

Department of Electrical and Computer Engineering Technology (ECET)

Division of Engineering, Computer Programming, and Technology (ECPT)

EET 4910

Senior Design Proposal
Smart Electric Guitar (SEG)

Submitted by

Jose Carlo Doliner and Christopher Collins

Supervised by

Dr. Masood Ejaz

November 11, 2023

Abstract
The concept of this project is an electric guitar that utilizes a touchscreen interface that is built

into it to serve as a pedal board. This will allow the user to select from various effects on the

touchscreen within arm’s reach to modify their sound. The touchscreen will be connected to a

microcontroller within the guitar that will process various effects. The microcontroller will take

the sound input through an ADC, then process the signal for the required effect that the user will

select through a touchscreen, and then pass it to the output through a DAC. The user will be able

to select from four various effects including distortion, delay, reverb, and chorus.

Effects are used to shape the sound of an instrument, where the sound is dependent on the

genre. This sound is achieved using pedals which are small circuit boxes that include analog

circuits to reshape the original instrument waveform that is activated by a footswitch. Each pedal

contains its effect and therefore creates a large device. Currently, guitar users must carry a

separate system when traveling to live performances which makes portability difficult. The user

must find various outlets to plug in the equipment which forces them to be limited in where they

can play. Having the pedal board integrated into the guitar allows the user to break free from that

restraint and play virtually anywhere. The microcontroller and touchscreen will utilize a power

bank that can allow it to run for a minimum of four hours before having to plug it in.

The touchscreen Graphical User Interface commands and microcontroller code will work

hand in hand in creating effects to the signal before being passed to the output speaker. This

allows the user to have effects that can be created with low latency and become extremely

customizable. Users can create customized effect banks using presets that allow them to change

the sound of the guitar with only a press of a button.

ii

Acknowledgments
We would like to particularly appreciate the support and guidance from our supervisor Dr.

Masood Ejaz, program leader of the BSECET program. Notably, we would like to appreciate the

support given to us with his understanding and knowledge of digital signal processing as well as

his care and attention in the success of the project and our personal development as future

engineers.

​ We would also like to acknowledge the feedback from Neil Bishop and Jason Adams,

previous BSECET graduates also passionate about music. They provided initial feedback and

suggestions that helped shape the concept of the project. Special acknowledgement is also given

to Peter Van Der Sande, Professor of Audio Technology Recording at Valencia College East

Campus, who also supported the project by providing initial considerations to be taken before

tackling the project itself.

iii

Table of Contents

Cover ​ 𝑖

Abstract​ 𝑖𝑖

Acknowledgments ​ 𝑖𝑖𝑖

Table of Contents​ 𝑖𝑣

List of Figures​ 𝑣𝑖

List of Tables​ 𝑣𝑖𝑖

Chapter 1 Introduction​ 1

1.1 Introduction ​ 2

1.2 Definitions​ 3​

 1.2.1 The Distortion Effect​ 3

 1.2.2 Delay Effect​ 4

 1.2.3 Reverb Effect (Echo)​ 4

 1.2.4 Chorus Effect (Modulation)​ 4

 1.2.5 Further Terminology​ 4

1.3 Hardware Considerations​ 5

1.4 Potential Solution Approaches to Achieve Digital Effects​ 6

 1.4.1 Analog Effect Circuit Simulation Using MATLAB​ 6

 1.4.2 Creating a Proprietary DSP Interface​ 6

 1.4.3 Using VST effects, our Preferred Approach​ 7

Chapter 2 Proposed Work​ 8

2.1 Technical Design and Approach​ 9

 2.1.1 Hardware Design​ 9

 2.1.2 Software Design​ 10

 2.1.3 System High-Level Overview​ 11

 2.2 Engineering Requirements​ 13

 2.2.1 Effects Requirements​ 14

 2.3 Engineering Specifications​ 14

 2.3.1 Processing Module​ 16

 2.3.2 Input/Output Module​ 17

iv

 2.3.3 Electronic Module​ 17

 2.3.4 Power Module​ 18

 2.3.5 Audio Output Module​ 18

 2.4 Proposed Components and Power Budget​ 18

 2.5 Success Criteria​ 21

 2.5.1 Digital Effects Success Criteria​ 21

 2.5.2 Graphical User Interface Success Criteria​ 23

 2.6 Prototype Testing​ 23​​

 2.6.1 Distortion Effect Prototype Testing​ 24​

 2.6.2 GUI Testing​ 26

 2.6.3 Hardware Integration Attempts​ 28

 2.6.4 Guitar Integration Difficulties​ 30

Chapter 3 Non-Technical Issues​ 32

3.1 Budget​ 33

3.2 Proposed Timeline​ 34

 3.2.1 Fall​ 34

 3.2.2 Spring​ 35

3.3 Issues with Ergonomics​ 39

3.4 Ethical Concerns​ 39

Chapter 4 Conclusion​ 40

4.1 Summary and Conclusion​ 41

4.2 Suggestions for Future Work​ 42

References​ 43

Appendix A: Distortion Effect Code Samples​ 45

​ A.1 C++ Code for Audio Processing Block​ 46

​ A.2 C++ Code for Parameter Building​ 47 ​

Appendix B: Graphical User Interface Code Samples​ 48

​ B.1 Python Code for Graphical User Interface​ 49

Group Members​ 51

v

List of Figures
​ ​ ​ ​ ​ ​

Figure 1.1​ Project Concept​ 2

Figure 1.2 ​ 3D Rendered Image of the Proposed Project​ 3

Figure 1.3​ Virtual Studio Technology Logo​ 7

Figure 2.1​ Hardware Block Diagram ​ 9

Figure 2.2​ Software Block Diagram​ 11

Figure 2.3​ Modular Block Diagram​ 12 ​

Figure 2.4​ CAD Rendering of the SEG (Inner Components Exposed)​ 20

Figure 2.5​ CAD Rendering of SEG Components. (Bottom Side View)​ 21

Figure 2.6​ Arctan Distortion Function​ 24

Figure 2.7​ Prototype UI for the Distortion Effect​ 25

Figure 2.8​ GUI Test Stage 1​ 26 ​

Figure 2.9​ GUI Test Stage 2​ 27 ​

Figure 2.10​ GUI Test Stage 3​ 27 ​

Figure 2.11​ Raspberry Pi 4B and Connections Testing​ 28 ​

Figure 2.12​ Touchscreen PCB for Connection Testing​ 29 ​

Figure 2.13​ Raspberry Pi and Touchscreen Integration​ 29

Figure 2.14​ Raspberry Pi Connections Top Visual​ 30

Figure 2.15​ 5” HDMI/USB touchscreen​ 38​

vi

List of Tables
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Table 2.1​ Engineering Requirements​ 13

Table 2.2​ Digital Effects​ 14

Table 2.3​ Engineering Specifications​ 15

Table 2.4​ Power Budget​ 19

Table 2.5​ Digital Effect Waveforms​ 22

Table 3.1​ Projected Budget​ 33

Table 3.2​ Proposed Timeline Fall Semester​ 35

Table 3.3​ Proposed Timeline Spring Semester​ 36

Table 3.4​ Fall GANTT Chart​ 37

Table 3.5​ Spring GANTT Chart​ 38

vii

Chapter 1

Introduction

1.1​ Introduction

1.2​ Definitions

1.3​ Hardware Considerations

1.4​ Potential Solution Approaches

1

1.1​ Introduction

When listening to music, either at home or at a live performance, there is an extremely high

chance of hearing effects being introduced that have drastically changed the audio you hear. In

the music industry, effects (either analog or digital) are utilized to shape the sound of an

instrument. Guitarists have the basic requirement of having pedalboards for their live shows and

recording sessions. These pedalboards consist of sets of circuit boxes called pedals that modify

the audio signal from the guitar to produce their desired sound characteristics. These pedals can

range between $100-$200 each, posing first a monetary constraint (a set of 4 pedals including

their respective cables could range between $500-$1000 depending on brand and quality), along

with the fact that the musician has to carry this equipment around and likely will have to set up

its arrangement for every live performance.

Luckily, there is a way to improve this system to allow for multiple effects to be

refactored into a single piece of equipment. This is the primary concept for SEG (Smart Electric

Guitar), a project that proposes to solve these issues by creating a device built into the guitar

itself that will process the audio signal from the guitar using a digital backend for live processing

and produce the modified audio signal.

In the guitar world, there is a product similar to this, called Digital Multi-Effect Pedals,

which by contrast, creates digital effects on a device that includes several switches controlled by

foot. The difference between this and the SEG is that the latter has the advantage of being

included in the guitar itself, which makes the system both portable and convenient for the

guitarist as it means that only one piece of equipment is needed, that being the instrument itself.

Figure 1.1 Project Concept

2

Figure 1.2. 3D Rendered Image of the Proposed Project.

1.2 ​ Definitions

Let us start by defining digital effects and kinds that are desired for implementation into the

SEG. As mentioned earlier, audio effects are present in every live performance you encounter,

and they modify the native sound of the instrument. For the guitar, there are thousands of effects

with multiple types. For this project, we will focus on developing four standard effects that will

come pre-installed into the device itself, being: Distortion, Delay, Reverb, and Chorus. The

following link will take you to a video demonstration of how the various effects sound:

https://youtu.be/taxik_WI4h8

1.2.1​ The Distortion Effect

The distortion effect modifies the original waveform by performing artificial clipping.

