
 

 

SRI KRISHNA INSTITUTE OF TECHNOLOGY 
(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) 

#57, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090 

Department of Artificial Intelligence and Machine Learning 

 

MODULE – 1 
 

 
1.0​SOFTWARE AND SOFTWARE ENGINEERING 

What is it? Computer software is the product that software professionals build and then 
support over the long term. It encompasses programs that execute within a computer of any 
size and architecture, content that is presented as the computer programs execute, and 
descriptive information in both hard copy and virtual forms that encompass virtually any 
electronic media. Software engineering encompasses a process, a collection of methods 
(practice) and an array of tools that allow professionals to build high quality computer 
software. 

 
Who does it? Software engineers build and support software, and virtually everyone in the 
industrialized world uses it either directly or indirectly. 

 
Why is it important? Software is important because it affects nearly every aspect of our 
lives and has become pervasive in our commerce, our culture, and our everyday activities 
Software engineering is important because it enables us to build complex systems in a 
timely manner and with high quality. 

 
What are the steps? You build computer software like you build any successful product, by 
applying an agile, adaptable process that leads to a high-quality result that meets the needs 
of the people who will use the product. You apply a software engineering approach. 

 
What is the work product? From the point of view of a software engineer, the work product 
is the set of programs, content (data), and other work products that are computer software. 

 



 

 

SRI KRISHNA INSTITUTE OF TECHNOLOGY 
(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) 

#57, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090 

Department of Artificial Intelligence and Machine Learning 

 
But from the user’s viewpoint, the work product is the resultant information that somehow 
makes the user’s world better. 

1.1​THE NATURE OF SOFTWARE 
 

Today, software takes on a dual role. It is a product, and at the same time, the vehicle 
for delivering a product. As a product, it delivers the computing potential embodied by 
computer hardware or more broadly, by a network of computers that are accessible by 
local hardware. 

 
As the vehicle used to deliver the product, software acts as the basis for the control of 
the computer (operating systems), the communication of information (networks), and the 
creation and control of other programs (software tools and environments). 

 
Software delivers the most important product of our time—information. It transforms 
personal data so that the data can be more useful in a local context; it manages business 
information to enhance competitiveness; it provides a gateway to worldwide information 
networks, and provides the means for acquiring information in all of its forms. 

 
The role of computer software has undergone significant change over the last half- 
century. Dramatic improvements in hardware performance, profound changes in 
computing architectures, vast increases in memory and storage capacity, and a wide 
variety of exotic input and output options, have all precipitated more sophisticated and 
complex computer-based systems. Sophistication and complexity can produce dazzling 
results when a system succeeds, but they can also pose huge problems for those who 
must build complex systems. 

 
1.1.1​Defining Software: Software is: 
(1)​ instructions (computer programs) that when executed provide desired features, 

function, and performance; 
(2)​data structures that enable the programs to adequately manipulate information, and 
(3)​ descriptive information in both hard copy and virtual forms that describes the 
operation and use of the programs. 

 
Software has characteristics that are considerably different than those of hardware: 

 
1.​ Software is developed or engineered: it is not manufactured in the classical 
sense. Although some similarities exist between software development and hardware 
manufacturing, the two activities are fundamentally different. In both activities, high 

 



 

 

SRI KRISHNA INSTITUTE OF TECHNOLOGY 
(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) 

#57, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090 

Department of Artificial Intelligence and Machine Learning 

 
quality is achieved through good design, but the manufacturing phase for hardware can 
introduce quality problems that are nonexistent (or easily corrected) for software. 
Software projects cannot be managed as if they were manufacturing projects. 

 

 

 

 
2.​ Software doesn’t “wear out.”: Figure 1.1 depicts failure rate as a function of 
time for hardware. The relationship, often called the “bathtub curve,” indicates that 
hardware exhibits relatively high failure rates early in its life; defects are corrected and 
the failure rate drops to a steady-state level (hopefully, quite low) for some period of time. 
As time passes, however, the failure rate rises again as hardware components suffer 
from the cumulative effects of dust, vibration, abuse, temperature extremes, and many 
other environmental maladies. 

 
 



 

 

SRI KRISHNA INSTITUTE OF TECHNOLOGY 
(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) 

#57, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090 

Department of Artificial Intelligence and Machine Learning 

 
Stated simply, the hardware begins to wear out. Software is not susceptible to the 
environmental maladies that cause hardware to wear out. In theory, therefore, the failure 
rate curve for software should take the form of the “idealized curve” shown in Figure 1.2. 
Undiscovered defects will cause high failure rates early in the life of a program. However, 
these are corrected and the curve flattens as shown. The idealized 

curve is a gross oversimplification of actual failure models for software. However, the 
implication is clear—software doesn’t wear out. But it does deteriorate. 

