
GSoC 2021 Application - Mechanics -
Implement JointsMethod

 Sudeep Sidhu

About Me

Basic Information

Name - Sudeep Sidhu
University - Maharaja Surajmal Institute of Technology, New Delhi
Email - sudeepmanilsidhu@gmail.com
Github profile - https://github.com/sidhu1012
Time zone - IST (UTC +5:30)

Personal Background

I’m Sudeep Sidhu, a pre - final year student at Maharaja Surajmal Institute
of Technology, New Delhi, pursuing a Bachelor of Technology (4 years) in
Information Technology.

I spend my free time playing cricket with my friends, spend time with family
, play online multiplayer games or hangout with cousins. Physics has been
my favourite subject apart from programming and I love to solve dynamics
problems since I took Science in higher secondary school and willing to
learn more during the project.

mailto:namangera15@gmail.com
https://github.com/namannimmo10

Programming Background

I use Ubuntu 20.04 as my operating system on WSL 2, Windows 10 along
with VS Code being my primary source code editor. I am familiar with the
git and Github workflow.

I started programming almost 5 years ago when programming was
introduced to me in my higher secondary school. I really enjoyed coding
and was amazed by concepts taught with enthusiasm by the teacher.I
continued to expand my learning and right now, I feel comfortable writing
code in C, C++ and Python.

My curiosity to further learn computer science has increased by taking
MOOCs online, with Coursera being my favorite platform. From the past
two years, I have continuously worked upon improving my knowledge and
skills by proactively learning through several courses online.

Few of the specialization I had the chance to take are IBM AI Engineer;
DeepLearning.AI Tensorflow Developer; and few courses like Data for
Machine Learning; Python 3: Project-based Python, Algorithms,Data
Structures ; Learning Python for Data Analysis and Visualization;
Introduction to Git and Github.

I like python because of its English like syntax and extensive inbuilt
functions which makes things easier and coding fast.

One of my favorite features of sympy is pprint.

>>> from sympy.abc import x, y​
>>> from sympy import pprint, sqrt​
>>> expr = (x**3 - 8*x*y + 2*y**2)/sqrt(27)​

>>> pprint(expr)

​
 ⎛3 2⎞​
√3⋅⎝x - 8⋅x⋅y + 2⋅y ⎠​
───────────────────​
 9

Contributions

I started using SymPy in August 2020 and made my first contribution to the
main repository the same month. I have been continuously contributing to
the software since then. I’m a long-term-contributor and will continue to
improve this software even after this program is finished.

Merged PRs

●​ #20864 - Add test cases for subs in vector and dyadic. Fixes
#20437.

●​ #20741 - Make Matrix expressions simplification possible. Fixes
#19544.

●​ #20676 - Make array differentiation work with non sympy
expressions. Fixes #20655.

●​ #20666 - Make FiniteSet not contain equal elements. Fixes #20432.
●​ #20451 - Increase precision of FiniteSet.evalf() . Fixes #20379
●​ #20446 - Added .xreplace() to Vector and Dyadic. Fixes #20445.
●​ #20438 - Make `is-subset` work for ProductSet & FiniteSet and

Eq(sets).simplify() work. Fixes #19378.
●​ #20396 - Added .evalf() to Vector and Dyadic. Fixes #18064.
●​ #20353 - Added test case for Gram Schimdt. Fixes #9488.
●​ #20318 - Break ReferenceFrame.orient() into separate methods.