Specifically, this effect seeks to recreate the effect created by a diode clamping circuit or

clipping effects created by vacuum tube amplifiers with too much gain. This effect creates a

harsh, more aggressive tone distinctive to many genres such as Rock and Blues.

3

https://youtu.be/taxik_WI4h8

1.2.2​ Delay Effect

The delay effect takes the original sound and plays it back at a fixed rate, where the repetitions

eventually fade in amplitude. It is called delay because you can hear a repetition of the notes

sometime after they are played.

1.2.3​ Reverb Effect (Echo)

This effect simulates the echo and natural decay of sound as it dissipates through a room. This

effect’s focus is to add space to the sound and provide a more open tone to it. You can think of

this effect as if you were standing in an empty room, where your voice constantly bounces back

from the walls, therefore having your voice fade over time at a slower rate. This effect is quite

common and present in most music genres in some form.

1.2.4​ Chorus Effect (Modulation)

The chorus effect seeks to emulate the effect when multiple voices and subtle pitch differences

occur when multiple instruments or voices play the same notes at the same time. The term chorus

refers to a choir where multiple voices sing the same notes but have distinctive differences in

their tones and sounds. On a more objective note, this effect takes a sample of the original sound

and doubles it with a preset pitch distinction.

1.2.5​ Further Terminology

Across this report we are going to refer to several aspects of guitars and audio processing that are

unfamiliar to the average person, therefore we are going to supply more context to these in this

section.

For starters let us introduce the device that allows us to get the sound out of an electric

guitar. Magnetic pickups are devices present in every electric guitar. They take the role of

converting the natural sound of the string vibrations into an electrical signal. The output from

these pickups is then hardwired into knobs that usually control the volume (reduce signal

amplitude) and a simple RC high-pass filter to reduce noise.

4

Another set of terms used throughout this report is ADC/DAC which stands for

analog-to-digital and digital-to-analog converters. As their names suggest they are used to

convert an analog signal to a discrete binary signal and vice versa. These are used in everyday

components to convert voltage values that have an infinite range into a discrete set of values for

processing purposes. When an audio signal is processed through an ADC into a microprocessor,

the computer will take samples of the amplitude of the signal at a rate called the sample rate.

This sample rate is usually a specification found on ADCs and it is fundamental for audio

processing as it dictates how fast we can read any analog audio input passed to the system. This

term is accompanied by the buffer size which is the number of samples the computer takes to

process an audio signal. For audio processing, we would want the highest sample rate with the

smallest buffer size. These two terms combined will determine the latency of the system, which

is the amount of time it takes for an input to be processed and sent to the output. In simple terms

and for our purposes, latency is the time it takes for an audio signal to come out of our speakers

when we hit the strings of the guitar.

Lastly, DSP or Digital Signal Processing is a set of techniques utilized to manage and

modify our samples in a way that produces the desired audio effect at hand.

1.3​ Hardware Considerations

For the hardware elements of the project, size constraints play a key role in the design choices

taken for the project as well as the specifications, due to the proposed approach for dealing with

hardware components is to build the electronic components inside the guitar, while exposing the

touchscreen as an outside interface. Thankfully, with the use of microprocessors, there is a

straightforward approach to achieve this if the guitar is modified to fit the components inside.

​ There are two ways to interface with a guitar's natural sound. One of them is to create a

system independent of the guitar itself that could be detached and attached to the guitar, whose

input is the direct output of the guitar itself. This device would then have an output that should

resemble the output of the guitar. This approach has the limitation that it would reduce the

portability of the system. Every aspect of the design revolves around packaging the system in an

enclosure that is small enough to not interfere with the player’s ability to perform.

5

Due to this limitation, our desired approach is to create a device built into the guitar itself.

The sound from the guitar is directly gathered by hardwiring the magnetic pickups to an ADC. It

converts the analog signal from the guitar into a signal that is processed by the operating system

of the processing device. Having this packaged in this arrangement allows for the touchscreen to

be the only exposed component of the system, both reducing risks of component failure and

allowing for a better weight distribution of the device from the guitar. A more in-depth

description of the hardware components is provided in Chapter 2.

1.4​ Potential Solution Approaches to Achieve Digital Effects

There are several ways in which digital audio effects can be created as well as ways to integrate

them inside of the guitar itself. Section 1.4 will focus on highlighting the creation of digital audio

effects and how the SEG will compare against them.

1.4.1​ Analog Effect Circuit Simulation Using MATLAB

One approach frequently used to emulate pedal effects is to use MATLAB. This is because

MATLAB allows the simulation of analog circuits and transfer functions to create the desired

effects [9]. Although simple in theory, over a longer, more expansive project such as this one

becomes increasingly complicated, especially due to the issue of high latency and interfacing

restrictions with MATLAB. Since this project focuses on a real-time application, the presence of

latency poses a substantial problem.

1.4.2​ Creating a proprietary DSP interface

Multi-Effect Pedals (described in Section 1.1) are created using a Digital Signal Processor

(DSP). These, although powerful and fast, come with the main disadvantage of being complex to

work on and difficult to interface with using a touchscreen, especially for a project as ambitious

as this one. Although possible to implement, it simply falls outside of the time constraints for the

project. Another drawback of creating a proprietary DSP interface is that the user would be

restricted to just being able to use the standard four default effects when in theory we could allow

6

the user to import other effects available on the internet by using a more general solution

approach.

1.4.3​ Using VST effects, our Preferred Approach.

Our proposed way to achieve this is by creating customized VST Plugins (Virtual Studio

Technology) that will allow the user to modify their sound from the guitar itself. The VST format

is a widely used software format (developed by Steinberg) for DSP sound effect creation, used in

the industry to create digital effects and their respective interfaces for parameter customization.

The powerful aspect of VSTs is that they are developed to easily interface with the Operating

system’s audio devices and create audio samples.

Figure 1.3 Virtual Studio Workstation Logo

7

Chapter 2

Proposed Work

2.1 Technical Design and Approach

2.2 Engineering Requirements

2.3​ Engineering Specifications

2.4​ Proposed Components and Power Budget

2.5​ Success Criteria

2.6​ Prototype Testing

8

2.1 Technical Design and Approach

In this section we will provide a general overview of the technical components proposed to

create a guitar digital interface, controlled by a touchscreen, which is capable of handling live

effects in arms reach.

2.1.1​ Hardware Design

As mentioned briefly in Chapter 1, a technical concern regarding the creation of the SEG system

is the size constraint. We seek to eliminate/mitigate these constraints by building a part of the

system into the guitar, exposing only the necessary aspects needed by the user on the outside.

​ The native signal from the guitar pickups will be connected to a bandpass filter that will

be controlled by two knobs, one further knob will be implemented to control the volume of the

system. The signal coming out of the filter/volume control knobs will be amplified and then

passed to an ADC. The ADC will convert the analog electrical signal from the pickups to a

digital signal to be interfaced with a microprocessor. This microprocessor serves the purpose of

handling the effects by using DSP software developed to create the desired effects. A

touchscreen will communicate with the microprocessor to control the parameters of the effects.

The modified signal from the microprocessor will be then passed to a DAC that will then be

amplified and passed to the output. This output will be at a level that can be safely passed to a

standard guitar amplifier. The following block diagram displays the flow of the hardware

components:

Figure 2.1. Hardware Block Diagram

9

2.1.2​ Software Design

For this project, several considerations need to be made about the software design, as mentioned

in Chapter 1. The digital effects will be created by designing VST software packages tailored to

the application and format appropriate for a touchscreen display. To make full use of the VST

format, a user interface (UI) needs to be developed to interface and manipulate the state and

presence of these effects. Even though this poses a great challenge, it also produces a fantastic

opportunity to increase accessibility and customization for the user, since it means that the user

can import their own VST Plugin into the program, instead of having to rely solely on the effects

that we built for the SEG. ​

​ Sound Effects are entities that are connected in series. This means that if an effect that

changes the signal in a certain way is then passed as the input of a different effect, the latter will

modify the signal according to how the original effect handled it in the first place. This means

that order matters; it is different from having distortion and then delay as having delay and then

distortion. This concept is the fundamental aspect of an Effect Chain. Since order matters, it is

desired to have an interface in which the different effects can be rearranged at will and each

effect can be modified independently. This is a concept that will be managed by a designed UI.

​ The UI will have two distinct modes to manage the guitar’s signal. One mode is the

“Edit Mode” which will be seen by the user to modify the state and order of the effects in the

chain. This mode will give the option for the user of having different presets, or sound effect

banks, which then can be modified due to specific parameters within the effect itself. Here the

user can select to add or remove effect pedals as well as change the order of the pedals. The other

mode allowed by the UI is the Performance/Play mode. This mode, as the name suggests, is the

desired mode for the user to use during a performance. During a performance, the guitarist will

enable or disable an effect pedal depending on the arrangement of the song performed.

Therefore, it is necessary to provide the user with a way to swiftly change the activeness of a

guitar pedal. Whatever effect the user selects in the edit mode, they will then have it available in

their performance mode. The user also has the option to change the preset selected in this mode,

which is useful as it avoids the user having to go to the edit mode in between songs. The

following block diagram describes the behavior of the UI:

10

Figure 2.2 Software Block Diagram​

​ Another major software component of the system is the creation of the VST effects

themselves. The desired approach taken to develop these interfaces will be using a set of libraries

called JUCE [5]. These libraries provide a clear path to develop the GUI interface for the

parameters needed for each of the effects as well as for the digital signal processing needed to

interface with the individual samples to generate the desired effect. As mentioned earlier, these

effects need to be developed independently from one another to allow for the modularity

required to create the desired effect chain.