 
3.​ Although the industry is moving toward component-based construction, 
most software continues to be custom built: As an engineering discipline evolves, a 
collection of standard design components is created. The reusable components have 
been created so that the engineer can concentrate on the truly innovative elements of a 
design, that is, the parts of the design that represent something new. 

 
A software component should be designed and implemented so that it can be reused in 
many different programs. Modern reusable components encapsulate both data and the 
processing that is applied to the data, enabling the software engineer to create new 
applications from reusable parts. 

 
1.1.2​ Software Application Domains: Today, seven broad categories of computer 
software present continuing challenges for software engineers: 

 
System software—a collection of programs written to service other programs. Some 
system software (e.g., compilers, editors, and file management utilities) processes 
complex, but determinate, information structures. Other systems applications (e.g., 
operating system components, drivers, networking software, telecommunications 
processors) process largely indeterminate data. 

 
Application software—stand-alone programs that solve a specific business need. 
Applications in this area process business or technical data in a way that facilitates 
business operations or management/technical decision making. 

 
Engineering/scientific software—has been characterized by “number crunching” 
algorithms. Applications range from astronomy to volcanology, from automotive stress 
analysis to space shuttle orbital dynamics, and from molecular biology to automated 
manufacturing. 

 
Embedded software—resides within a product or system and is used to implement and 

 



 

 

SRI KRISHNA INSTITUTE OF TECHNOLOGY 
(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) 

#57, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090 

Department of Artificial Intelligence and Machine Learning 

 
control features and functions for the end user and for the system itself. 

 
Product-line software—designed to provide a specific capability for use by many 
different customers. Product-line software can focus on a limited and esoteric 
marketplace or address mass consumer markets. 

 
Web applications—called “WebApps,” this network-centric software category spans a 
wide array of applications. In their simplest form, WebApps can be little more than a set 
of linked hypertext files that present information using text and limited graphics.​  

 



 

 

SRI KRISHNA INSTITUTE OF TECHNOLOGY 
(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) 

#57, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090 

Department of Artificial Intelligence and Machine Learning 

  
 

Artificial intelligence software—makes use of nonnumerical algorithms to solve 
complex problems that are not amenable to computation or straightforward analysis. 
Applications within this area include robotics, expert systems, pattern recognition (image 
and voice), artificial neural networks, theorem proving, and game playing. 

 
New Challenges 

Open-world computing—the rapid growth of wireless networking may soon lead to true 
pervasive, distributed computing. The challenge for software engineers will be to develop 
systems and application software that will allow mobile devices, personal computers, 
and enterprise systems to communicate across vast networks. 

 
Net sourcing—the World Wide Web is rapidly becoming a computing engine as well as 
a content provider. The challenge for software engineers is to architect simple and 
sophisticated applications that provide a benefit to targeted end-user markets worldwide. 

 
Open source—a growing trend that results in distribution of source code for systems 
applications so that many people can contribute to its development. 

 
1.1.3​ Legacy Software: These older programs—often referred to as legacy software. 
Legacy software systems . were developed decades ago and have been continually 
modified to meet changes in business requirements and computing platforms. Legacy 
software is characterized by longevity and business criticality. 

 
Unfortunately, there is sometimes one additional characteristic that is present in legacy 
software—poor quality. Legacy systems sometimes have inextensible designs, 
convoluted code, poor or nonexistent documentation, test cases and results. 

 
Legacy systems often evolve for one or more of the following reasons: 
•​ The software must be adapted to meet the needs of new computing environments or 

technology. 
•​ The software must be enhanced to implement new business requirements. 
•​ The software must be extended to make it interoperable with other more modern 

systems or databases. 
•​ The software must be re-architected to make it viable within a network environment. 

 



 

1.2​THE UNIQUE NATURE OF WEBAPPS 
 

The following attributes are encountered in the vast majority of WebApps. 
 

