
Bazel + Python Design Notes 
Status: Draft 

Visibility: PUBLIC (shared outside Google to bazel-sig-python ) 
Authors: dgreiman@google.com 

Last Updated: 2018-02-07 

Objective 

Background 
Glossaries: 
Ambiguous Term: “Package” 
Noteworthy Terms: 

Problems 
Output Artifacts 
Difficult Scenarios 

Technical Points 
Extension Modules - Cross Compilation 
Extension Modules - Native Code Dependencies 

Hypothetical Example Program 
Linking against system libraries 
Internal Google Approaches 

Package and Dependency Granularity 

Detailed Design 
Bazel Python Configurations: py_toolchain() 

Default Python Configurations 
System Installed Python Packages 
System Installed C Libraries 

Building extension modules via setup.py+distutils 
Building extension modules directly in Bazel 

Packaging, PyPI, etc 
BUILD Rule: py_distribution_package() 
WORKSPACE Rule: py_pypi_dependency() 
Runfiles 2.0 
Workspace Layout - Monorepo vs Manyrepo 

Security Considerations 

https://groups.google.com/forum/#!forum/bazel-sig-python


Privacy Considerations 

Testing Plan 

Work Estimates 

Document History 

Objective 
Enable Bazel to be a useful part of a modern Python build, test, and deploy workflow. 

Background 
The "modern Python workflow" is the workflow described by the Python Packaging Authority 
circa 2018, along with relevant PEPs, and the documentation on www.python.org.  Bazel is 
described on www.bazel.build.  The Google-internal Python workflow will be referred to as 
"Google3", and is not fully documented publicly.  Blaze is the Google-internal counterpart to the 
Bazel tool, and is not documented publicly. 

Glossaries: 
●​ Python Packaging Glossary.  In particular, the word "distribution" used here has nothing 

to do with Linux distributions. 
●​ Bazel Concepts and Terminology 

Ambiguous Term: “Package” 
●​ "Bazel Package": A directory tree containing a BUILD file, excluding any subdirectories 

which themselves contain a BUILD file.  It has a name like “//google/cloud/logging”. 
●​ Python "Distribution Package": A versioned archive file that contains Python import 

packages, modules, and other resource files that are used to distribute a Release.  It has 
a name like “google-cloud-logging”. 

●​ Python "Import Package": A Python module which can be imported at runtime, and 
contains other modules and subpackages.  It has a name like “google.cloud.logging”.  
Some Import Packages are “Namespace Packages”, where the contents of multiple 
separate directory trees are unioned at runtime into a single hierarchy. 

Noteworthy Terms: 
●​ "Requirements File": (requirements.txt, Pipfile, Pipfile.lock): A file containing a list of 

versioned dependencies.  Versions may be strict or loose.  Declarative. 

https://www.pypa.io/en/latest/
http://www.python.org
http://www.bazel.build
https://packaging.python.org/glossary/
https://docs.bazel.build/versions/master/build-ref.html


●​ "Project specification file": (setup.py, pyproject.toml): Specification file for creating 
Distribution Packages.  May contain a list of versioned dependencies.  May contain 
arbitrary imperative Python code. 

●​ "PyPI": The global Python Package Index.  Developers may also want to run local 
mirrors and/or private package indexes. 

Problems 

Output Artifacts 
In a language like C++, the inputs and outputs of the build process are fairly well understood.  
The inputs are source files (.cc, .h) and the outputs are executables and libraries (.exe, .so, .o, 
.a, .dll, .lib).  Likewise, for Java, the inputs are source files (.java) and various metadata inputs, 
and the outputs are the equivalent of executables and libraries (.jar, .war). 
 
By contrast, Python has little agreement on what the equivalent of an "executable" or "library" is.  
The dynamic nature of the language and its import mechanism allow many possible structures.  
So, as a result of the build process, a Python developer might want any or all of the following 
output artifacts: 
 

1.​ Source files (.py):  The source files might be copied or linked from the source tree to 
some output location. 

2.​ Generated source files (.py):  Tools like the Protocol Buffer compiler generate Python 
source code from other inputs. 

3.​ Bytecode files (.pyc):  Python source code can be converted to Python bytecode by the 
interpreter to save time during execution.  This usually requires that the Python 
interpreter used during the build process be the same as the Python interpreter used 
during program deployment. 