2.1.3 System High-Level Overview

This section covers the specific modules required for the system to properly function. The

Electronic Module of the system will oversee managing the input signal from the guitar and

providing it in an appropriate format ready for processing by the microprocessor. It consists of

guitar pickups, a bandpass filter, an amplifier circuit, and an ADC. The output module is

interconnected with the Processing Module. This module consists of a Microprocessor that has

the responsibility of overseeing the effect chain. This module relies on the I/O Module which

consists of a touchscreen that is going to be the main interface for the user to modify the effect

11

chain as well as the specific parameters of the effects. After the audio is processed by the

microcontroller in the processing module, this digital signal will then pass to the Audio Output

Module which has the responsibility of faithfully reproducing the modified signal from the

processing module into an analog form ready to pass to an amplifier or speaker. This module

consists of a DAC, an amplifier circuit that brings the analog signal to the standard line level

signal (-30Db), and a switch. This switch is directly connected to the guitar pickups in the

Electronic Module and serves as a bypass for the effects. This means that when the switch is

active the microprocessor will handle the audio signal and when inactive will then provide the

clean guitar signal straight from the pickups. All modules receive power from the Power Module

consisting of a single portable battery and a power switch.

 Figure 2.3 Modular Block Diagram

12

2.2 Engineering Requirements

At a high level, the project and modules have design considerations and guidelines that need to

be covered to supply an acceptable product. These considerations are made such that the user has

the appropriate output from the system. This project also seeks to provide an enjoyable

experience, meaning that the product will not harm but only aid the performance of the guitarist.

The following table describes the proposed Engineering requirements that the product shall

follow to achieve the goal of the project.

Table 2.1 Engineering Requirements

Level
Requirements (The Product

Shall...) Verification and Success Criteria

High

Be able to produce the following Guitar
Audio Effects: Distortion, Delay,

Reverb, and Modulation

The output waveform of each of these effects
will be compared to the generic waveform

expected for them. Each effect definition can
be found in the Effects Description Table

below.

Correctly process input sound from
the guitar pickups and be available at

the output with the same level as the
pickup input (instrument level of -30

dB)

Scope measurements of the input waveform
from the pickups will be compared with the
output waveform, where the same level must
be experienced as well as the same waveform

shape (Ignoring resolution loss due to the
ADC/DAC since it is unavoidable)

Have no more than 10ms latency
between guitar input from pickups and

output signal

Probing the input signal coming from the
pickups against the output signal of the output
amplifier should yield a latency below 10 ms

Medium
Be able to bypass the guitar pickup

signal to the output.

The guitar input signal and the output signal
will be compared while using a bypass switch,

in this test both signals shall be identical.

Low
Be able to remain powered on for 4

hours with the display active

With a fully loaded effects chain (maximum
power consumption) the time taken for the

battery to run out will be measured.

13

2.2.1 Effects Requirements

The main goal of this project is to provide predetermined effects to the user. The effects,

Distortion, Delay, Reverb, and Chorus, each have characteristic parameters and waveforms that

are desired to be replicated by the processing module of the system. These effects will be

required to follow the description seen below (Table 2.2):

14

Table 2.2 Digital Effects

Effects Waveform Description

Distortion

This effect modifies the original waveform by adding
nonlinear harmonic distortion. The waveform flattens along

positive and negative peaks which can either soft or hard clip
the signal depending on the distortion parameter set by the

user. This increases the amplitude of even harmonics (for the
soft clip) or odd harmonics (for the hard clip).

Delay

This effect plays back a copy of the original waveform for a
set amount of time. Some parameters controlled by this effect
are time (controls the amount of time between the repetitions
of the copy), the volume of the copies (called mix), and the

feedback on the amount of time that the copies will play
back.

Reverb

The wave has an added tail that emulates the audio bouncing
out of the walls of a room. Two parameters are important in

this effect which are the room size (dictates how long the
reverb tail is active) and the effect's mix (how active the

effect is with respect to the original wave)

Chorus
(Modulation)

The main modulation type selected for this project is Chorus.
This functions similarly to the delay effect with the difference

that the pitch of the copies of the original signal is changed
by a preset amount determined by the depth parameter. A rate

parameter also controls how fast the modulation occurs.

2.3 Engineering Specifications

This system can be categorized into five main modules: processing, input/output, electronic,

power, and audio output, as seen in the block diagram of the system (Figure 2.3) under Section

2.1.3. These modules work together simultaneously and need certain requirements to allow the

system to properly perform. Each of the modules has components that make up certain

requirements that are needed to perform their duty. Each component will then be broken down to

its specific specifications for proper performance. If these specifications are not properly met

when gathering materials, the system will not function properly which makes it essential to

follow these specifications. A summary of the Engineering Specifications for this project can be

seen in Table 2.3:

Table 2.3 Engineering Specifications

Block Name Component
Engineering
Specification Justification and Verification Responsibility

Processing
Module Microcontroller

64-bit Processor Maximize Data that can be used and
can run the programs designated

Chris

8 Gb RAM
Needed to run the programs at an

efficient rate to allow the program to
maximize latency

GPIO HAT To connect the ADC/DAC to the
microcontroller

minimum 32 Gb HDD To allow space for OS and effects
application

I/O Module Touchscreen

minimum 5-inch
display

Big enough to display the different
effects

HDMI and USB inputs Be compatible with the microcontroller

LCD color display
800x480 pixels Capable to display the interface

Touch compatible Allow the user to select the effect

Electronic
Module

Bandpass filter

High pass and Low
pass filter cutoff
frequencies of

90Hz-500Hz and 2.5
khz-10khz.

Filter out inaudible frequencies and
unnecessary noise before entering

the ADC stage. Also, it provides users
with ways to equalize signals further

without digital effects. Jose

15

Low Gain
Amplifier

Supply 0.8 Vrms
(2.26 Vpp) to the

ADC

Provide standard audio input voltage
level to the ADC for efficient
conversion without distortion

ADC

Signal to Noise Ratio
100 dB Minimize the background noise

24-bit Resolution
Allow sufficient resolution for

acceptable audio quality. (For a
2.26Vpp input it provides 135nV/Step)

GPIO Connection Allows efficient transfer of data to the
microprocessor

Minimum sample rate
44.1 kHz

Minimum requirement for CD audio
quality

Power Module Portable Battery

Supply 18W to the
system

Requirements to run the
microcontroller and satisfy Electronic

and Audio output modules power
draw

Group

15 Ah Run the microcontroller for around 4
hours

Audio Output
Module

Output Amplifier

Bring output voltage
from DAC to a

maximum of 0.4 Vrms
(1 Vpp).

Provide the proper voltage output
level for a guitar

DAC

Signal to Noise Ratio
of 100 dB Minimize the background noise

24-bit Resolution Allow sufficient resolution for
acceptable audio quality.

GPIO Connection Allows for sufficient sound quality at
the output.

2.3.1 Processing Module

The processing module is the brains of the operation and allows the system to run programs in

the background to add effects to the audio signal and run a Graphical User Interface for the

user’s convenience. This is a large load set on the processing module which means a fast, reliable

processor will be needed for this system. The processing module component will be a

microcontroller. A microcontroller is a mini, credit card-sized computer. This will allow the

system to be compact and fit inside an electric guitar. A 64-bit processor will be needed to

maximize the data that can be used and run the programs that are designed for the project. A

minimum of 8 GB of RAM will be needed to run the programs at an efficient rate to allow the

program to minimize latency issues on the signal as well as the interface. A minimum of 32 GB

16

of memory in the hard drive is needed to allow space for the operating system and applications

for the effects. The module will also need an HDMI port to connect the ADC/DAC to the system

to convert the incoming and outgoing signals.

2.3.2 Input/Output Module

The input/output (I/O) module is the backbone of the project. This module allows the user to

select from various effects and speaks to the processing module on what needs to be

implemented. The I/O module will consist of a touchscreen as its component. The touchscreen

needs to have a screen that is a minimum of four inches to be big enough to display the various

effects to be chosen but five inches is the largest to fit the guitar. The touchscreen will need to

have HDMI and USB inputs that will make it compatible with the microcontroller. The

touchscreen will need a minimum LCD color display of 800x400 pixels to display the proper

interface on the touchscreen, larger screens will need different pixel dimensions. The screen must

be touch-compatible to allow the user to select the effect that is desired without other peripheral

devices.

2.3.3 Electronic Module

The electronic module is the muscle of the operation. This module will be broken down into

three components: a bandpass filter, a low-gain amplifier, and an ADC.

​ The bandpass filter will need high pass and low pass filter cutoff frequencies between 90

Hz – 500 Hz and 2.5 kHz -10 kHz. This component will filter out inaudible frequencies and

unnecessary noise before entering the ADC stage. Also, this component will allow the user to

further equalize the signal without the digital effects.

​ The low-gain amplifier will need to supply 0.8V (RMS) or 2.26V(pp) to the ADC. This

specification is needed to provide a standard audio input voltage level to the ADC for efficient

conversion without distortion.

​ The final component is the Audio to Digital Converter (ADC) which is responsible for

taking incoming audio signals and converting them to digital signals to allow the computer to

17

read and edit them. This will need a signal-to-noise ratio of 100 dB to minimize the background

noise. It will need 24-bit resolution to allow sufficient precision for acceptable audio quality. For

a reference voltage of 5V, it will provide around 300nV per step. It will need a GPIO connection

to allow efficient transfer of data to the microprocessor. Lastly, it will need a minimum sampling

rate of 44.1 kHz, which is the minimum requirement for CD audio quality.