Network intensiveness. A WebApp resides on a network and must serve the needs of a 
diverse community of clients. The network may enable worldwide access and 
communication (i.e., the Internet) or more limited access and communication (e.g., a 
corporate Intranet). 
Concurrency. A large number of users may access the WebApp at one time. In many 
cases, the patterns of usage among end users will vary greatly. 
Unpredictable load. The number of users of the WebApp may vary by orders of 
magnitude from day to day. One hundred users may show up on Monday; 10,000 may 
use the system on Thursday. 
Performance. If a WebApp user must wait too long, he or she may decide to go 
elsewhere. 
Availability. Although expectation of 100 percent availability is unreasonable, users of 
popular WebApps often demand access on a 24/7/365 basis. Users in Australia or Asia 
might demand access during times when traditional domestic software applications in 
North America might be taken off-line for maintenance. 
Data driven. The primary function of many WebApps is to use hypermedia to present 
text, graphics, audio, and video content to the end user. In addition, WebApps are 
commonly used to access information that exists on databases that are not an integral 
part of the Web-based environment 
Content sensitive. The quality and aesthetic nature of content remains an important 
determinant of the quality of a WebApp. 
Continuous evolution. Unlike conventional application software that evolves over a 
series of planned, chronologically spaced releases, Web applications evolve 
continuously. It is not unusual for some WebApps (specifically, their content) to be 
updated on a minute-by-minute schedule or for content to be independently computed 
for each request. 
Immediacy. Although immediacy—the compelling need to get software to market 
quickly—is a characteristic of many application domains, WebApps often exhibit a time- 
to-market that can be a matter of a few days or weeks. 
Security. Because WebApps are available via network access, it is difficult, if not 
impossible, to limit the population of end users who may access the application. In order 
to protect sensitive content and provide secure modes of data transmission, strong 
security measures must be implemented throughout the infrastructure that supports a 
WebApp and within the application itself. 
Aesthetics. An undeniable part of the appeal of a WebApp is its look and feel. When an 
application has been designed to market or sell products or ideas, aesthetics may have 
as much to do with success as technical design.   

 



 

1.3​SOFTWARE ENGINEERING 
 

Software engineering encompasses a process, methods for managing and engineering 
software, and tools. 

 
In order to build software that is ready to meet the challenges of the twenty-first century, 
few simple realities are: 

 
•​ Software has become deeply embedded in virtually every aspect of our lives, and 
as a consequence, the number of people who have an interest in the features and 
functions provided by a specific application has grown dramatically. 
•​ The information technology requirements demanded by individuals, businesses, 
and governments grow increasing complex with each passing year. The complexity of 
these new computer-based systems and products demands careful attention to the 
interactions of all system elements. It follows that design becomes a pivotal activity. 
•​ Individuals, businesses, and governments increasingly rely on software for 
strategic and tactical decision making as well as day-to-day operations and control. If the 
software fails, people and major enterprises can experience anything from minor 
inconvenience to catastrophic failures. 
•​ As the perceived value of a specific application grows, the likelihood is that its 
user base and longevity will also grow. As its user base and time-in-use increase, 
demands for adaptation and enhancement will also grow. It follows that software should 
be maintainable. 

 
The IEEE has developed a more comprehensive definition when it states: 
Software Engineering: (1) The application of a systematic, disciplined, quantifiable 
approach to the development, operation, and maintenance of software; that is, the 
application of engineering to software. (2) The study of approaches as in (1). 

 
 

 
Layered Technology: Software engineering is a layered technology. Referring to Figure 
1.3, any engineering approach (including software engineering) must rest on an 

 
 



 

organizational commitment to quality. Total quality management, Six Sigma, and similar 
philosophies foster a continuous process improvement culture, and it is this culture that 
ultimately leads to the development of increasingly more effective approaches to 
software engineering. The bedrock of software engineering is a quality focus. 

 
The foundation for software engineering is the process layer. The software engineering 
process is the glue that holds the technology layers together and enables rational and 
timely development of computer software. Process defines a framework that must be 
established for effective delivery of software engineering technology. 

 
The software process forms the basis for management control of software projects and 
establishes the context in which technical methods are applied, work products (models, 
documents, data, reports, forms, etc.) are produced, milestones are established, quality 
is ensured, and change is properly managed. 

 
Software engineering methods provide the technical how-to’s for building software. 
Methods encompass a broad array of tasks that include communication, requirements 
analysis, design modeling, program construction, testing, and support. Software 
engineering methods rely on a set of basic principles that govern each area of the 
technology and include modeling activities and other descriptive techniques. 

 
Software engineering tools provide automated or semi automated support for the 
process and the methods. When tools are integrated so that information created by one 
tool can be used by another, a system for the support of software development, called 
computer-aided software engineering, is established. 