Fixes #17758.
●​ #20228 - Fix performance. Fixes #20225.
●​ #20223 - Return NotImplemented instead of TypeError.Fixes

#20222.
●​ #20212 - zero raised to power -infinity gives zoo. Fixes #19572.

https://github.com/sympy/sympy/pull/20864
https://github.com/sympy/sympy/pull/20741
https://github.com/sympy/sympy/pull/20676
https://github.com/sympy/sympy/pull/20666
https://github.com/sympy/sympy/pull/20451
https://github.com/sympy/sympy/pull/20446
https://github.com/sympy/sympy/pull/20438
https://github.com/sympy/sympy/pull/20396
https://github.com/sympy/sympy/pull/20353
https://github.com/sympy/sympy/pull/20318
https://github.com/sympy/sympy/pull/20228
https://github.com/sympy/sympy/pull/20223
https://github.com/sympy/sympy/pull/20212

●​ #20208 - Fix set is equal to set only. Fixes #20089.
●​ #20197 -Drop python2 from entire sympy. Fixes #18816.
●​ #20184 - Drop python2 from vector.
●​ #20183 - drop py2 from physics.
●​ #20182 - Drop py2 from polys.
●​ #20181 - Drop py2 from stats.
●​ #20175 - Comparing Matrix with object.Fixes #19361.
●​ #20159 - Not implemented for matrix and tensor addition.Fixes

#18956.
●​ #20131 - Add warning for all possible paths and cyclic path. Fixes

#20129.
●​ #20049 - point.vel() calculates velocity. Fixes #17761.
●​ #20023 - remove python2 from plotting using pyup_dirs.
●​ #20010 - Dropping unnecessary python2 imports. Fixes #18816.
●​ #20009 - Added missing print parenthesis. Fixes #19434.

Unmerged PRs

●​ #21271 - Improve frame caching. Fixes #20955 and #21036
●​ #21137 - Make dynamicsymbols real by default.
●​ #21027 - Make `dynamicsymbols._t` public and `dynamicsymbol`

independent of `.t` . Fixes #19434.
●​ #20830 - Introduce nprime() to generate kth to nth primes. Fixes

#19118.
●​ #20691 - Make inversion of Matrix with MatrixSymbol as element

possible. Fixes #19162.
●​ #20493 - [WIP] Add a new helper method for evalf. Fixes #20479.
●​ #20481 - Make NonElementary Integrals work with evalf(). Fixes

#20133.
●​ #20200 - Type check for _sympify. Fixes #20126.
●​ #20169 - lens makers formula can calculate focal length for thick lens

and plano lens. Fixes #20168.
●​ #20157 - RTM of thick lens.
●​ #20054 - Gravitational force function for particle.

https://github.com/sympy/sympy/pull/20208
https://github.com/sympy/sympy/pull/20197
https://github.com/sympy/sympy/pull/20184
https://github.com/sympy/sympy/pull/20183
https://github.com/sympy/sympy/pull/20182
https://github.com/sympy/sympy/pull/20181
https://github.com/sympy/sympy/pull/20175
https://github.com/sympy/sympy/pull/20159
https://github.com/sympy/sympy/pull/20131
https://github.com/sympy/sympy/pull/20049
https://github.com/sympy/sympy/pull/20023
https://github.com/sympy/sympy/pull/20010
https://github.com/sympy/sympy/pull/20009
https://github.com/sympy/sympy/pull/21271
https://github.com/sympy/sympy/pull/21137
https://github.com/sympy/sympy/pull/21027
https://github.com/sympy/sympy/pull/20830
https://github.com/sympy/sympy/pull/20691
https://github.com/sympy/sympy/pull/20493
https://github.com/sympy/sympy/pull/20481
https://github.com/sympy/sympy/pull/20200
https://github.com/sympy/sympy/pull/20169
https://github.com/sympy/sympy/pull/20157
https://github.com/sympy/sympy/pull/20054

Issues raised

●​ #20224 -[Questions] Shouldn’t Sympy array support broadcasting as
numpy array does.

●​ #20168 - Lens maker formula.
●​ #20149 - Gaussian optics.
●​ #20028 - Gravity.

Apart from these, I was also involved in discussions or reviewing some of
the PRs and issues namely:

●​ Code Review
#21192 - Added documentation for chop function.
#21199 - Fix Todo.
#21183 - .evalf() doesn’t works properly with evaluate=False.
#20611 - Fix for limit bug.
#20785 - Triangle().area for zero area triangle results in attribute
error.
#20813 - Adding inflection point.
#21092 - Optics: Added one file for implementing functions related to
interference.