2.3.4 Power Module

The power module is responsible for supplying the system with power to perform its required

tasks. The power module’s main component will be a portable battery. This battery will need to

supply 18W to the system which is the requirement to run the microcontroller and satisfy

electronic and audio output modules power draw. The battery will need a minimum of 15Ah to

efficiently run the microcontroller for approximately 4 hours.

2.3.5 Audio Output Module

The audio output module is responsible for getting the signal that has been altered to the proper

output peripheral. This system will contain two components, an output amplifier, and a

digital-to-analog converter. The output amplifier will need to bring output voltage from DAC to

a maximum of 0.4V(rms) or 1V(pp), which is required to provide the proper voltage output level

for a guitar. The DAC will need a Signal-to-Noise ratio of 100dB to minimize the background

noise. It will require a 24-bit resolution to allow sufficient precision for acceptable audio quality.

The DAC will need GPIO connections to allow for sufficient sound quality at the output.

2.4 Proposed Components and Power Budget

After analyzing the engineering specifications that will be required to properly perform this

project, the components can be easily chosen. When finding components for the project it is

required to read all data sheets to ensure the component fits the specifications that were

described in section 2.3 of the report. Table 2.4 summarizes the power budget for this project:

18

For the processing module, a microcontroller will be needed to run the programs at the

scale that is required. The microcontroller that will be used is a Raspberry Pi 4B with 8 GB of

RAM. [7] This microcontroller has 8 GB of DDR4 SDRAM, HDMI ports, a 64-bit processor,

and 128 GB of storage. This microcontroller contains all the minimum requirements stated in

Chapter 2.4 and can confidently say will satisfy the needs of the project. This module will use 5

V and 3 A which equates to a power draw of 15 W.

For the I/O module, a touchscreen will be needed to allow the user to select from various

effects seamlessly. The touchscreen that fits the required specifications is the Raspberry Pi's

official 7-inch touchscreen. This touchscreen has a 7-inch display and is manufactured for the

sole purpose of connecting to the Raspberry Pi 4. This touchscreen will allow enough room on

the screen for the user to comfortably select its effect. This touchscreen uses 5 V and 0.55 mA

which is a total of 2.75 W.

For the Electronic Module as well as the Output Audio module the ADC+DAC + I/O

amplifier that will be used is the DAC + ADC from Hifiberry. [8] This ADC+DAC is compatible

with the Raspberry Pi 4 and contains the ADC, DAC, and amplifier that are required to run this

project. After reviewing the datasheet [9], provides all requirements that were set out in the

specifications and more. This module uses 5 V and 60 mA for a total of 0.3 W.

For the Power Module, the portable power bank that matches the required specifications

is the KEOLL Power Bank.[10] This power bank has a 25.8 Ah, 22.5 W battery. This has USB

19

Table 2.4 Power Budget

Module Item Voltage (V) Current (A) Power(W)

Processing Module Microcontroller 5 V 3 A 15 W

I/O Module Touchscreen 5 V 550 mA 2.75 W

Electronic Module & Output Audio
Module

ADC+DAC +
I/O Amplifier

5 V 60 mA 0.3 W

Power Module
Portable
Battery

 -22W

Total -4 W

ports to allow all components to be efficiently plugged in. This gives us more than enough

wattage and amp hours to power this system for the allotted time. The wattage needed to run this

system is 18 W, the power bank has a wattage of 22.5 W and allows 4.5 W leftover. The 25.8 Ah

allows the system to run longer than the intended 4 hours when running at full power.

​ In Figure 2.4, a 3D rendering of these parts integrated within the guitar can be

appreciated. The image is in scale with the dimensions of the guitar as well as the components

used such as the Raspberry Pi, the ADC/DAC, the touchscreen as well and a placeholder box for

the battery. Note that the face of the guitar is excluded from this image to appreciate the

components inside of it.

Figure 2.4 CAD Rendering of the SEG (Inner Components Exposed)

In the following CAD Rendering (Figure 2.5) a specific description of the parts integrated

within the guitar can also be seen. Note that Figure 2.5 is a visual from the underside of the

guitar.

20

Figure 2.5 CAD Rendering of SEG Components. (Bottom Side View)

2.5 Success Criteria

2.5.1 Digital Effects Success Criteria

The sound quality and aspects of a sound waveform cannot be objectively deduced just by

listening to the effect itself. Due to this, the success of the effects being developed will be tested

by taking oscilloscope measurements of each effect from the output of the device. The output

waveforms shall resemble the expected waveform for the desired effect. Table 2.5 below

displays examples of how the waveform of a clean signal gets modified by a specific effect. The

output provided by the effects created in the processing module shall resemble the waveform

behaviors seen in Table 2.5. Note that with “resemble” we mean that the characteristic changes

from the original waveform to the output waveform shall also be apparent in the VST effects

developed for this project.

21

The effects seen in Table 2.5 were gathered by using a Roland SP404A sampler device.

The sampler has the main functionality of recording a sound sample and playing it back, with the

capability of adding digital effects to the clean sample. The sound sample recorded was a single

musical note G3 (196 Hz). The test was performed by stripping a line cable to reveal its two ∼

ground and signal wires, which were attached to a Rigol DS1102D Oscilloscope. This line cable

was connected to the output of the sampler. Different waveforms were collected by applying the

four different effects. Note that for the chorus effect, the scaling for the view was expanded in

the x-axis to better show the effect.

22

2.5.2 Graphical User Interface Success Criteria

Testing of the Graphical User Interface (GUI) will be conducted in many stages of this project.

The initial GUI testing will be issued after the completion of the first GUI. The first GUI will be

a simple GUI with four buttons with our desired effects as their names. It can be concluded that

the GUI passes the first test when a button is selected, and the program outputs the name of the

desired effect. This GUI will undergo many changes throughout the semester to accommodate

the ever-changing critiques that will occur during this process. Once the interface reaches the

desired orientation and look, it will be tested once more with the program that prints the effect

that is selected.

​ Once the desired look has been achieved, the next step is to make the interface allow the

buttons to change the order of the effect positions. In this system, the order of the effects will

change the output of the selected effects. This will require the touchscreen to be able to drag and

drop these buttons in an “edit” mode. Once the edit mode has been successfully created, the next

step of testing the success criteria is to test the commands once more and see if they successfully

output the button that is selected.

Once the interface reaches the desired look, the next portion of the success criteria is to

incorporate the backend software. This code will need to successfully output the desired effect

that has been selected. It will need to select and deselect from various buttons and put them in

the order the user desires. This will be considered successful if the GUI can accurately detect

what effect and order of effects want to be implemented.

 2.6 Prototype Testing

This semester, the system went through many stages of initial testing and configurations. This

allowed us, the developers, to successfully improve the ideas that were initially proposed. This

testing came with failures from the initial design but has been properly adjusted to create a

functioning system.

23

2.6.1 Distortion Effect Prototype Testing

Throughout this semester several stages of testing were performed in the creation of digital

effects. In particular, the distortion effect was the first to be chosen for development.

​ An approach for the creation of distortion originates by simulating what occurs when a

signal clips in a diode circuit. To create a digital effect that produces this characteristic

waveform, a mathematical function needs to be created to modify the samples of the waveform.

Through our research performed on the distortion effect a function that fits our criteria required

is satisfied by a function in the form of [13]:

 𝑓(𝑠) = 2
π 𝑎𝑟𝑐𝑡𝑎𝑛(𝑠 * 𝑔)

Where the input parameter is (s) which is the sample amplitude and (g) which is our gain

value. The value of the gain is an arbitrary scaling factor to increase the clipping experienced in

the curve. The following plot (Figure 2.6) demonstrates the behavior of this function by letting

s=sin(x) and ”g” be an arbitrary value of 8.

 Figure 2.6 Arctan Distortion Function

24

​ A couple of parameters were also added to further modify the effect on the signal. A

volume control was added to reduce the volumes of the samples (v) at the user’s will and a drive

parameter was added as a division factor for the gain, this dictates the slope in which to reach the

clipping point in the signal.

In practice, the full formula implemented by the effect becomes:

 𝑓(𝑠) = 𝑣(2
π 𝑎𝑟𝑐𝑡𝑎𝑛(𝑠𝑔𝑑) + 𝑠

2)

​ The parameter for gain was chosen to be from [1-150] based on the testing performed,

which showed these values to create sufficient distortion. The distortion and volume factors were

set from [0,1] as they serve as scaling/reducing factors. A simple GUI for this effect is shown

below and was used to test the performance of the effect.

 Figure 2.7 Prototype UI for the Distortion Effect

​ A code sample used to create the above effect can be seen in Appendix A. Along with this,

the sound produced by this effect can be listened to with the following link provided:

https://static.wixstatic.com/mp3/f9d080_806e78a820304751b535648f57154b5f.wav

25

https://static.wixstatic.com/mp3/f9d080_806e78a820304751b535648f57154b5f.wav

2.6.2 GUI testing

Throughout the first semester the Graphical User Interface (GUI) went through many stages of

prototype testing. This semester, three GUIs were successfully created and critiqued to

acclimatize the ever-changing system requirements and aesthetics. Stage 1, shown below, was a

trial to understand the functionality of GUI design. This design implements buttons to select the

various effects. This GUI design resembled a childhood game of four squares with individual

effects in their respective corners of the screen.