 
1.4​The software Process 
A process defines who is doing what when and how to reach a certain goal. 
A process is a collection of activities, actions, and tasks that are performed when some 
work product is to be created. An activity strives to achieve a broad objective and is 
applied regardless of the application domain, size of the project, complexity of the effort, 
or degree of rigor with which software engineering is to be applied. An action 
encompasses a set of tasks that produce a major work product. A task focuses on a 
small, but well-defined objective (e.g., conducting a unit test) that produces a tangible 
outcome. 

A process is not a rigid rather it is an adaptable approach to choose the appropriate set 
of work actions and tasks. The intent is always to deliver software in a timely manner and 
with sufficient quality to satisfy those who have sponsored its creation and those who will 
use it. 

 

A process framework establishes the foundation for a complete software engineering 

 



 

process by identifying a small number of framework activities that are applicable to all 
software projects, regardless of their size or complexity. In addition, the process 
framework encompasses a set of umbrella activities that are applicable across the entire 
software process. A generic process framework for software engineering encompasses 
five activities: 
Communication. Before any technical work can commence, it is critically important to 
communicate and collaborate with the customer. The intent is to understand 
stakeholders’ objectives for the project and to gather requirements that help define 
software features and functions. 
Planning. The planning activity creates a “map” called a software project plan—defines 
the software engineering work by describing the technical tasks to be conducted, the 
risks that are likely, the resources that will be required, the work products to be produced, 
and a work schedule. 
Modeling. You create a “sketch” of the thing so that you’ll understand the big picture. A 
software engineer does the same thing by creating models to better understand software 
requirements and the design that will achieve those requirements. 
Construction. This activity combines code generation and the testing that is required to 
uncover errors in the code. 
Deployment. The software is delivered to the customer who evaluates the delivered 
product and provides feedback based on the evaluation. 

 
These five generic framework activities can be used during the development of small, 
simple programs, the creation of large Web applications, and for the engineering of 
large, complex computer-based systems. The details of the software process will be 
quite different in each case, but the framework activities remain the same. 

 
That is, communication, planning, modeling, construction, and deployment are applied 
repeatedly through a number of project iterations. Each project iteration produces a 
software increment that provides stakeholders with a subset of overall software features 
and functionality. 

 
Software engineering process framework activities are complemented by a number of 
umbrella activities. In general, umbrella activities are applied throughout a software 
project. 

 
Typical umbrella activities include: 
Software project tracking and control—allows the software team to assess progress 
against the project plan and take any necessary action to maintain the schedule. 
Risk management—assesses risks that may affect the outcome of the project or the 
quality of the product. 

 

Software quality assurance—defines and conducts the activities required to ensure 
 



 

software quality. 
Technical reviews—assesses software engineering work products in an effort to 
uncover and remove errors before they are propagated to the next activity. 
Measurement—defines and collects process, project, and product measures that assist 
the team in delivering software that meets stakeholders’ needs; can be used in 
conjunction with all other framework and umbrella activities. 
Software configuration management—manages the effects of change throughout the 
software process. 
Reusability management—defines criteria for work product reuse (including software 
components) and establishes mechanisms to achieve reusable components. 
Work product preparation and production—encompasses the activities required to 
create work products such as models, documents, logs, forms, and lists. 

 
1.5​Software Engineering Practice 

 
Generic framework activities—communication, planning, modeling, construction, and 
deployment—and umbrella activities establish a skeleton architecture for software 
engineering work. Practices are as follows 
1.​Understand the problem (communication and analysis). 
2.​Plan a solution (modeling and software design). 
3.​Carry out the plan (code generation). 
4.​Examine the result for accuracy (testing and quality assurance). 

Understand the problem. It’s worth spending a little time to understand, answering a 
few simple questions: 
•​Who has a stake in the solution to the problem? That is, who are the stakeholders? 
•​ What are the unknowns? What data, functions, and features are required to 
properly solve the problem? 
•​ Can the problem be compartmentalized? Is it possible to represent smaller 
problems that may be easier to understand? 
•​Can the problem be represented graphically? Can an analysis model be created? 

 
Plan the solution. Now you understand the problem and you can’t wait to begin coding. 
Before you do, slow down just a bit and do a little design: 
•​ Have you seen similar problems before? Are there patterns that are recognizable 
in a potential solution? Is there existing software that implements the data, functions, and 
features that are required? 
•​Has a similar problem been solved? If so, are elements of the solution reusable? 
•​ Can sub problems be defined? If so, are solutions readily apparent for the sub 
problems? 