●​ Discussions - #20493, #17714, #20460

https://github.com/sympy/sympy/issues/20224
https://github.com/sympy/sympy/issues/20168
https://github.com/sympy/sympy/issues/20149
https://github.com/sympy/sympy/issues/20028
https://github.com/sympy/sympy/pull/21192
https://github.com/sympy/sympy/pull/21199
https://github.com/sympy/sympy/pull/21183
https://github.com/sympy/sympy/pull/20611
https://github.com/sympy/sympy/pull/20785
https://github.com/sympy/sympy/pull/20813
https://github.com/sympy/sympy/pull/21092
https://github.com/sympy/sympy/issues/20493
https://github.com/sympy/sympy/issues/17714
https://github.com/sympy/sympy/issues/20460

The Project

Overview and Motivation

The main aim of this project is to implement Joints Method in Sympy under
mechanics in physics module as it would open up the use of the library to a
much wider set of users because they will be able to construct dynamic
models with less knowledge of underlying mathematics.

So exactly how is Joints Method going to help? Currently to solve
kinematical differential equations, users need to define those equations and
solve them using Kane’s or Lagrange’s method. With the help of
JointsMethod, users would just need to define the system with joints and
body and JointsMethod would form and solve kinematic differential
equations all by itself , without the user doing any mathematics.

Some contributors made efforts to add JointsMethod to
 sympy.physics.mechanics in #9809 and #9835. But those were not
complete and polished enough to get into the sympy codebase. I’m familiar
with the required theory behind this and willing to learn more and improve
throughout the project. Throughout this project, two main classes would be
implemented, namely: Joints and JointsMethod.

Joints will use physics.mechanics.body, so it would be able to support
most of the joints(Pin Joint, Sliding Joint etc). SymPy already has a very
rich class KanesMethod that would back our JointsMethod. Joints would be
an abstract class which would be inherited by other joints classes and
could also be used to define custom joints. JointsMethod would take
ground and joints as input and would give solved differential kinematical
equations.
I would also love to maintain a blog during this program so that it is easier
for others to further expand this project.

https://github.com/sympy/sympy/pull/9809
https://github.com/sympy/sympy/pull/9835

Implementation Plan

I have planned to divide my work into three phases so that the method can
be added swiftly and systematically.

●​ Phase 1 := Adding Joints and various types of joints classes.
Methods that are already implemented in #9809 will be polished and
tests and docstrings would be added for merging to ensure
everything is implemented correctly.

●​ Phase 2 := In this phase some working example would be added as
unit tests for older proposed API to find loopholes in that design and
update the API accordingly.

●​ Phase 3 := Update JointsMethod class. Methods that are already
implemented in #9835 will be polished , tests and docstrings would
be added for merging to ensure everything is implemented correctly.

Phase 1

Currently to form a kinematical differential equation for multibody dynamics,
all mathematics has to be done by hand using Sympy which makes
generation of these equations tough or complicated.

A mechanical joint is a section of a machine which is used to connect one
or more mechanical part to another. Most mechanical joints are designed to
allow relative movement of these mechanical parts of the machine in one
degree of freedom, and restrict movement in one or more others.

We have class Body which is a common representation of either RigidBody
or a Particle in Sympy and class Vector which would serve as building
blocks of class Joints and all subclasses of Joints.

https://github.com/sympy/sympy/pull/9809
https://github.com/sympy/sympy/pull/9835
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Relative_movement
https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

The following types of Joints will be enhanced and finished , which would
inherit Joints class.

1.​ Pin Joint : A pin joint, also called a revolute joint, is a
one-degree-of-freedom kinematic pair. It constrains the motion
of two bodies to pure rotation along a common axis. The joint
doesn't allow translation, or sliding linear motion. It enforces a
cylindrical contact area, which makes it a lower kinematic pair,
also called a full joint.

2.​ Prismatic Joint : A prismatic joint provides a linear sliding
movement between two bodies, and is often called a slider. The
relative position of two bodies connected by a prismatic joint is
defined by the amount of linear slide of one relative to the other
one. This one parameter movement identifies this joint as a one
degree of freedom kinematic pair.