 Figure 2.8 GUI Test Stage 1

This design went through testing and successfully printed the command of the selected

button, but it does not allow the user to see what effect is currently selected on the screen. This

led to the creation of trial two. This uses radio buttons that will allow the user to see what effect

is currently being selected and cycle through them.

26

 Figure 2.9 GUI Test Stage 2

This GUI configuration allows the user to see what effect is currently being processed

and passes the test that prints the selected effect. When using effects, the order in which the

effects are presented matters as stated earlier. The final GUI trial was underway and allowed the

user to see what effect was selected and the order in which it was selected. It uses vertical bars

rather than the four-square approach to allow the user to create different orders between the

effects.

 Figure 2.10 GUI Test Stage 3

27

2.6.3 Hardware Integration Attempts

​ The Raspberry Pi, shown in Figure 2.11, visualizes the many forms of connectivity that are

provided. This Raspberry Pi will utilize the type-c power supply connection to power the

microcontroller, the GPIO headers for power to the touchscreen, and the MIPI DSI Display Port

for the test. The touchscreen used for this demonstration is a Raspberry Pi 7” standard

touchscreen.

 Figure 2.11 Raspberry Pi 4B and Connections Testing

​ The touchscreen, Figure 2.12, has versatile connections as well. The touchscreen can

connect to the touchscreen by a Printed Circuit Board that is mounted on the back. This allows

the board to be able to receive what the Raspberry Pi is transmitting by various connections. The

connections that this test will utilize are the GPIO headers and the Display Port. The Display

Port of the two boards will be connected by an FFC ribbon cable.

28

 Figure 2.12 Touchscreen PCB for Connection Testing

​ The PCB is mounted on the back of the touchscreen and offers a mount for the Raspberry

Pi. The PCB and Raspberry Pi are mounted onto the board with the connections shown below.

 Figure 2.13 Raspberry Pi and Touchscreen Integration

29

 Figure 2.14 Raspberry Pi Connections Top Visual

2.6.5 Guitar Integration Difficulties

Although the Raspberry Pi and the seven-inch touchscreen worked well standalone, within the

guitar system it proved to be a major challenge to integrate with the audio interface. Specifically

due to issues about connectivity and size.

​ Through our research it was found that ADC/DAC modules designed for audio processing

for the Raspberry Pi come using a HAT configuration. This means that all GPIO connections are

taken up by the device as the device is on top of the Raspberry Pi and utilizes all forty pins of it.

This means that there are complexities with using the seven-inch display due to its use of the

power pins which are fully taken up by the ADC/DAC module and will cause power issues with

the Audio Processing module if used improperly. This also poses a size constraint to the system

as it means that the casing must also be able to fit the ADC/DAC connector within the enclosure.

The size of the seven-inch display also poses a significant problem for integration with the

guitar, as it means that the device must be placed on top of hinges since by itself will not fully fit

within the boundaries of the guitar. The other connectivity issue with using the seven-inch

touchscreen is the use of the DSI connection port. The reason is that a DSI port requires a FFC

30

ribbon cable which means that the Raspberry Pi also cannot be placed into the guitar itself since

the ribbon connector is very fragile and might suffer damage if left exposed to the outside

surface of the guitar.

​ It was also found that a simpler/smaller touchscreen might be more convenient to use for

this project. Specifically, a display within four to five inches has the appropriate dimensions to fit

within the guitar body and still provide appropriate user experience in the GUI. Along with this a

touchscreen that uses a more user-friendly format such as an HDMI/USB port is more

appropriate as they can be left exposed without the threat of damage to the component itself. Due

to this, a candidate for the touchscreen became the HDMI/USB-C Raspberry Pi display on

Figure 2.15, which ensures the above-mentioned concerns are resolved while allowing

acceptable user experience.

Figure 2.15 5” HDMI/USB touchscreen [14]

31

Chapter 3

Non-Technical Issues

3.1 Budget

3.2 Proposed Timeline

3.3 Issues with Ergonomics

3.4 Ethical Concerns

32

3.1 Budget

The components that are needed to complete this project can be found on Amazon and other

common retailers. The microcontroller that will be used for this project is a Raspberry Pi 4B

which can be purchased at BestBuy for $180.[7] This microcontroller comes in a kit that includes

a case, HDMI cables, and an SD card for storage. The DAC+ADC that will be used for this

project is from Hifiberry, a retailer that creates audio add-ons for Raspberry Pi.[8] This

DAC+ADC is $50 on the website but is essential for the project because of the duality of the

component and allows the engineers to utilize one component for two various essential needs.

The touchscreen that will be used is the ELECROW 5” touchscreen. This touchscreen can be

found on Amazon for $55. [14] The power bank that will be required to be used to run our

system is the KEOLL 25800 mAh power bank.[10] This power bank is $21 and has the

specifications that are required to keep the system powered for a significant amount of time. The

last components that will be required are electrical components including capacitors,

potentiometers, and resistors that will be provided by the engineering lab. The proposed budget

is shown in Table 3.1.

33

Table 3.1 Projected Budget

Quantity Item Cost Where to buy

1
Raspberry Pi 4B kit includes Power Supply,
SD Card, HDMI Cords, Case, Heat Sinks,

Cooling Fan
$180 BestBuy

1 DAC+ADC $50 Hifiberry

1 5” Touchscreen Display $55 Amazon

1 Power Bank $50 Amazon

1
Electrical Components (Capacitors,

Potentiometers, Resistors, etc.)
$0 Engineering Lab

 Total: $335

https://www.bestbuy.com/site/canakit-raspberry-pi-4-extreme-kit-8gb-ram-black/6429585.p?skuId=6429585
https://www.hifiberry.com/shop/boards/hifiberry-dac-adc/
https://www.amazon.com/dp/B07FDYXPT7/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B07FDYXPT7&pd_rd_w=dt0pU&content-id=amzn1.sym.f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_p=f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_r=XDNPVWMHCSN5XH8BJW2H&pd_rd_wg=L2bxA&pd_rd_r=414b807f-a0f2-4d11-9b9d-f595c02aab0c&s=pc&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWw
https://www.amazon.com/Crave-Aluminum-Portable-Charger-External/dp/B0728NHB39/ref=sr_1_3?adgrpid=1331509151739745&hvadid=83219394027002&hvbmt=be&hvdev=c&hvlocphy=45058&hvnetw=o&hvqmt=e&hvtargid=kwd-83219681117543%3Aloc-190&hydadcr=22166_10507458&keywords=crave+plus+10000&qid=1697492291&sr=8-3

3.2 Proposed Timeline

This project will be broken down into two phases, Fall semester and Spring semester. The Fall

semester will focus on initial functionality whereas the spring will focus on upgrading these

features to create a more advanced, customizable pedalboard for the user.

3.2.1 Fall

The Fall semester contains basic functionality procedures for the project. The focus of this

semester is to gather materials, create a Graphical User Interface, and work on the code for the

first audio signal effect. For weeks one through three, the objective includes gathering materials,

setting up the OS for the microcontroller, beginning the first stages of GUI design, creating a

Band-pass filter, and researching transfer functions for digital system processing effects. The

objective for weeks four through six will be to test and document waveforms, create a rough

draft GUI, work on the first effect module being distorted, and work on the proposal. Weeks

seven through ten will carry an objective to finish the proposal report, GUI module, and

distortion effects. The final week, week eleven, will integrate the distortion effects into the GUI

that was created. This integration will allow the user to select the distortion effect on the

touchscreen and distort the voice of the user in a microphone. This will also be the week of the

proposal presentation and the submission of the proposal report. The documented timeline is

presented below in Table 3.2.

34

3.2.2 Spring

The spring semester will focus on creating a more advanced, customizable system for the user.

The first three weeks of the Spring semester will focus on creating the second module of the

GUI, the edit module. The edit module will allow the user to move the various effects on the

screen in order of importance. The second effect will be created during these weeks as well, the

Reverb effect. Once Reverb is created it will be integrated into the GUI like the distortion effect.

Weeks four through six will be to create the Delay effect and implement that into the GUI as

well. These weeks will also focus on the integration of hardware into the guitar and begin initial

testing. Weeks eight through eleven will conclude the creation of the effects and integration of

35

Table 3.2 Proposed Timeline Fall Semester

Week Objective

1 (9/27)
Purchase Raspberry Pi and set up the OS. Band-pass

Filter Rough Draft Design, Testing.

2 (10/4)
Begin creating the GUI. Researched Transfer Functions

for DSP effects

3 (10/11) Select and purchase touchscreen

4 (10/18) Abstract and Chapter 1 for the Report.

5 (10/25)
Test using existing effects and document their

waveforms. Rough Daft for the GUI Play Module on
PyQT.

6 (11/1)
Work on the Distortion Effect Module and refine GUI

Play Mode. Work on the Proposal Report

7 (11/8) Wrap up Report Chapter 2.

8 (11/15) Finish Report Rough Draft (Chapters 3/4)

9 (11/22) Proposal rough draft finished and ready for revision

10 (11/29)
GUI play module finished and ready for audio code.

Work on Presentation

11 (12/6)
GUI on touchscreen with a basic voice modulator
finished. Have the presentation ready for review.

those programs into the GUI. These weeks will begin high-level testing of the system and

identify any errors made in hardware and software integration. The final weeks, twelve through

sixteen, will focus on cleaning up any of these errors that were found. These weeks will have a

final product that will need to undergo low-level testing to ensure there are not any bugs or

power issues. These weeks will also be the finalization of the report and presentation. Week

sixteen will hold the submission of the Report and the presentation of the project. The proposed

timeline for the spring semester is shown below in Table 3.3.