 

•​ Can you represent a solution in a manner that leads to effective implementation? 
 



 

Can a design model be created? 
 

Plan the solution. Now you understand the problem (or so you think) and you can’t 
wait to begin coding. Before you do, slow down just a bit and do a little design: 
•​ Have you seen similar problems before? Are there patterns that are recognizable 
in a potential solution? Is there existing software that implements the data, functions, and 
features that are required? 
•​Has a similar problem been solved? If so, are elements of the solution reusable? 
•​ Can sub problems be defined? If so, are solutions readily apparent for the sub 
problems? 
•​ Can you represent a solution in a manner that leads to effective implementation? 
Can a design model be created? 

 
Examine the result. You can’t be sure that your solution is perfect, but you can be sure 
that you’ve designed a sufficient number of tests to uncover as many errors as possible. 
•​ Is it possible to test each component part of the solution? Has a reasonable 
testing strategy been implemented? 
•​ Does the solution produce results that conform to the data, functions, and 
features that are required? Has the software been validated against all stakeholder 
requirements? 

 
1.5.2 General Principles: David Hooker has proposed seven principles that focus on 
software engineering practice as a whole. They are as following. 

 
The First Principle: The Reason It All Exists 
A software system exists for one reason: to provide value to its users. Before specifying 
a system requirement, before noting a piece of system functionality, before determining 
the hardware platforms or development processes, ask yourself questions such as: 
“Does this add real value to the system?” If the answer is “no,” don’t do it. All other 
principles support this one. 
The Second Principle: KISS (Keep It Simple, Stupid!) 
There are many factors to consider in any design effort. All design should be as simple 
as possible, but no simpler. This facilitates having a more easily understood and easily 
maintained system. Indeed, the more elegant designs are usually the more simple ones. 
The payoff is software that is more maintainable and less error-prone. 
The Third Principle: Maintain the Vision 
A clear vision is essential to the success of a software project. Without one, a project 
almost unfailingly ends up. Compromising the architectural vision of a software system 
weakens and will eventually break even the well-designed systems. Having an 
empowered architect who can hold the vision and enforce compliance helps ensure a 
very successful software project. 
The Fourth Principle: What You Produce, Others Will Consume​  

 



 

Design, keeping the implementers in mind. Code with concern for those that must 
maintain and extend the system. Someone may have to debug the code you write, and 
that makes them a user of your code. Making their job easier adds value to the system. 
The Fifth Principle: Be Open to the Future 
A system with a long lifetime has more value. Never design yourself into a corner. 
Always ask “what if,” and prepare for all possible answers by creating systems that 
solve the general problem, not just the specific one. This could very possibly lead to the 
reuse of an entire system. 

 
The Sixth Principle: Plan Ahead for Reuse 
Planning ahead for reuse reduces the cost and increases the value of both the reusable 
components and the systems into which they are incorporated. 
The Seventh principle: Think! 
This last principle is probably the most overlooked. Placing clear, complete thought 
before action almost always produces better results. When you think about something, 
you are more likely to do it right. 

 
1.6​Software myths 

 
Today, most knowledgeable software engineering professionals recognize myths for 

what they are—misleading attitudes that have caused serious problems for managers 
and practitioners alike. However, old attitudes and habits are difficult to modify, and 
remnants of software myths remain. 

 
Management myths. Managers with software responsibility, like managers in most 
disciplines, are often under pressure to maintain budgets, keep schedules from slipping, 
and improve quality. Like a drowning person who grasps at a straw, a software manager 
often grasps at belief in a software myth, if that belief will lessen the pressure. 
Myth: We already have a book that’s full of standards and procedures for building 
software. Won’t that provide my people with everything they need to know? 
Reality: The book of standards may very well exist, but is it used? Are software 
practitioners aware of its existence? Does it reflect modern software engineering 
practice? Is it complete? Is it adaptable? Is it streamlined to improve time-to-delivery 
while still maintaining a focus on quality? In many cases, the answer to all of these 
questions is “no.” 
Myth: If we get behind schedule, we can add more programmers and catch up 
Reality: Software development is not a mechanistic process like manufacturing. In the 
words of Brooks “adding people to a late software project makes it later.” At first, this 
statement may seem counterintuitive. However, as new people are added, people who 
were working must spend time educating the newcomers, thereby reducing the amount 
of time spent on productive development effort. People can be added but only in a 
planned and well coordinated manner.​  

 



 

Myth: If I decide to outsource the software project to a third party, I can just relax and let 
that firm build it. 
Reality: If an organization does not understand how to manage and control software 
projects internally, it will invariably struggle when it outsources software projects. 