4.​ C Extension Modules (.so, .dll, .lib):  Compiled native code that can be imported by the 
Python interpreter at runtime.  Despite the name, they can be compiled from C, C++, 
FORTRAN, Cython, or nearly anything else imaginable.  They must be compiled for a 
particular ABI, which is a combination of processor (x86/x64/ARM...) ABI, operating 
system ABI (ELF/PE/Mach-O...), C ABI (libc symbol versioning), C++ ABI 
(C++03/11/14/17, helper libraries, exception handling, stack and structure layout, 
templates and inlining, linkage, etc), Python ABI (unicode width, debugging support, 32 
bit vs 64 bit, Python Extension API version, etc) and more. 

5.​ Native Libraries (.so, .a, .dll, .lib):  Compiled native code that is not itself an extension 
module, but is a dependency of one or more extension modules.  For example, the 
_tkinter extension module depends on the libtcl8.6.so shared library.  May be in 
the form of a dynamic (shared) library (.so, .dll), or a static library (.a, .lib).  If two 
extension modules depend on the same native library, the result is the "Diamond 

https://pypi.org/


Dependency" problem.  If a single process includes multiple versions of the same native 
library, the result is a “One Definition Rule” (ODR) violation. 

6.​ Generated C/C++ source files: Tools such as Cython (CLIF, SWIG, Protocol Buffers, ...) 
may generate C/C++ source code to be compiled into extension modules and/or native 
libraries. 

 
These artifacts may be packaged for test, deployment, and execution as any of the following: 
 

7.​ "site-packages": A semi-structured directory tree containing Python source files (.py), 
bytecode (.pyc), compiled C extensions (.so, .dll/.pyd), path files (.pth), and arbitrary 
other data files and executables.  Normally encountered as part of Python interpreter 
installations, or inside a virtualenv.  This is sometimes called "dist-packages" (for 
example, on Debian systems).  The site-packages directory is usually found under the 
Python standard library directory, but is conceptually separate from it.  

8.​ "runfiles": A directory tree similar to "site-packages" with a different directory 
arrangement.  Created by Bazel.  Does not (currently) use Python .pth files, instead the 
Python import path is setup by a helper script ("stub") before the main Python program 
starts execution. 

9.​ "virtualenv": A semi-structured directory tree created by the "virtualenv" program.  
Contains a "site-packages" directory, along with a symbolic link and/or copy of a Python 
interpreter binary and its associated helper files.  There are multiple tools and virtualenv 
formats in use. 

10.​"zip" (.zip, .egg, .par, .pex, .pyz): A single file in zip-archive format, designed to be 
directly imported by Python.  Contains a structured directory tree, similar to the structure 
of a "site-packages" directory, a "runfiles" directory, or something else.  Relies on an 
external Python interpreter.  There are many flavors, with widely varied functionality and 
limitations. 

11.​"hermetic launcher": A statically linked executable containing a Python interpreter and 
native libraries.  Normally combined with a zip archive to form a single "hermetic par file", 
providing a completely self-contained Python interpreter, Python source files, C 
extension modules, and dependent native libraries. 

12.​"executable": Similar to "hermetic par file", but may use a variety of other strategies to 
produce an executable file.  For example, binaries produced by the py2exe tool. 

13.​"embedded executable": The Python interpreter may be embedded inside another 
executable, for example the uWSGI webserver or iPython REPL.  Source files, bytecode, 
extension modules, and native libraries may also be linked into that executable, or 
loaded dynamically at runtime. 

14.​"sdist": (.tar.gz) A Source Distribution suitable for uploading to, and downloading from, 
PyPI. 

15.​"wheel": (.whl) A Built Distribution suitable for uploading to, and downloading from, PyPI. 
16.​Something else 

https://en.wikipedia.org/wiki/One_Definition_Rule
https://stackoverflow.com/questions/41573587/what-is-the-difference-between-venv-pyvenv-pyenv-virtualenv-virtualenvwrappe
https://stackoverflow.com/questions/41573587/what-is-the-difference-between-venv-pyvenv-pyenv-virtualenv-virtualenvwrappe
https://packaging.python.org/glossary/#term-source-archive
https://packaging.python.org/glossary/#term-wheel


Difficult Scenarios 
Build tools generally, and Bazel specifically, easily handle the scenario where pure-Python 
source code is written and executed in a single machine environment.  Therefore, this document 
concerns itself with more complex scenarios. 
 