36

Table 3.3 Proposed Timeline Spring Semester

Week Objective

12 (1/08)
Begin editing the module of the GUI. Wrap

up Distortion Effect VST.

13 (1/15)
Continue editing Module on the GUI. Work

on Reverb Effect VST.

14 (1/22)
Begin VST integration in the GUI. Finish
Reverb Effect. Work on Delay Effect VST.

15 (1/29)
Continue VST integration in GUI. Finish

Delay Effect VST.

16 (2/5)
Assemble the Microprocessor into the Guitar

Finish Delay Effect VST. Work on Chorus
Effect VST.

17 (2/12)
Hardware integration, Band-pass Filter
Building, and testing. Work on Chorus

Effect VST.

18 (2/19) Start the Report. Finish Chorus Effect VST.

19 (2/26)
Work on Report, Continue Integration of

GUI and VST effects.

20 (3/4) Finish Report Finish Hardware integration

21 (3/11) GUIs completed play and edit

22 (3/18) Audio effects working with GUIs

23 (3/25) Hardware integration testing

A GANTT chart was created to allow the engineers to keep track of progress and ensure that

they are on track to complete the project by the proposed deadline. The GANTT chart is broken

into two semesters shown below.

Table 3.4 Fall GANTT Chart

Week 1 2 3 4 5 6 7 8 9 10 11

Date 9/27 10/4 10/11 10/18 10/25 11/1 11/8 11/15 11/22 11/29 12/6

Acquire Materials

Setup Device OS

GUI Design (Play
Mode)

Connect Code and
GUI

Test Code and
GUI Functionality

Bandpass Filter
design

Test effect
waveforms

Distortion VST
Code

37

24 (4/1) Report finished

25 (4/8) Begin testing

26 (4/15) Finish testing

27 (4/22) Presentation

Table 3.5 Spring GANTT Chart

Week 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Date 1/8 1/15 1/22 1/29 2/5 2/12 2/19 2/26 3/5 3/12 3/19 3/26 4/2 4/9 4/16 4/23

Acquire
Materials

GUI Design
(Edit Mode)

Connect Code
and GUI

Test Code and
GUI

Functionality

Reverb VST
Code

Delay VST
Code

Chorus VST
Code

High-Level
Testing

Hardware
integration

Battery
integration

Final Fit and
Finish

Low-Level
Testing

Final Testing

Writing Report

Submit Report

Presentation

38

3.3 Issues with Ergonomics

Working in the confined spaces of the boundaries of the guitar plays a challenge but making it

intuitive and easy to use for the guitarist but also comfortable. Since changing effects is usually

done by using a footswitch, this might be difficult to get used to for the guitarist. Therefore, it

would be advantageous for the placement of this device to be closer to where the guitarist is

playing. For a right-hander guitar, (which is the one where the prototype will be built) the

proposed placement is in the lower right corner. This placement presents a comfortable

placement for the user as it allows for quick access during a performance due to the fingers of the

guitarist being close to the device itself. Initially the decision was made to make the touchscreen

bigger and retractable for a more flexible experience, but portability issues discussed in Section

2.6.5 made it difficult to accomplish. Therefore, the preferred design decision taken was to place

the touchscreen flat on top of the guitar itself and have all components within the guitar to make

the system more portable. (this way the device is also able to fit in standard guitar cases)

3.4 Ethical Concerns

The Industry of Electrical and Electronic Engineers produced a Code of Ethics that engineers are

expected to follow with the utmost regard in all aspects of their work. This ethical code helps to

ensure the safety of people and the protection of people's work and ideas. This system ensures

the Code of Ethics is followed due to the simple Graphical User Interface that has been

produced. This ensures the user follows the proper guidance of the intentions of the system. All

references are properly documented in the references portion of the report. This ensures all work

that was used in the research portion of this project is properly credited to the engineers who

contributed to the work. The electrical system will be properly analyzed and calculated to ensure

it is a system that is safe and will not cause harm to any users. [12]

39

Chapter 4

Conclusion

4.1 Summary and Conclusion

4.2 Suggestions for Future Work

40

4.1 Summary and Conclusion

In this report we have introduced the concept of SEG. A project in which we intend to create a

more user-friendly environment for guitar effects by allowing the effects to be built into the

guitar itself. This system seeks to modernize an unexplored territory within the guitar industry in

a fashion in which most guitarists can become accustomed to and quickly pick up.

In Chapter 2 we have been introduced to core concepts to understand the creation of

digital effects as well as how to integrate them into a guitar efficiently and comfortably for the

user. We have discussed the core principles of digital effect design and the considerations needed

for the creation of the SEG project.

The overall requirements of the project were discussed as well as the different modules of

the system which each contribute to specific aspects required for the correct functionality of the

system. Throughout the report we also addressed the different modules used within the system

regarding their hardware and software elements, by which we defined the specifications required

for those components to successfully follow the design characteristics of the system.

Prototyping work done during the proposal stage was also presented in Section 2.6,

which showed proof of concept for the design as having a functional user interface as well as the

functionality for one of the sound processing modules implemented in code.

Within chapter 2 we also discussed some of the design considerations regarding the

software use, in which we concluded that the most optimal approach to achieve the concept was

to utilize and develop standardized VSTs as they allow fast processing and modularized interface

that allows for expansion of the project via third party created effects. (which means that the end

user will not be limited to use the VSTs build by default in the device)

41

4.2 Suggestions for Future Work

For the future progression of the system, one of the suggestions is for the Graphical User

Interface. As of right now, this system can only show the effects in a vertical bar notation and

does not allow the user to change the order of the effects. It has been proposed for the future to

create a GUI that can change the order of the effects in an “edit” mode in a drag-and-drop

orientation. The future shall hold the integration of hardware into the guitar and create a seamless

system. It is also recommended that the buttons of the GUI have a more relaxed color scheme

that is not as vibrant and looks more professional. There should also be an encasing for the

backside of the touchscreen to enclose the PCBs.

42

References

[1] Sobot Peter, “PedalBoard”, Zenodo, 2021, Available at:

https://doi.org/10.5281/zenodo.7817838

​[2] AutoDITex, “Anti-Lock Braking System (ABS)” Anti-lock braking system (ABS), Available

at:https://autoditex.com/page/anti-lock-braking-system-abs-9-1.html

[3] Dr. Lois Berg, “Soil and Plant Nutrition: A Gardener’s perspective”, Garden and Yard,

Available at: https://extension.umaine.edu/gardening/manual/soils/soil-and-plant-nutrition/

[4] O. Das Biee, “DIGITAL AUDIO EFFECTS.” Available:

https://ccrma.stanford.edu/~orchi/Documents/DAFx.pdf

​[5] “JUCE | JUCE,” juce.com. https://juce.com/

[6] E. Zeki, “DIGITAL MODELLING OF GUITAR AUDIO EFFECTS A THESIS

SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY.” Accessed: Oct. 18, 2023.

[Online]. Available: etd.lib.metu.edu.tr/upload/12618426/index.pdf

​[7] “CanaKit Raspberry Pi 4 Extreme Kit 8GB RAM Black

PI4-8GB-EXT128EWF-C4-WHT-RT,” Best Buy.

https://www.bestbuy.com/site/canakit-raspberry-pi-4-extreme-kit-8gb-ram-black/6429585.p?

skuId=6429585 (accessed Nov. 06, 2023).

​[8] “HiFiBerry DAC+ ADC | HiFiBerry.”

https://www.hifiberry.com/shop/boards/hifiberry-dac-adc/ (accessed Nov. 06, 2023).

​[9] “Datasheet DAC+ ADC | HiFiBerry.”

https://www.hifiberry.com/docs/data-sheets/datasheet-dac-adc/

43

https://autoditex.com/page/anti-lock-braking-system-abs-9-1.html
https://extension.umaine.edu/gardening/manual/soils/soil-and-plant-nutrition/
https://ccrma.stanford.edu/~orchi/Documents/DAFx.pdf
https://juce.com/
http://etd.lib.metu.edu.tr/upload/12618426/index.pdf
https://www.bestbuy.com/site/canakit-raspberry-pi-4-extreme-kit-8gb-ram-black/6429585.p?skuId=6429585
https://www.bestbuy.com/site/canakit-raspberry-pi-4-extreme-kit-8gb-ram-black/6429585.p?skuId=6429585
https://www.hifiberry.com/shop/boards/hifiberry-dac-adc/
https://www.hifiberry.com/docs/data-sheets/datasheet-dac-adc/

 [‌10] “Amazon.com: KEOLL Portable Charger 25800mAh Power Bank, 22.5w Fast Charging

Battery Pack, LED Display USB C Backup Battery, Slim Portable Phone Charger for iPhone

15/14/13 Pro Samsung Galaxy iPad AirPods: Cell Phones & Accessories,”

www.amazon.com.

https://www.amazon.com/KEOLL-Portable-Charger-25800mAh-Charging/dp/B0C8SBKVN

M/ref=sr_1_3?crid=19R7XGR2MYY36&keywords=keoll%2Bpower%2Bbank&qid=16992

92564&sprefix=KEOLL%2BPOWER%2B%2Caps%2C104&sr=8-3&th=1 (accessed Nov.

06, 2023).

