

make sure to add your partner!

Note: You are not allowed to import any blocks from libraries.

Introduction

In this project, you’ll be working off some skeleton code to build 2048! If you’re

unfamiliar, 2048 is a sliding puzzle game where the goal is to combine same-valued tiles

to reach the value 2048. You can play the game here (for free) to get used to how it

works.

https://docs.google.com/presentation/d/1ngWgVRCeRrizkCOrwPQhbLFY7gZEu6ssdWEg10Qv3Hw/edit?usp=drive_link
https://drive.google.com/file/d/1koa1TbOmoDa5tiIEm6hohQjiMaWjLI1H/view?usp=sharing
https://docs.google.com/document/d/1vxyKrzmPNklv7zd1Ya0Z95jlFgaWlUgqBy0l0CtowZk/edit?usp=sharing
https://play2048.co/


You won’t be building the game from scratch, just

filling out five blocks. All of those blocks will be

reporters, and should not update the board display

— that’s handled for you in the skeleton code. So

MAKE SURE NOT TO MUTATE THE ORIGINAL

BOARD. Once you’ve completed those five block

definitions, you won’t need to change anything else

about the code; it should work!

In a nutshell, the game works like this:

● The starting board contains two tiles with values of 2 or 4.

● When the player hits an arrow key, all tiles on the board “merge” in that

direction.

● After each merge, a random tile of value 2 or 4 is added to the screen.

● The game ends when there are no merges left. You “win” if a tile reads “2048” or

more!

The board representation in this version of 2048 is abstracted away (we call that an

“abstract data type”), but you can picture it as a table that looks like the picture on the

right, containing only 0 and powers of 2 greater than or equal to 2 (e.g., 2, 4, 8, 16, etc).

Do NOT assume that boards are always 4x4 – all the code we give you as well as the

code you write should be able to work with ANY SIZE square board!

Note: Make sure to run your game in Turbo Mode for best response time

results. To turn on Turbo Mode, check the “Turbo Mode” box in the gear

icon menu. The green starting flag will change to a lightning bolt (as shown).

This project must be completed with a partner. If you’re having trouble finding one,

head to the Partner-Finding thread on Ed! Do remember that while you may discuss

general ideas with students you aren’t partners with, sharing code would be

academically dishonest.

If you’re having trouble, please contact the course staff for assistance —Ed, Office hours,

labs, and the project party are all here to help you feel good about the work you’re

doing! If you can’t make the times, tell us, and we’ll figure out how you can still get

support. But we won’t know when or how to help unless you let us know!



Please save a copy of this skeleton Snap!

file (using ‘Save As’) to begin.

Helper Blocks

You will not need to know how we represent a board in this game — we have provided

the following nine helper blocks for you to use to interface with our board

implementation. The Power of Abstraction! With this in mind, please make sure not to

modify the input board in any of the blocks you write! In addition, please use these

blocks, rather than coming up with your own. Also keep in mind that you generally

want to abstract as much as possible, meaning you should not use global variables

within blocks. We created all custom blocks (including the five you will fill out) so that

any information you’ll need will be passed into the block as input.

Block Image Input Output Description/Notes

side length

(number) - desired

length of one side

of the board

an empty side

length x side length

square board

Use this block

rather than the

‘new 4x4 board

with values ___…’

block from the

testing lab. That

block should be

used only for

testing, per the

name of the lab.

board - a 2048

game board at

the length of one

side of the input

board

--

https://snap.berkeley.edu/snap/snap.html#present:Username=dan%20garcia&ProjectName=BJC%20CS10%20Project%203%3A%202048
https://snap.berkeley.edu/snap/snap.html#present:Username=dan%20garcia&ProjectName=BJC%20CS10%20Project%203%3A%202048


some point in the

game

row (number),

column (number),

board (a 2048

game board)

the value (number)

at row, column on

the board

--

row (number),

column (number),

board (a 2048

game board),

value (number) - a

value to be

inserted into board

at row, column

none, this is a

command block.