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
https://en.wikipedia.org/wiki/Kinematic_pair
https://en.wikipedia.org/wiki/Kinematic_pair
https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

The translational motion of the source and destination
attachments at the center of the joint can be computed as:

where, for the source and destination attachments, respectively:
●​ uc,src and uc,dst are the displacement vectors for the

attachments at the center of joint.
●​ Rsrc and Rdst are the rotation matrices describing the

rotation of each attachment.
●​ Xc,src and Xc,dst are the positions of the centroids of the

attachments.
●​ usrc and udst are the displacements at the centroids of the

attachments.
●​ Xc is the joint center.

To formulate this kind of connection for a rigid joint, the motion
of the destination attachment is prescribed in terms of the
motion of the source attachment:

3.​ Cylindrical Joint: The Cylindrical Joint has one translational
and one rotational degree of freedom between the two
connected components. The components are free to slide and
rotate relative to each other along the axis of joint. A cylindrical
joint can be thought of as a combination of a prismatic joint and
a hinge joint.

To formulate this kind of connection, the motion of the
destination attachment is prescribed in terms of the motion of
the source attachment as:

4.​ Planar Joint: A joint that allows only translation over a plane
and rotation about an axis normal to this plane. This type of
joint is produced by a stable object resting on a flat surface. It
has three degrees of freedom.

The degrees of freedom are two relative displacements along
the second and third axes of the joint (u2, u3) and one relative
rotation about the joint axis (θ).
The local coordinate system of a joint, which can be seen as
rigidly connected to the source attachment, consists of three
axes: joint axis (e1), second axis (e2), and third axis (e3)
The joint formulation is similar to the cylindrical joint; the only
difference is in the definition of the relative displacement vector
(ur):

Degree of Freedom: The number of independent parameters that define its
configuration or state.

As proposed in in PR #9809 will be polished and enhanced:

Class Joints : Will work as an abstract class and all types of joints classes
will inherit from this class. This class could also be inherited to form custom
joints.

●​ __init__() would be enhanced and finished and proper
docstring will be added.

●​ _locate_joint_point() which will be renamed to a better and
descriptive name(like _locate_joint_pointofcontact or
_locate_joint_pos) . This function would be enhanced and
finished with proper docstring.

●​ _align_axis() would be enhanced and finished with proper
docstring.

●​ apply_joint() would be enhanced and finished with proper
docstring.This function would give NotImplementedError and
shall be defined by overriding in sub-classes.

https://en.wikipedia.org/wiki/Parameter
https://github.com/sympy/sympy/pull/9809

Proposed API:
Class Joint:

 def __init__(self, name, parent, child, parent,

parent_point_pos=None, child_point_pos=None):

 pass

 def _locate_joint_pos(self, parent_point_pos,

child_point_pos):

 pass

 def _align_axis(self, parent_axis, child_axis):

 pass

 def apply_joint():

 return NotImplementedError

Class Pin Joint : The class Pin Joint would inherit class Joints.

●​ __init__() would be enhanced and finished and proper
docstring will be added.

●​ apply_joint() definition of kinematics would be enhanced and
finished.

Proposed API:
Class PinJoint:

 def __init__(self, name, parent, child, parent,

parent_point_pos=None, child_point_pos=None):

 pass

 def apply_joint(coordinate=None, speed=None):

 pass

Example:

>>> theta, omega = dynamicsymbols(‘theta omega’)

>>> child = Body(‘child’)

>>> parent = Body(‘parent’)

>>> P = PinJoint(‘P’, parent, child)

>>> P.apply_joint(coordinates=theta, speeds=omega)

>>> P.kde

Derivative(theta(t), t)- omega(t)

Class Prismatic Joint : The class Prismatic Joint would inherit class
Joints.

●​ __init__() would be enhanced and finished and proper
docstring will be added.

●​ apply_joint() definition of kinematics would be enhanced and
finished.