‌[11] “Amazon.com: Raspberry Pi Official Touch Screen,” Amazon.com.

https://www.amazon.com/Raspberry-Pi-Official-Touch-Screen/dp/B073S3LQ6Q/ref=sr_1_4

?adgrpid=1345803589006750&hvadid=84112918724436&hvbmt=be&hvdev=c&hvlocphy

=45058&hvnetw=o&hvqmt=e&hvtargid=kwd-84113613943057%3Aloc-190&hydadcr=180

64_13443538&keywords=raspberry+pi+touchscreen+display&qid=1697492190&s=electro

nics&sr=1-4 (accessed Nov. 06, 2023).

[12] “IEEE Code of Ethics.” Available at:

https://www.ieee.org/content/dam/ieee-org/ieee/web/org/about/corporate/ieee-code-of-ethics

.pdf

[13] D. Yeh, J. Abel, and J. Smith, “SIMPLIFIED, PHYSICALLY-INFORMED MODELS OF

DISTORTION AND OVERDRIVE GUITAR EFFECTS PEDALS,” 2007. Available:

https://ccrma.stanford.edu/~dtyeh/papers/yeh07_dafx_distortion.pdf

[14] ELECROW 5 inch Monitor for Raspberry Pi Monitor Touchscreen Display Compatible with
Raspberry Pi 5 4 3B+ 3B BB Black Banana Pi Jetson Nano Windows PC

https://www.amazon.com/dp/B07FDYXPT7/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B07FD
YXPT7&pd_rd_w=dt0pU&content-id=amzn1.sym.f734d1a2-0bf9-4a26-ad34-2e1b969a5a7
5&pf_rd_p=f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_r=XDNPVWMHCSN5XH8B
JW2H&pd_rd_wg=L2bxA&pd_rd_r=414b807f-a0f2-4d11-9b9d-f595c02aab0c&s=pc&sp_c
sd=d2lkZ2V0TmFtZT1zcF9kZXRhaWw

44

https://www.amazon.com/KEOLL-Portable-Charger-25800mAh-Charging/dp/B0C8SBKVNM/ref=sr_1_3?crid=19R7XGR2MYY36&keywords=keoll%2Bpower%2Bbank&qid=1699292564&sprefix=KEOLL%2BPOWER%2B%2Caps%2C104&sr=8-3&th=1
https://www.amazon.com/KEOLL-Portable-Charger-25800mAh-Charging/dp/B0C8SBKVNM/ref=sr_1_3?crid=19R7XGR2MYY36&keywords=keoll%2Bpower%2Bbank&qid=1699292564&sprefix=KEOLL%2BPOWER%2B%2Caps%2C104&sr=8-3&th=1
https://www.amazon.com/KEOLL-Portable-Charger-25800mAh-Charging/dp/B0C8SBKVNM/ref=sr_1_3?crid=19R7XGR2MYY36&keywords=keoll%2Bpower%2Bbank&qid=1699292564&sprefix=KEOLL%2BPOWER%2B%2Caps%2C104&sr=8-3&th=1
https://www.amazon.com/Raspberry-Pi-Official-Touch-Screen/dp/B073S3LQ6Q/ref=sr_1_4?adgrpid=1345803589006750&hvadid=84112918724436&hvbmt=be&hvdev=c&hvlocphy=45058&hvnetw=o&hvqmt=e&hvtargid=kwd-84113613943057%3Aloc-190&hydadcr=18064_13443538&keywords=raspberry+pi+touchscreen+display&qid=1697492190&s=electronics&sr=1-4
https://www.amazon.com/Raspberry-Pi-Official-Touch-Screen/dp/B073S3LQ6Q/ref=sr_1_4?adgrpid=1345803589006750&hvadid=84112918724436&hvbmt=be&hvdev=c&hvlocphy=45058&hvnetw=o&hvqmt=e&hvtargid=kwd-84113613943057%3Aloc-190&hydadcr=18064_13443538&keywords=raspberry+pi+touchscreen+display&qid=1697492190&s=electronics&sr=1-4
https://www.amazon.com/Raspberry-Pi-Official-Touch-Screen/dp/B073S3LQ6Q/ref=sr_1_4?adgrpid=1345803589006750&hvadid=84112918724436&hvbmt=be&hvdev=c&hvlocphy=45058&hvnetw=o&hvqmt=e&hvtargid=kwd-84113613943057%3Aloc-190&hydadcr=18064_13443538&keywords=raspberry+pi+touchscreen+display&qid=1697492190&s=electronics&sr=1-4
https://www.amazon.com/Raspberry-Pi-Official-Touch-Screen/dp/B073S3LQ6Q/ref=sr_1_4?adgrpid=1345803589006750&hvadid=84112918724436&hvbmt=be&hvdev=c&hvlocphy=45058&hvnetw=o&hvqmt=e&hvtargid=kwd-84113613943057%3Aloc-190&hydadcr=18064_13443538&keywords=raspberry+pi+touchscreen+display&qid=1697492190&s=electronics&sr=1-4
https://www.amazon.com/Raspberry-Pi-Official-Touch-Screen/dp/B073S3LQ6Q/ref=sr_1_4?adgrpid=1345803589006750&hvadid=84112918724436&hvbmt=be&hvdev=c&hvlocphy=45058&hvnetw=o&hvqmt=e&hvtargid=kwd-84113613943057%3Aloc-190&hydadcr=18064_13443538&keywords=raspberry+pi+touchscreen+display&qid=1697492190&s=electronics&sr=1-4
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/about/corporate/ieee-code-of-ethics.pdf
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/about/corporate/ieee-code-of-ethics.pdf
https://ccrma.stanford.edu/~dtyeh/papers/yeh07_dafx_distortion.pdf
https://www.amazon.com/dp/B07FDYXPT7/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B07FDYXPT7&pd_rd_w=dt0pU&content-id=amzn1.sym.f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_p=f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_r=XDNPVWMHCSN5XH8BJW2H&pd_rd_wg=L2bxA&pd_rd_r=414b807f-a0f2-4d11-9b9d-f595c02aab0c&s=pc&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWw
https://www.amazon.com/dp/B07FDYXPT7/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B07FDYXPT7&pd_rd_w=dt0pU&content-id=amzn1.sym.f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_p=f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_r=XDNPVWMHCSN5XH8BJW2H&pd_rd_wg=L2bxA&pd_rd_r=414b807f-a0f2-4d11-9b9d-f595c02aab0c&s=pc&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWw
https://www.amazon.com/dp/B07FDYXPT7/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B07FDYXPT7&pd_rd_w=dt0pU&content-id=amzn1.sym.f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_p=f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_r=XDNPVWMHCSN5XH8BJW2H&pd_rd_wg=L2bxA&pd_rd_r=414b807f-a0f2-4d11-9b9d-f595c02aab0c&s=pc&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWw
https://www.amazon.com/dp/B07FDYXPT7/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B07FDYXPT7&pd_rd_w=dt0pU&content-id=amzn1.sym.f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_p=f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_r=XDNPVWMHCSN5XH8BJW2H&pd_rd_wg=L2bxA&pd_rd_r=414b807f-a0f2-4d11-9b9d-f595c02aab0c&s=pc&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWw
https://www.amazon.com/dp/B07FDYXPT7/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B07FDYXPT7&pd_rd_w=dt0pU&content-id=amzn1.sym.f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_p=f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_r=XDNPVWMHCSN5XH8BJW2H&pd_rd_wg=L2bxA&pd_rd_r=414b807f-a0f2-4d11-9b9d-f595c02aab0c&s=pc&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWw

Appendix A

Distortion Effect Code Samples

A1. C++ Code for Audio Processing Block

A2. C++ Code for Parameter Building

45

A1. C++ code for Audio Processing Block

This block of code serves as a reference to the work done within JUCE to create the distortion

effect from the description given in Chapter 2 section 2.6. Here the AudioProcessor class has a

baseline method called the “process block” which is used to manipulate the state of the samples

within the buffer. Here the arctangent function described in Chapter 2 is implemented.

void AudioProcessor::processBlock (juce::AudioBuffer<float>&
buffer, juce::MidiBuffer& midiMessages)
{
 juce::ScopedNoDenormals noDenormals;
 auto totalNumInputChannels = getTotalNumInputChannels();
 auto totalNumOutputChannels = getTotalNumOutputChannels();

 for (auto i = totalNumInputChannels; i <
totalNumOutputChannels; ++i)
 buffer.clear (i, 0, buffer.getNumSamples());
​
//gather all input parameters

 float drive = *state->getRawParameterValue("drive");
 float gain = *state->getRawParameterValue("gain");
 float volume = *state->getRawParameterValue("volume");

//we want to iterate over all of the buffer’s channels

 for (int channel = 0; channel < totalNumInputChannels;
++channel)
 {
 auto* channelData = buffer.getWritePointer (channel);

//we want to iterate over all of the buffer’s samples

 ​ for (int sample = 0; sample < buffer.getNumSamples();
sample++) {
​ ​ //channel data in this case is the individual sample
obtained within the buffer.
 float cleanSig = *channelData;
 *channelData *= drive*gain;
 *channelData = ((volume) * (((PIOVER2) *
(atanf(*channelData))) + (cleanSig / 2)));

 channelData++;
 }}}

46

A2. C++ code for Parameter Building

JUCE provides a class to interface with the parameters created in the GUI which is the

“AudioProcessorValueTreeState”. We can create an instance of this class called “state” in which

we can provide values for the parameters accessed in the GUI. In this case, the three parameters

described in Chapter 2 are defined with their specific ranges and step sizes. These values are

passed as pointers to improve performance, as these values need to be constantly accessed in our

process block to create the effects in real-time when changing their parameters.