We assume a project will span multiple programs, multiple source files, multiple packages, 
multiple repositories, and/or multiple sets of dependencies (both Python and native code). 
 
We assume first-party and/or third-party C Extension Modules will be used. 
 
One source of complexity occurs when the code is built in one machine environment, and run in 
a different machine environment.  This is very common.  We will generically call this 
"cross-compilation", even though we're using it more expansively than usual (suggestions for 
better terminology welcome).  For example: 
 

1.​ The output artifact is built in one directory ($HOME/foo/bazel-bin/bar/baz), then copied to 
another directory to be be run (/usr/local/bin).  This may cause problems with code that 
initializes the Python import path ($PYTHONPATH/sys.path).  This may cause problems 
with extension modules that use RPATH or equivalent to find their shared library 
dependencies.  This may also cause problems when the output artifacts are stored as 
symlinks (as in "runfiles" tree on non-Windows platforms).​
 

2.​ The Python interpreter is in one directory during the build process, but a different 
directory at runtime.  For example, the build process may be run inside virtualenv(s), 
where the Python interpreter path is "<env>/bin/python", while the run process is not, or 
vice versa.​
 

3.​ The Python interpreter is one version during the build process, but a different version at 
runtime.  For example, a developer laptop may have Python 2.7.14 installed, while 
production servers may have Python 2.7.13 or 3.5.4 installed.​
 

4.​ Multiple simultaneous Python versions.  The developer may have some code that has 
been ported to Python 3, and other code which requires Python 2.  Or, the developer 
might be developing a Python library and want to test that the same code works under 
Python 2.7, 3.5 and 3.6.  Or, the developer might have Python code which is invoked 
during the build process to perform some build function.​
 

5.​ Shared library, tool, or other differences.  The build process may occur on a machine 
that has libtcl8.6 installed as a system library, but run on a machine that has that library 
in a different system directory, in a non-system directory, or does not have that library at 



all.​
 

6.​ Operating system differences.  The developer may be developing on a Mac laptop, but 
building code for a Linux Docker container.​
 

7.​ Processor differences.  The build process might occur on an x64 processor, but target an 
ARM processor for runtime. 

 
Other complexities: 
 

8.​ Shared and/or “diamond” dependencies, both Python and native code.​
 

9.​ The Python interpreter might be embedded in another executable.​
 

10.​Non-CPython interpreters.  For example, PyPy, IronPython (.NET), or Jython (JVM).​
 

11.​Non-language-specific packaging tools.  The developer might want to create a 
containerized image, Windows Installer, MacOS dmg, or similar. 

Technical Points 

Extension Modules - Cross Compilation 
The build system may need create an extension module that it can't actually run, for any of the 
reasons listed above.  In fact, the build process may have to build multiple different instances of 
an extension module.  For example, if an extension module is needed at build time and at 
runtime, it may need to be built once in the host configuration(s), and again in the target 
configuration(s).  Bazel Dynamic Configurations. 
 
The standard Python mechanism for building extension modules is for each package to have a 
source file called "setup.py", which invokes the "distutils" module in the Python standard library, 
usually in concert with the "setuptools" package.  “distutils” has basic modules for compiling and 
linking extension modules, in the form of the “CCompiler” and “Extension” classes, and 
setuptools extends those classes with extra functionality. 
 
Each distribution package's setup.py is unique, and can include arbitrary Python code to do 
things like: Manually inspect the filesystem for specific files (header files, compiler executables, 
native libraries, or anything else) at particular hard-coded paths, invoke arbitrary executables, 
and invoke arbitrary operating system services.  Some packages have a very simple setup.py 
that invokes "distutils" with a few arguments.  However, many important packages have very 
complex setup.py files.  For example, the "numpy" package has several thousand lines of quite 
complex code to build itself. 

https://docs.google.com/document/d/1uoU8t7loTOu6uyzez-ilhcYgEXg4xjViJu0aqrf69TY/edit
https://github.com/numpy/numpy/tree/master/numpy/distutils
https://github.com/numpy/numpy/tree/master/numpy/distutils


 
All of this code is executed at build time in the host configuration.  “distutils” obtains compiler 
executable paths and command line flags by reading the Makefile used to compile the host 
Python interpreter, parsing out various lines of interest, and applying a variety of heuristics.  
There is some rudimentary support for cross-compilation in "distutils" and "setuptools", but it 
only works for the simplest cases.  And each package's unique setup.py code might or might not 
support cross-compilation (almost always not) depending on how it was written.  
 