Use this block to set

a particular square

on the board to a

particular value.

board - a 2048

game board at

some point in the

game

a separate board

with all the same

values as the input

board.

Use this block to

build boards that

need to have/start

with the same

values/game state

as another board.

Updating the copy

will not update the

input board.

board - a 2048

game board at

some point in the

game

a list of lists where

each sublist

contains the row

and column of an

empty position.

--



row (number),

column (number),

size (number) - the

side length of the

board you’d like to

rotate within

the row number of

the resulting

location of this item

This block does not

actually rotate any

part of the board. It

only returns the

row that the input

coordinates (row,

column) would end

up in if the board

was rotated 90

degrees clockwise.

Here is a visual

example.

row (number),

column (number),

size (number) - the

side length of the

board you’d like to

rotate within

the column number
of the resulting
location of this item

This block does not

actually rotate any

part of the board. It

only returns the

column that the

input coordinates

(row, column)

would end up in if

the board was

rotated 90 degrees

clockwise. Here is a

visual example.

board - a 2048

game board at

some point in the

game

None, this is a

command block.

This block updates

the stage to display

the input board,

and sets

. This

will help you mainly

in testing, but

https://steven.codes/cs10/2048/rotate-help.jpg
https://steven.codes/cs10/2048/rotate-help.jpg
https://steven.codes/cs10/2048/rotate-help.jpg
https://steven.codes/cs10/2048/rotate-help.jpg


should not be used

in your game code.

We encourage you to play around with these blocks (input different values and see what

the output is) to better understand what they do and how they work — you can also go

into each block and look at the code. This will help you when using these blocks in the

rest of the project. Just be sure not to change what is inside each of them.

Suggestions

Parts 3 and 4 will take a significant amount of your time spent on the project. We

recommend managing your time to accommodate for the influx of difficulty on the latter

half of project 3. A good mental checkpoint is to have part 2 done by Friday. These are

merely suggestions based on the experience of students from previous semesters.

Part 1: Populating the Board

In this section of the project, you should fill out the ‘add 2 or 4 to ___’ block. The value 2

should have a 75% chance of being added, and the value 4 should have a 25% chance.

These values should be added to a randomly-selected empty space on the board.

Input: board - a 2048 game board with at least one empty space

Output: a copy of board with an added value at a random location

Hint: Stuck? Check out some of the existing blocks in Snap! How will you find where to

insert the value in the board? Are there any blocks we provide that could help?



Make sure you aren’t modifying the original board when working on this. Your output

should be a new copy of the board, and should not update the existing board. Updating

the existing board is done for you in the provided game code.

Part 2: Rotating the Board

In this part, you should fill out the ‘rotate __ clockwise’ block, which takes in a board and

returns a copy of the board that is the result of rotating the input board 90 degrees

clockwise. (You will lose points if you rotate anti-clockwise.)

Input: board - a 2048 game board

Output: a copy of board that has been rotated 90 degrees clockwise

Hint: Take a look at the ‘rotated row’, ‘rotated column’, ‘size of board’, and ‘copy of’

blocks if you’re not sure how to do something! In particular, the ‘copy of’ block will let

you duplicate the contents of a board and then update it separately from the original.

Make sure you aren’t modifying the original board when working on this. Your output

should be a new copy of the board, and should not update the existing board. Updating

the existing board is done for you in the provided game code.

Part 3: Merging

In this section of the project, you’ll be filling out two blocks: ‘merge column __ of __ up’

and ‘merge up __’. It is highly recommended that you make helper blocks as part of

your implementation of ‘merge column __ of __ up’. Note that you can create helper

blocks by right clicking in the scripting area and selecting “make a block…”

This article breaks down the components of merging a single column, which you should

mimic with your implementation. Also, make sure that you’re maintaining the

abstraction provided by ‘merge column __ of __ up’ when you build ‘merge up __’ which

is to say try to use ‘merge column __ of __ up’ while coding up ‘merge up __’.

http://steven.codes/blog/cs10/2048-merge/


Input: col (number, 1 is the leftmost column), board - a 2048 game board

Output: a copy of the board in which column col has been completely merged up

Input: board - a 2048 game board at some point in the game
Output: a copy of board in which all columns have been merged up

Make sure you aren’t modifying the original board when working on this. Your output

should be a new version of the board, and should not update the existing board.