AudioProcessor::AudioProcessor()
// JUCE Code Template
#ifndef JucePlugin_PreferredChannelConfigurations
 : AudioProcessor (BusesProperties()
 #if ! JucePlugin_IsMidiEffect
 #if ! JucePlugin_IsSynth
 .withInput ("Input",
juce::AudioChannelSet::stereo(), true)
 #endif
 .withOutput ("Output",
juce::AudioChannelSet::stereo(), true)
 #endif
)
#endif
{
// We define the state as a pointer variable containing all of
// the parameter information such as ranges and default values
 state = new juce::AudioProcessorValueTreeState(*this,
nullptr);
 state->createAndAddParameter("drive", "Drive", "Drive",
juce:: NormalisableRange<float>(0.f, 1.f, 0.01f), 0.f, nullptr,
nullptr);
 state->createAndAddParameter("gain", "Gain", "Gain",
juce::NormalisableRange<float>(1.f, 150.f, 0.01f), 0.f, nullptr,
nullptr);
 state->createAndAddParameter("volume", "Volume", "Volume",
juce::NormalisableRange<float>(0.01f, 1.f, 0.01f), 0.f, nullptr,
nullptr);

 state->state = juce::ValueTree("drive");
 state->state = juce::ValueTree("gain");
 state->state = juce::ValueTree("volume");
}

47

Appendix B

Graphical User Interface Code Samples

B1. Python Code for Graphical User Interface

48

B1. Python Code for Graphical User Interface

This code was built on the Spyder Integrated Development Environment. This Graphical User
Interface utilizes the Tkinter module to build the buttons and framework. This was made possible
using the website visualtk.com to build the GUI using a drag-and-drop representation with the
buttons. After dragging and dropping, it outputs the Python program. This allows the user to
fine-tune the end programing code while saving time from building the framework. This GUI
utilizes radio buttons to show what button is being used at the time. The commands that are
processed when the button is pressed will be inserted into the functions corresponding to their
button name.

import tkinter as tk
import tkinter.font as tkFont
class App:
 def __init__(self, root):
 #setting title
 root.title("undefined")
 #setting window size
 width=800
 height=400
 screenwidth = root.winfo_screenwidth()
 screenheight = root.winfo_screenheight()
 alignstr = '%dx%d+%d+%d' % (width, height, (screenwidth - width) / 2,
(screenheight - height) / 2)
 root.geometry(alignstr)
 root.resizable(width=False, height=False)

 GRadio_825=tk.Radiobutton(root)
 GRadio_825["activebackground"] = "#8f8484"
 GRadio_825["activeforeground"] = "#f9f1f1"
 GRadio_825["anchor"] = "center"
 GRadio_825["bg"] = "#f81111"
 GRadio_825["cursor"] = "arrow"
 GRadio_825["disabledforeground"] = "#fbeeee"
 ft = tkFont.Font(family='Times',size=28)
 GRadio_825["font"] = ft
 GRadio_825["fg"] = "#333333"
 GRadio_825["justify"] = "center"
 GRadio_825["text"] = "Distortion"
 GRadio_825["relief"] = "sunken"
 GRadio_825.place(x=0,y=0,width=200,height=400)
 GRadio_825["value"] = "100"
 GRadio_825["command"] = self.GRadio_825_command

 GRadio_642=tk.Radiobutton(root)
 GRadio_642["anchor"] = "center"
 GRadio_642["bg"] = "#60c441"
 ft = tkFont.Font(family='Times',size=28)
 GRadio_642["font"] = ft
 GRadio_642["fg"] = "#333333"

49

 GRadio_642["justify"] = "center"
 GRadio_642["text"] = "Delay"
 GRadio_642["relief"] = "ridge"
 GRadio_642.place(x=200,y=0,width=200,height=400)
 GRadio_642["value"] = "90"
 GRadio_642["command"] = self.GRadio_642_command

 GRadio_65=tk.Radiobutton(root)
 GRadio_65["anchor"] = "center"
 GRadio_65["bg"] = "#f9f906"
 ft = tkFont.Font(family='Times',size=28)
 GRadio_65["font"] = ft
 GRadio_65["fg"] = "#333333"
 GRadio_65["justify"] = "center"
 GRadio_65["text"] = "Reverb"
 GRadio_65["relief"] = "ridge"
 GRadio_65.place(x=600,y=0,width=200,height=400)
 GRadio_65["value"] = "80"
 GRadio_65["command"] = self.GRadio_65_command

 GRadio_331=tk.Radiobutton(root)
 GRadio_331["bg"] = "#1691ef"
 ft = tkFont.Font(family='Times',size=28)
 GRadio_331["font"] = ft
 GRadio_331["fg"] = "#333333"
 GRadio_331["justify"] = "center"
 GRadio_331["text"] = "Chorus"
 GRadio_331["relief"] = "ridge"
 GRadio_331.place(x=400,y=0,width=200,height=400)
 GRadio_331["value"] = "20"
 GRadio_331["command"] = self.GRadio_331_command
 def GRadio_825_command(self):
 print("command")
 def GRadio_642_command(self):
 print("command")
 def GRadio_65_command(self):
 print("command")
 def GRadio_331_command(self):
 print("command")
if __name__ == "__main__":
 root = tk.Tk()
 app = App(root)
 root.mainloop()

50

Group Members

​ Jose Carlo Doliner

▪​ Bachelor of Science Student in Electrical and
Computer Engineering Technology with Computer
Systems concentration (current GPA of 4.0)

▪​ Dean’s List recognition holder since Fall 2019 at
Valencia College.

▪​ Passionate about Digital Audio Design and the Music
Industry.

▪​ Current R&D intern at Siemens Energy, supporting the
development of software analysis tools of large gas
turbine components.

​ Christopher Collins

▪​ Bachelor of Science Student in Electrical and
Computer Engineering Technology concentrating in
Computer Systems (current GPA of 3.52)

▪​ Currently focused on Computer and Network
Engineering

▪​ Currently a Launch Control System Computer
Engineer Intern at NASA. Working to support the
development and testing of the Spaceport Command
and Control System in the Launch Control Center.

▪​ Six-time President and two-time Dean’s list
recognition

51

	Abstract
	1.1​Introduction
	1.2​Definitions
	1.3​Hardware Considerations
	1.4​Potential Solution Approaches
	1.1​Introduction
	1.2 ​Definitions
	1.2.1​The Distortion Effect
	1.2.2​Delay Effect
	1.2.3​Reverb Effect (Echo)
	1.2.4​Chorus Effect (Modulation)
	1.2.5​Further Terminology

	1.3​Hardware Considerations
	1.4​Potential Solution Approaches to Achieve Digital Effects
	1.4.1​Analog Effect Circuit Simulation Using MATLAB
	1.4.2​Creating a proprietary DSP interface
	1.4.3​Using VST effects, our Preferred Approach.

	2.1 Technical Design and Approach
	2.2 Engineering Requirements
	2.3​ Engineering Specifications
	2.4​ Proposed Components and Power Budget
	2.5​ Success Criteria
	2.6​ Prototype Testing
	2.1 Technical Design and Approach
	2.1.1​Hardware Design
	2.1.2​Software Design
	2.1.3 System High-Level Overview
	2.2 Engineering Requirements
	2.2.1 Effects Requirements
	2.3.1 Processing Module
	2.3.2 Input/Output Module
	2.3.3 Electronic Module
	2.3.4 Power Module
	2.3.5 Audio Output Module

	2.4 Proposed Components and Power Budget
	2.5 Success Criteria
	2.5.1 Digital Effects Success Criteria
	2.5.2 Graphical User Interface Success Criteria

	 2.6 Prototype Testing
	2.6.1 Distortion Effect Prototype Testing
	2.6.2 GUI testing
	2.6.3 Hardware Integration Attempts

	3.1 Budget
	3.2 Proposed Timeline
	3.3 Issues with Ergonomics
	3.4 Ethical Concerns
	3.1 Budget
	3.2 Proposed Timeline
	3.2.1 Fall
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	3.2.2 Spring

	
	3.3 Issues with Ergonomics
	3.4 Ethical Concerns
	
	4.1 Summary and Conclusion
	4.2 Suggestions for Future Work
	4.1 Summary and Conclusion
	4.2 Suggestions for Future Work
	
	References
	[14] ELECROW 5 inch Monitor for Raspberry Pi Monitor Touchscreen Display Compatible with Raspberry Pi 5 4 3B+ 3B BB Black Banana Pi Jetson Nano Windows PC https://www.amazon.com/dp/B07FDYXPT7/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B07FDYXPT7&pd_rd_w=dt0pU&content-id=amzn1.sym.f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_p=f734d1a2-0bf9-4a26-ad34-2e1b969a5a75&pf_rd_r=XDNPVWMHCSN5XH8BJW2H&pd_rd_wg=L2bxA&pd_rd_r=414b807f-a0f2-4d11-9b9d-f595c02aab0c&s=pc&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWw
	A1. C++ Code for Audio Processing Block
	A2. C++ Code for Parameter Building
	A1. C++ code for Audio Processing Block
	A2. C++ code for Parameter Building
	B1. Python Code for Graphical User Interface
	B1. Python Code for Graphical User Interface