Note that "distutils" and "setuptools" have a complicated development history.  In the interest of 
feasibility, we will require use of "distutils" version 2.7.x or 3.x.x and above, and "setuptools" 
version 38.x.x and above, and not support the ".egg" format.  This effectively drops support for 
Python 2.6. 

Extension Modules - Native Code Dependencies 
Native code dependencies are a hard problem.  In general, C programs can only have one 
version of a particular library.  Google handles this internally by very strictly controlling all 
aspects of the environment, and enforcing a single workflow across all developers.  This isn't 
feasible for Bazel's users, and isn't entirely desirable for Googlers, so we will come up with an 
alternate scheme. 
 
For the pedantic: With extreme care and the proper compilation and linking scheme, it's 
_possible_ to have multiple different versions of a single C/C++ library in the same process, but 
this will inevitably end in tears.  And by tears, I mean incredibly hard-to-debug memory 
corruption, bugs, and crashes.  Also, tears. 😢 

Hypothetical Example Program 
This program, called myprog.py, uses the Python standard library socket module, various 
first-party Python/C++ libraries, and the third-party extension module MySQLdb.  The library 
"libssl" is a dependency of multiple other extension modules, other native libraries, and perhaps 
the Python interpreter binary itself. 
 
Black Python source code 
​ myprog.py, socket.py, pywraprecordio.py, ProtocolBuffer.py, MySQLdb.py 
Green C Extension Module 
​ _socket.so, _pywraprecordio.so, _parse_proto.so, swigdeps.so, _mysql.so 
Blue Compiled native library 
​ libfile.a, libproto.a, libgfs.a, libiobuffer.a 
Red Third-party native library with version conflict  
​ libssl.so, libssl.a 
 



 

Linking against system libraries 
Every piece of code in the example program above must make the same decision about where 
to get the dependency "libssl" from.  If, for example _mysql.so statically links the 
system-installed /usr/lib/libssl.a into itself, but _socket.so decides to dynamically link against a 
copy of libssl.so built by Bazel, the mostly likely result is disaster, even if the two are identical 
versions.  If they are different versions, or the same version compiled differently, the problem is 
even worse. 

Internal Google Approaches 
1.​ Hermetic launcher​

​
All C/C++ code, including the Python interpreter, all extension modules in the Python 
standard library, all extension modules and native libraries in first-party code, and all 
third-party extension modules and native libraries, are built from source.  All native code 
except for extension modules is statically linked into a single executable.  Extension 
modules are loaded from either the filesystem, or a zip file embedded within the hermetic 
launcher, by a special-purpose loader. 



 
​ Pros: 

1.​ Avoids all version skew, ODR violations, and diamond dependency problems. 
2.​ Easy to deploy - just copy a single file and run. 
3.​ Updates to an installed Python interpreter cannot break a deployed application. 

​ Cons: 
1.​ Must have Bazel rules to build the Python interpreter and all third-party 

dependencies.  These rules are quite laborious to write and maintain. 
2.​ The current implementation is Linux-only and depends on custom libc patch so 

that .so files can be loaded from a single-file Python binary without extracting 
them.  It is possible to re-implement this in a way that does not need a custom 
libc.  It is also possible to create implementations for other operating systems. 

3.​ Adds a ~20MB fixed overhead for every Python program. 
4.​ Building a single Python program in a clean workspace requires building the 

Python interpreter, standard library, and all dependencies from source. 
5.​ Requires a one-version policy: The entire repository must agree on a single 

canonical version of all libraries and dependencies. 
​  

2.​ Native Code Dependencies Dynamic Shared Object (aka "swigdeps.so")​
​
All first-party and third-party code is built from source.  All extension modules are built as 
dynamic shared libraries (.so).  All native code dependencies are built as static libraries 
(.a), and then linked into a single dynamic shared library per Python program, called 
"_name_of_program_swigdeps.so".  Note that the name is a historical artifact and has 
nothing specifically to do with the tool SWIG.​
​
Pros: 

1.​ Avoids most version skew, ODR violations, and diamond dependency problems 
 
Cons: 

2.​ Deployment requires copying an entire directory tree. 
3.​ Must have Bazel rules to build all third-party dependencies. 
4.​ Might not be able to use the system Python interpreter.  The Python interpreter 

used must carefully match the linking and compilation options used by Bazel, but 
does not need to be built by Bazel. 