Proposed API:
Class PrismaticJoint:

 def __init__(self, name, parent, child, parent,

parent_point_pos=None, child_point_pos=None):

 pass

 def apply_joint(coordinate=None, speed=None):

 pass

Example:

>>> x, v = dynamicsymbols(‘x v’)

>>> child = Body(‘child’)

>>> parent = Body(‘parent’)

>>> P = PrismaticJoint(‘P’, parent, child)

>>> P.apply_joint(coordinates=x, speeds=v)

>>> P.kde

Derivative(x(t), t) - v(t)

Class Cylindrical Joint : The class cylindrical Joint would inherit class
Joints.

●​ __init__() would be enhanced and finished and proper
docstring will be added.

●​ apply_joint() definition of kinematics would be enhanced and
finished.

Proposed API:
Class CylindricalJoint:

 def __init__(self, name, parent, child, parent,

parent_point_pos=None, child_point_pos=None):

 pass

 def apply_joint(coordinate=None, speed=None):

 pass

Example:

>>> x, v, theta, omega = dynamicsymbols(‘x v theta omega’)

>>> child = Body(‘child’)

>>> parent = Body(‘parent’)

>>> C = CylindricalJoint(‘C’, parent, child)

>>> C.apply_joint(coordinates=[x, theta], speeds=[v,

omega])

>>> P.kde

[Derivative(x(t), t) - v(t), Derivative(theta(t), t) -

omega(t)]

Class Planar Joint : The class Planar Joint would inherit class Joints.

●​ __init__() would be enhanced and finished and proper
docstring will be added.

●​ apply_joint() definition of kinematics would be enhanced and
finished.

Proposed API:
Class PlanarJoint:

 def __init__(self, name, parent, child, parent,

parent_point_pos=None, child_point_pos=None):

 pass

 def apply_joint(coordinate=None, speed=None):

 pass

Example:

>>> theta, omega, x_x, v_x, x_y, v_y =

dynamicsymbols(‘theta omega x_x v_x x_y v_y’)

>>> child = Body(‘child’)

>>> parent = Body(‘parent’)

>>> P = PlanarJoint(‘P’, parent, child)

>>> P.apply_joint(coordinates=[theta, x_x, x_y],

speeds=[omega, v_x, v_y])

>>> P.kde

[Derivative(theta(t), t)-omega(t), Derivative(x_x(t), t)-

v_x(t), Derivative(x_y(t), t) - v_y(t)]

Phase 2

In this phase some working example would be added as unit tests for older
proposed API to find loopholes in that design and update the API
accordingly.

Some possible examples are:-

●​ single pendulum test.
●​ double pendulum (use two different joints).
●​ both a tree structure and a serial chain.
●​ any of the kanesmethod and langrangesmethod tests that do not

have constraints can be turned into tests for this class.
●​ any of the pydy examples that do not have constraints can be used

for testing .
Once some decent unit tests are written, final API design for JointsMethod
would be formed and the previous one would be updated accordingly.

Phase 3

Once the Joints class and other Joints have been implemented, we can
solve dynamics problem by passing joints to JointsMethod

JointsMethod would use Kane’s method to solve those equations.

As proposed in in PR #9835 will be polished and enhanced:

●​ __init__() would be enhanced and finished and proper docstring will
be added.

●​ _generate_bodylist() would be enhanced and finished and proper
docstring will be added.

●​ _generate_forcelist() would be enhanced and finished and proper
docstring will be added.

https://github.com/sympy/sympy/pull/9835

●​ _generate_q() would be enhanced and finished and proper docstring
will be added.

●​ _generate_u() would be enhanced and finished and proper docstring
will be added.

●​ _generate_kde() would be enhanced and finished and proper
docstring will be added.

●​ _set_kanes() would be enhanced and finished and proper docstring
will be added.