 
 

Customer myths. A customer who requests computer software may be a person at the 
next desk, a technical group down the hall, the marketing/sales department, or an 
outside company that has requested software under contract. In many cases, the 
customer believes myths about software because software managers and practitioners 
do little to correct misinformation. Myths lead to false expectations and, ultimately, 
dissatisfaction with the developer. 
Myth: A general statement of objectives is sufficient to begin writing programs—we can 
fill in the details later. 
Reality: Although a comprehensive and stable statement of requirements is not always 
possible, an ambiguous “statement of objectives” is a recipe for disaster. Unambiguous 
requirements are developed only through effective and continuous communication 
between customer and developer. 
Myth: Software requirements continually change, but change can be easily 
accommodated because software is flexible. 
Reality: It is true that software requirements change, but the impact of change varies 
with the time at which it is introduced. When requirements changes are requested early 
the cost impact is relatively small.16 However, as time passes, the cost impact grows 
rapidly—resources have been committed, a design framework has been established, 
and change can cause upheaval that requires additional resources and major design 
modification. 

 
Practitioner’s myths. Myths that are still believed by software practitioners have been 
fostered by over 50 years of programming culture. During the early days, programming 
was viewed as an art form. Old ways and attitudes die hard. 
Myth: Once we write the program and get it to work, our job is done. 
Reality: Someone once said that “the sooner you begin ‘writing code,’ the longer it’ll 
take you to get done.” Industry data indicate that between 60 and 80 percent of all effort 
expended on software will be expended after it is delivered to the customer for the first 
time. 
Myth: Until I get the program “running” I have no way of assessing its quality. 
Reality: One of the most effective software quality assurance mechanisms can be 
applied from the inception of a project—the technical review. Software are a “quality 
filter” that have been found to be more effective than testing for finding certain classes of 
software defects. 
Myth: The only deliverable work product for a successful project is the working program.​  

 



 

Reality: A working program is only one part of a software configuration that includes 
many elements. A variety of work products provide a foundation for successful 
engineering and, more important, guidance for software support. 
Myth: Software engineering will make us create voluminous and unnecessary 
documentation and will invariably slow us down. 
Reality: Software engineering is not about creating documents. It is about creating a 
quality product. Better quality leads to reduced rework. And reduced rework results in 
faster delivery times. 

 
 

PROCESS MODELS 
 

 
 

1.7​A GENERIC PROCESS MODEL 
 

The software process is represented schematically. Framework activity is populated by a 
set of software engineering actions. Each software engineering action is defined by a 
task set that identifies the work tasks that are to be completed, the work products that will 
be produced, the quality assurance points that will be required, and the milestones that 
will be used to indicate progress. 

 



 

Generic process framework for software engineering defines five framework activities— 
communication, planning, modeling, construction, and deployment. In addition, a set of 
umbrella activities—project tracking and control, risk management, quality assurance, 
configuration management, technical reviews, and others—are applied throughout the 
process. 

 
Process flow—describes how the framework activities and the actions and tasks that 
occur within each framework activity are organized with respect to sequence and time 
and is illustrated in Figure 2.2. 

 
A linear process flow executes each of the five framework activities in sequence, 
beginning with communication and culminating with deployment (Figure 2.2a). An 
iterative process flow repeats one or more of the activities before proceeding to the next 
(Figure 2.2b). An evolutionary process flow executes the activities in a “circular” manner. 
Each circuit through the five activities leads to a more complete version of the software 
(Figure 2.2c). A parallel process flow (Figure 2.2d) executes one or more activities in 
parallel with other activities. 

 



 

 

 
1.7.1​ Defining a Framework Activity: A software team would need significantly more 
information before it could properly execute any one of these five activities 
(Communication, Planning, Modeling, Construction, Deployment) as part of the software 
process. For a small software project requested by one person (at a remote location) 
with simple, straightforward requirements, the communication activity might encompass 
little more than a phone call with the appropriate stakeholder. Therefore, the only 
necessary action is phone conversation, and the work tasks (the task set) that this action 
encompasses are: 
1.​Make contact with stakeholder via telephone. 
2.​Discuss requirements and take notes. 
3.​Organize notes into a brief written statement of requirements. 
4.​E-mail to stakeholder for review and approval. 
If the project was considerably more complex with many stakeholders, each with 
a different set of requirements, the communication activity might have six distinct actions: 
inception, elicitation, elaboration, negotiation, specification, and validation. Each 
of these software engineering actions would have many work tasks and a number of 
distinct work products. 