5.​ The Python interpreter must be separately deployed, and version skew is a 
serious problem.  Upgrading interpreters in a production environment can be 
quite difficult. 

 
Since neither of these approaches works well for Bazel, alternatives are discussed below. 



Package and Dependency Granularity 
Inside Google, there is a strict relationship between Blaze packages, Python Import Packages, 
and repository layout in the filesystem.  There is a single Blaze workspace, rooted at a directory 
called “google3”.  The directory “google3/foo/bar” == the Blaze package “//foo/bar” == the 
Python Import Package “google3.foo.bar”.  Python Distribution Packages are not used.  The 
directory tree “google3/third_party” is handled specially, so that the directory 
“google3/third_party/py/foo” == the Blaze package “//third_party/py/foo” == the Python Import 
Package “foo”, where “foo” is the normal name the package would have outside of Google. 
 
The most important unit of organization is the Blaze target (py_binary, py_library, etc) rather 
than the Blaze package.  Dependencies are specified on a per-Blaze-target granularity.  
Therefore, a single Blaze package “//foo/bar” could have two programs “baz” and “quxx” with 
completely different sets of (possibly incompatible) dependencies. 
 
Historical note: The Google3 repository was originally intended to have a package-centric 
organization, where each package would contain a single non-test library or binary, with a single 
set of dependencies (This is why “//foo/bar” target notation is shorthand for “//foo/bar:bar”).  
However, it didn’t really work out like that.  Also, in hindsight, it would have been nicer to have a 
single aggregated test target per package, instead of requiring developers to specify one per 
source file.  So, test targets in the same package can also have completely different sets of 
dependencies. 
 
Bazel’s rules assume a similar sort of structure, except that the main workspace name is used 
instead of “google3”, and the main repository can refer to other repositories via “external 
workspaces”.  The syntax “@external workspace//target” is used to refer to them in BUILD rules, 
and they are given top-level directories in runfiles tree.  This runfiles structure is not always well 
suitable for external use cases. 
 
By comparison, the “modern Python workflow” considers Python Distribution Packages to be the 
main unit of organization.  A Distribution Package contains multiple programs (“scripts”) and 
Import Packages, but has only a single set of dependencies.  Distribution Packages may also 
contain “extras”, which can declare their own sets of dependencies, but all such dependencies 
are eventually merged together into a common tree, so they cannot correctly have incompatible 
dependencies.  Specifically, given “extra1” depends on “dep==1.0”, and “extra2” depends on 
“dep==2.0”, “pip install [extra1,extra2]” gives you some version picked arbitrarily. 

Detailed Design 



Bazel Python Configurations: py_toolchain() 
Bazel uses files called CROSSTOOL to specify details of C compilation and linking.  Inside 
Google, Blaze has a CROSSTOOL file pointing to version-controlled compilers and tools.  
Outside of Google, Bazel has CROSSTOOL files based on autodetection of system-installed 
compilers. 
 
Bazel needs something analogous for Python configurations.  Call it “py_toolchain”.  A 
py_toolchain answers at least one of the following questions: 
 

1.​ How do I run Python code? 
a.​ Filesystem path to an installed Python interpreter 
b.​ Shebang line to prepend to standalone scripts 
c.​ Required environment variables, command line flags, and/or library search paths 

2.​ Can Bazel run this Python interpreter during the build process? 
a.​ Answer might be “No” for cross-compilation cases 

3.​ How do I compile Python extension modules? 
a.​ References an existing CROSSTOOL/cc_toolchain for basic compilation 

functionality 
b.​ Filesystem path to required header files (“Python.h” etc) 
c.​ Filesystem path to required library files 
d.​ Compiler flags and other logic 

4.​ How do I compile the Python interpreter itself? 
a.​ Lots of Bazel rules 
b.​ Checked in pyconfig.h files for relevant platforms as we don't run configure. 

 
It’s expected that most py_toolchains won’t be able to answer all of these questions.  A 
py_toolchain for a cross-compilation (e.g. x64 to ARM) can’t do #2. A Python interpreter 
installed without the required header files can’t do #3 (e.g. Debian with “python” installed but not 
“python-dev”).  Any py_toolchain without laboriously handcrafted Bazel rules can’t do #4. 
 