Updating the existing board is done for you in the provided game code.

Note that we only need one block that merges upward (rather than four blocks that each

merge left, right, up, down) because we have the ‘rotate clockwise’ block. If we want to

merge left, for example, we can first rotate the board clockwise 90 degrees, merge up,

and then rotate the board clockwise 270 degrees. The provided skeleton code

implements this for you, though!

Part 4: Ending the Game

In this part of the project, you’ll be filling in the ‘no moves left for __?’ block, which

should report False when there are still merges available on the board, and True when

the board cannot be merged further. Keep in mind that the board can be full and there

can still be moves available.

Input: board - a 2048 game board

Output: whether or not the board can be merged further (Boolean)

Make sure you aren’t modifying the original board when working on this. Your output

should be a Boolean, ie, True/False value signifying whether the game is over or not.

Hint: We found the “cascade” block helpful…



Part 5: Tests

An important part of learning to program is being able to test your code effectively.

We’ve taken the training wheels off; in earlier projects we gave you all the tests, here we

ask you to create the tests yourself. In the TESTER sprite, you will see four blocks:

You need to create at least two separate test cases for these four blocks, with their

respective expected output. Once you are done with all your tests, to get credit from the

autograder, you have to drag these four blocks into the four holes of the append block

and then click that block to assign GRADED TESTS, which the Autograder will use to give

you credit.

Please note that your test cases should output True, not False. This is because the goal

of testing is to check that your blocks work in normal cases as well as edge cases, not to

check that it fails when expected. If your block outputs False, we assume this means

your block does not pass the case and is therefore faulty. When writing test cases, each

test should include input and output (follow the format in the Testing lab), and you

should think about a genuine input for the block that would help you test if it

accomplishes the task it should do, or catches some edgecase. For example, does the

merge column up block work on a column with the values [0, 0, 2, 2]? If the merge

column with this input correctly outputs [4, 0, 0, 0] in that column, the test block should

output True.



Check out these workbook pages which go deeper into the Test block and testing. Feel

free to test your concepts in the 2048 lab section. Tests only present in your lab sprite

will not be counted for project credit. The tests must be present in the “TESTER” section.

Feedback Form

Congratulations on finishing your third project in CS10🥳Please spend some time

completing this feedback form. This will be worth 1 point of your project grade. Thank

you!

Grading

You have five blocks to write, and they will be scored according to the table below; a

perfect score would earn 35 points. Note that for a particular block, the test cases may

have different weights. The autograder needs a score between 0 and 1, so we divide the

total score by 35 to send to the autograder. You should continue to work on your code

until all test cases pass and the score reported by says: {"score": 1}.

However, remember that your final score on this project is the score you’ll see on

Gradescope, which will be out of 35 points.

If at any point you’d like to see a more detailed about how we calculate that out-of-35

score, you can run the block we provide, which reports a

nicely-formatted table (with headers) showing every test case, the expected value, and

the actual value.

Note: correct, working code should handle those test cases, but not have the test cases

hardcoded into your solution; they should be able to handle any inputs according to the

specifications.

See grading breakdown below:

https://cs10.org/bjc-r/cur/programming/2048-testing/the_test_block.html?topic=berkeley_bjc%2F2048-testing%2F2048.topic&course&novideo&noreading&noassignment
https://cs10.org/bjc-r/cur/programming/2048-testing/basic_proj3_tests.html?topic=berkeley_bjc%2F2048-testing%2F2048.topic&course&novideo&noreading&noassignment
https://docs.google.com/forms/d/e/1FAIpQLSeojRlrNR5rVJZs7pbvZppvfQvnFkDJra6G-fqn-tpnrnbFyQ/viewform?usp=sf_link


Block Points per block

4.67

4.67

11.67

4.67

4.67

Testing 3.65

Feedback Form 1

TOTAL 35