 



 

 
1.7.2​ Identifying a Task Set: Each software engineering action can be represented by 
a number of different task sets—each a collection of software engineering work tasks, 
related work products, quality assurance points, and project milestones. You should 
choose a task set that best accommodates the needs of the project and the 
characteristics of your team. 

 
1.7.3​Process Patterns 
A process pattern describes a process-related problem that is encountered during 
software engineering work, identifies the environment in which the problem has been 
encountered, and suggests one or more proven solutions to the problem. Stated in more 
general terms, a process pattern provides you with a template. Ambler has proposed a 
template for describing a process pattern: 
Pattern Name. The pattern is given a meaningful name describing it within the context of 
the software process 
Type. The pattern type is specified. They are three types: 
1.​ Stage pattern—defines a problem associated with a framework activity for the 
process. 
2.​ Task pattern—defines a problem associated with a software engineering action or 
work task and relevant to successful software engineering practice 
3.​ Phase pattern—define the sequence of framework activities that occurs within the 
process, even when the overall flow of activities is iterative in nature. 
Initial context. Describes the conditions under which the pattern applies. 
Problem. The specific problem to be solved by the pattern. 
Solution. Describes how to implement the pattern successfully. 
Resulting Context. Describes the conditions that will result once the pattern has been 
successfully implemented. Upon completion of the pattern. 
Related Patterns. Provide a list of all process patterns that are directly related to this 
one. 
Known Uses and Examples. Indicate the specific instances in which the pattern is 
applicable. 

 
1.8​PROCESS ASSESSMENT AND IMPROVEMENT 

 
A number of different approaches to software process assessment and improvement 
have been proposed. 
Standard CMMI Assessment Method for Process Improvement (SCAMPI)— 
provides a five-step process assessment model that incorporates five phases: initiating, 
diagnosing, establishing, acting, and learning. The SCAMPI method uses the SEI CMMI 
as the basis for assessment. 

 



 

CMM-Based Appraisal for Internal Process Improvement (CBA IPI)— provides a 
diagnostic technique for assessing the relative maturity of a software organization; uses 
the SEI CMM as the basis for the assessment. 
SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software 
process assessment. The intent of the standard is to assist organizations in developing 
an objective evaluation of the efficacy of any defined software process. 
ISO 9001:2000 for Software—a generic standard that applies to any organization that 
wants to improve the overall quality of the products, systems, or services that it provides. 
Therefore, the standard is directly applicable to software organizations and companies. 

 
1.9​PRESCRIPTIVE PROCESS MODELS 

 
Prescriptive process models define a prescribed set of process elements and a 
predictable process work flow. Prescriptive process models were originally proposed to 
bring order to the chaos of software development. 

 
All software process models can accommodate the generic framework activities, but 
each applies a different emphasis to these activities and defines a process flow that 
invokes each framework activity in a different manner. 

 
1.9.1​ The Waterfall Model: There are times when the requirements for a problem are 
well understood—when work flows from communication through deployment in a 
reasonably linear fashion. The waterfall model, sometimes called the classic life cycle, 
suggests a systematic, sequential approach6 to software development that begins with 
customer specification of requirements and progresses through planning, modeling, 
construction, and deployment, culminating in ongoing support of the completed software 
(Figure 2.3). 

 
A variation in the representation of the waterfall model is called the V-model. 
Represented in Figure 2.4, the V-model depicts the relationship of quality assurance 

 

 



 

 

 

actions to the actions associated with communication, modeling, and early construction 
activities. As a software team moves down the left side of the V, basic problem 
requirements are refined into progressively more detailed and technical representations 
of the problem and its solution. Once code has been generated, the team moves up the 
right side of the V, essentially performing a series of tests (quality assurance actions) that 
validate each of the models created as the team moved down the left side.7 In reality, 
there is no fundamental difference between the classic life cycle and the V- model. The 
V-model provides a way of visualizing how verification and validation actions are applied 
to earlier engineering work. 

 
The waterfall model is the oldest paradigm, the problems that are sometimes 
encountered when the waterfall model is applied are: 
1.​ Real projects rarely follow the sequential flow that the model proposes. Although 
the linear model can accommodate iteration, it does so indirectly. As a result, changes 
can cause confusion as the project team proceeds. 
2.​ It is often difficult for the customer to state all requirements explicitly. The waterfall 
model requires this and has difficulty accommodating the natural uncertainty that exists 
at the beginning of many projects. 