Points 1 and 2 seem reasonably straightforward.  Point 3 could be done in several ways.  We 
could go platform by platform (Windows, Mac OS, Linux, ...) and reverse-engineer “distutils” and 
the system-installed Python interpreter Makefile.  This requires a fair bit of work, limits the 
platforms available, and only works for system-installed interpreters.  Or we could invoke 
“distutils” at build time, and scrape the output.  This seems likely to be fragile.  We’ll probably 
have to do a bit of both. 
 
Point 4 is what we do inside Google, and will continue to do.  It’s quite labor intensive and high 
maintenance.  We could write and maintain equivalent open-source rules for Python interpreters 
of interest. 

https://docs.python.org/3/using/windows.html#shebang-lines


Default Python Configurations 
At or before the start of the build process, Bazel will create a set of default Python 
configurations for the system-installed Python interpreters on the build host.  Bazel will use 
appropriate operating system facilities, such as querying the Windows registry, looking at 
$PATH, or directly probing the filesystem.  Often, multiple interpreters are installed side by side, 
for example Debian 8 usually has Python 2.7.x and Python 3.4.x installed as /usr/bin/python2 
and /usr/bin/python3. 
 
Bazel may be invoked from inside a Python virtualenv.  This can be detected by examining 
environment variables.  If so, Bazel will create a Python configuration corresponding to this 
virtualenv. 
 
Users will be able to define their own py_toolchain() targets in the WORKSPACE file to handle 
cross-compilation, non-standard interpreters, and any other desired cases.  Syntax TBD, but 
reasonably complicated.  Open question, do users need the ability to specify this per-user, or in 
a .bazelrc?  Also, it would be nice to provide some facility to share these targets between 
workspaces. 
 
The services provided by py_toolchain()s look a lot like the services provided by virtualenvs.  
Therefore, Bazel will create and maintain a virtualenv for each defined py_toolchain().  This is 
fairly easy (more symlinks) except for Windows.  The virtualenvs will be stored in 
bazel-bin/<toolchain name>_virtualenv/. 

System Installed Python Packages 
Each Python interpreter has an unpredictable set of third-party Python packages installed 
alongside its standard library.  These packages are implicitly available to all Python code run by 
that interpreter.  While this might seem like a feature at first, it raises serious problems of 
correctness and reproducibility. 
 
Having these packages implicitly available requires no work, it’s just what happens by default.  
To use a Python interpreter without using third-party Python packages installed in it, one must 
do some work.  Luckily, we decided to create a virtualenv for each py_toolchain, and virtualenvs 
already contain the functionality to separate a Python interpreter from unwanted third-party 
packages. 

System Installed C Libraries 
Each build machine has an unpredictable set of third-party C libraries installed system-wide.  
For reasons of practicality, most Bazel users will link their C/C++ code against these libraries 
instead of building absolutely everything from source.  TODO A solution 



Building extension modules via setup.py+distutils 
For packages such as numpy that has an existing recipe for building extension modules via 
setup.py+distutil, Bazel has the following options: 
 

1.​ Have Bazel run setup.py + distutils.  Not hermetic, not reproducible, and not 
cross-compileable.​
 

2.​ Create our own patched version of distutils that invokes Bazel instead of the system 
installed compilers.  So we would have Bazel -> setup.py+distutils -> Bazel -> compiler.  
We'd do something clever to avoid actually invoking Bazel recursively.  It's not clear how 
feasible this is, given the complexity of distutils, and the unlimited complexity of setup.py.​
 

3.​ Have Bazel create a special sandbox that "looks like" the system-installed Python and 
system-installed compilers, but actually points to a particular py_toolchain+cc_toolchain.  
Then have Bazel run setup.py + distutils in this sandbox.  It's not clear how feasible this 
is, but perhaps more so than #2.​
 

4.​ Create hand-written Bazel rules to duplicate the setup.py functionality.  We would need 
to create such rules for every Python package of interest (100s-1000s).  Ideally these 
would be stored in a centralized place, and community curated and maintained.  This 
would definitely work, since we do it inside Google, but is a large and ongoing 
maintenance and community support responsibility.​
 

5.​ Don't handle this case: Download a pre-compiled binary wheel from PyPI, otherwise fail.  
Unfortunately, many packages don't have precompiled wheels, or don't have wheels for 
the platforms of interest.  Also, there is a set of users (including Google) that aren't 
willing to download and run untrusted binaries from the Internet. 

 
These are all hard choices. 