Proposed API:
>>> J = JointsMethod(ground, *joints)

Example:
#Simple double pendulum

>>> ground = Body(‘ground’)

>>> P = Body(‘P’)

>>> R = Body(‘R’)

>>> q1, q2, u1, u2 = dynamicsymbols(‘q1 q2 u1 u2’)

>>> P1 = PinJoint(‘P1’, ground, P)

>>> P1.apply_joint(coordinates=q1, speed=u1)

>>> P2 = PinJoint(‘P2’, P, R)

>>> P2.apply_joint(coordinates=q2, speed=u2)

>>> J = JointsMethod(ground, P1, P2)

Timeline

I have prepared a tentative timeline for the above mentioned tasks. I assure
that I’ll give all my time to this project and try to finish what I have
proposed.

Community Bonding Period (17th May - 6th June)

●​ In this period, I will discuss the project with my mentor so that we
come up with an efficient way of implementation. Communicate with
my mentors and other selected students about their projects and how
we can be of help to each other. I will start coding in the last week
of the community bonding period and would try to implement
Joints abstract class so that I get a good head-start for Phase 1,
which is the most important of all. I think one extra week will be
beneficial for me in the long run and I will also have fun coding in this
period.

●​ Also I’ll be revising multibody dynamics, Kane’s method and study
joints dynamics.

Week 1 (7th June - 13th June) - Phase 1

●​ Learn the implementation of Pin(revolute) joints.
●​ Polish and finish Pin Joint class.
●​ Write docstring and add test cases.

Week 2 (14th June - 20th June) - Phase 1

●​ Learn the implementation of Sliding Joint.
●​ Polish and finish Sliding Joint class.
●​ Write docstring and add test cases.

Week 3 (21st June - 27th June) - Phase 1

●​ Learn the implementation of Cylindrical Joint.
●​ Polish and finish Cylindrical joint class.
●​ Write docstring and add test cases.

Week 4 (28th June - 4th July) - Phase 1

●​ Learn the implementation of Planar Joint.
●​ Polish and finish Planar Joint class.
●​ Write docstring and add test cases.

Week 5 (5th July - 11th July) - Phase 2

●​ Learn the implementation of JointsMethod.
●​ Write unit tests for previously proposed API

Week 6(12th July - 18th July) - Phase 2

●​ Conclude unit tests
●​ Finalize API design.

Week 7(19th July - 25th July) - Phase 3

●​ These methods will be polished and finished in this week --
_generate_bodylist, _generate_forcelist, _generate_q

●​ Write and update docstring.

Week 8(26th July - 1st August) - Phase 3

●​ These methods will be polished and finished in this week --
_generate_u, _generate_kde, _set_kanes.

●​ Write and update docstring.

Week 9(2nd August - 8th August) - Phase 3

●​ Add a working example for JointsMethod.

Week 10(9th August - 16th August) - Phase 3

●​ Fix bugs if any.
●​ Finish any remaining work

Post GSoC

After GSoC I’ll love to contribute more and be an active member of the
Sympy community . I would even like to become a mentor for next year’s
GSoC.

Notes

I’ve got my end semester exams from in July end but I would still be able
to devote 20 to 25 hours per week throughout the GSoC period. I would be
able to give all my time and energy to finish the project.

References

[1] Jason Moore
https://github.com/moorepants

[2] Sahil Shekhawat
https://github.com/sahilshekhawat

[3] Oliver Lee
https://github.com/oliverlee

https://github.com/moorepants
https://github.com/sahilshekhawat
https://github.com/oliverlee

[4] Some good previous year GSoC applications.

[5] Sahil’s PR on Joints
https://github.com/sympy/sympy/pull/9809

[6] Sahil’s PR on JointsMethod
https://github.com/sympy/sympy/pull/9835

[7] Wikipedia

[8] Joints at Comsol

[9] Pydy

https://github.com/sympy/sympy/pull/9809
https://github.com/sympy/sympy/pull/9835
https://en.wikipedia.org
https://doc.comsol.com/5.5/doc/com.comsol.help.mbd/mbd_ug_modeling.3.07.html#1582124
https://www.pydy.org/

	Programming Background
	Contributions