Building extension modules directly in Bazel 
A new BUILD rule will be added: py_extension(name, deps, srcs, ...).  This rule will compile 
C/C++ source code to create an extension module in whatever format(s) is relevant.  Bazel will 
use the relevant py_toolchain to figure out how to do this.  Bazel may have to build an extension 
module more than once if multiple configurations are required.  Extensions may depend on 
other cc_library() targets.  Depending on or linking to other py_extension() targets is tricky, and 
will not be supported unless needed (alternatives such as the PyCapsule API exist). 
 
The py_extension rule will provide some syntax for linking against a system-installed C library.  
For linking against a C library built by Bazel, the usual "deps" attribute will be used.  When Bazel 



can detect link inconsistencies, it print a message and fail the build (i.e. linking against both 
libssl.a and libssl.so), but many cases can't be easily detected. 
 
Dependencies will be linked as dynamic shared libraries, rather than statically linked into a 
single "swigdeps.so" as Google does.  After building, it's largely up to the user to make sure that 
all the required shared libraries get to where they need to go for run time.  Libraries such as 
openssl that are linked into the Python interpreter and/or standard library extension modules will 
continue to require attention and care from the user. 
 

 

Packaging, PyPI, etc 

BUILD Rule: py_distribution_package() 
From a set of py_binary() and py_library() targets (default is all targets in the Bazel package), 
create a Distribution Package suitable for uploading to PyPI.  Generates a suitable setup.py file.  
All py_binary() targets become 'scripts'.  All py_library() targets other than the main one become 
'extras'.  All dependencies are translated from Bazel syntax to PyPI syntax. 



 
TBD 

WORKSPACE Rule: py_pypi_dependency() 
Describe a Distribution Package on PyPI (or local mirror, or vendored directory tree).  Such a 
package is then available as a "dep" for py_binary(), py_library(), and/or 
py_distribution_package() targets.  Includes version resolution. 
 
TBD 

Runfiles 2.0 
Reorganize the layout of runfiles directory tree to look more like a "site-packages" directory. 
 
More ambitiously, reorganize the runfiles directory tree to look like a "virtualenv" (e.g. with bin/ 
and similar directories, and links to the Python interpeter). 
 
Add per-target option to use Python .pth files to dynamically join multiple partial runfiles 
directories, at runtime, rather than creating millions of near-duplicate symlink trees. 
 
TBD 

Workspace Layout - Monorepo vs Manyrepo 
 
Handle both cases in a reasonable way.  Currently, the runfiles trees for the two cases have a 
very different structure.  They shouldn't. 
 
TBD 

Security Considerations 
Downloading source and/or compiled binaries from PyPI opens major new attack surfaces. 

Privacy Considerations 
Connecting to PyPI to download source and/or compiled binaries leaks information about the 
code being built, the machines building it, and the users and organization working on it. 

Testing Plan 



A local PyPI mirror/mock for system tests. 

Work Estimates 
??? 

Document History 
You can view a description of this section here. 
 
Google Docs has built-in document revision history. Select “File > See revision history” from the 
menu to view detailed document history. 
 
Whenever you add a significant new revision to the document, add a new line to the table 
below. 
 

Date Author Description Reviewed by Signed off by 

2018-02-05 dgreiman Initial Draft twouters, 
gps, ... 

 

     

 

https://www.corp.google.com/eng/designdocs/designdoc-template-frontend.html#document_history

	Bazel + Python Design Notes 
	Objective 
	Background 
	Glossaries: 
	Ambiguous Term: “Package” 
	Noteworthy Terms: 

	Problems 
	Output Artifacts 
	Difficult Scenarios 

	Technical Points 
	Extension Modules - Cross Compilation 
	Extension Modules - Native Code Dependencies 
	Hypothetical Example Program 
	Linking against system libraries 
	Internal Google Approaches 

	Package and Dependency Granularity 

	Detailed Design 
	Bazel Python Configurations: py_toolchain() 
	Default Python Configurations 
	System Installed Python Packages 
	System Installed C Libraries 

	Building extension modules via setup.py+distutils 
	Building extension modules directly in Bazel 

	Packaging, PyPI, etc 
	BUILD Rule: py_distribution_package() 
	WORKSPACE Rule: py_pypi_dependency() 
	Runfiles 2.0 
	Workspace Layout - Monorepo vs Manyrepo 

	Security Considerations 
	Privacy Considerations 
	Testing Plan 
	Work Estimates 
	Document History 