 



 

3.​ The customer must have patience. A working version of the program(s) will not be 
available until late in the project time span. A major blunder, if undetected until the 
working program is reviewed, can be disastrous. 

 
1.9.2​ Incremental Process Models: The incremental model delivers a series of 
releases, called increments, that provide progressively more functionality for the 
customer as each increment is delivered. 

 
There are many situations in which initial software requirements are reasonably well 
defined, but the overall scope of the development effort precludes a purely linear 
process. In addition, there may be a compelling need to provide a limited set of software 
functionality to users quickly and then refine and expand on that functionality in later 
software releases. In such cases, you can choose a process model that is designed to 
produce the software in increments. 

 

The incremental model combines elements of linear and parallel process flows. 
Referring to Figure 2.5, the incremental model applies linear sequences in a staggered 
fashion as calendar time progresses. Each linear sequence produces deliverable 
“increments” of the software in a manner that is similar to the increments produced by 
an evolutionary process flow. 

 
When an incremental model is used, the first increment is often a core product. That is, 
basic requirements are addressed but many supplementary features remain 
undelivered. The core product is used by the customer. As a result of use and/or 
evaluation, a plan is developed for the next increment. The plan addresses the 
modification of the core product to better meet the needs of the customer and the 

 



 

delivery of additional features and functionality. This process is repeated following the 
delivery of each increment, until the complete product is produced. 
The incremental process model focuses on the delivery of an operational product with 
each increment. Early increments are stripped-down versions of the final product, but 
they do provide capability that serves the user and also provide a platform for evaluation 
by the user. Incremental development is particularly useful when staffing is unavailable 
for a complete implementation by the business deadline that has been established for 
the project. 

 
1.9.3​ Evolutionary Process Models: Evolutionary process models produce an 
increasingly more complete version of the software with each iteration. 

 
Software, like all complex systems, evolves over a period of time. Business and product 
requirements often change as development proceeds, making a straight line path to an 
end product unrealistic; tight market deadlines make completion of a comprehensive 
software product impossible, but a limited version must be introduced to meet 
competitive or business pressure. 
. 
Evolutionary models are iterative. They are characterized in a manner that enables you 
to develop increasingly more complete versions of the software. The two common 
evolutionary process models are presented here. 

 
Prototyping: Often, a customer defines a set of general objectives for software, but 
does not identify detailed requirements for functions and features. In other cases, the 
developer may be unsure of the efficiency of an algorithm, the adaptability of an 
operating system, or the form that human-machine interaction should take. In these, and 
many other situations, a prototyping paradigm may offer the best approach. 

 
Regardless of the manner in which it is applied, the prototyping paradigm assists you 
and other stakeholders to better understand what is to be built when requirements are 
fuzzy. 

 
The prototyping paradigm (Figure 2.6) begins with communication. You meet with other 
stakeholders to define the overall objectives for the software, identify whatever 
requirements are known, and outline areas where further definition is mandatory. A 
Prototyping iteration is planned quickly, and modeling occurs. A quick design focuses on 
a representation of those aspects of the software that will be visible to end users. 

 
The quick design leads to the construction of a prototype. The prototype is deployed and 
evaluated by stakeholders, who provide feedback that is used to further refine 
requirements. Iteration occurs as the prototype is tuned to satisfy the needs of various 

 



 

stakeholders, while at the same time enabling you to better understand what needs to be 
done. 

 

Prototyping can be problematic for the following reasons: 
1.​ Stakeholders see what appears to be a working version of the software, unaware 
that there is pending work. 
2.​ As a software engineer, you often make implementation compromises in order to 
get a prototype working quickly. 

 
The Spiral Model. Originally proposed by Barry Boehm, the spiral model is an 
evolutionary software process model that couples the iterative nature of prototyping with 
the controlled and systematic aspects of the waterfall model. Boehm describes the 
model in the following manner: 

 
The spiral development model is a risk-driven process model generator that is used to 
guide multi-stakeholder concurrent engineering of software intensive systems. It has two 
main distinguishing features. One is a cyclic approach for incrementally growing a 
system’s degree of definition and implementation while decreasing its degree of risk. 
The other is a set of anchor point milestones for ensuring stakeholder commitment to 
feasible and mutually satisfactory system solutions. 

 
Using the spiral model, software is developed in a series of evolutionary releases. During 
early iterations, the release might be a model or prototype. During later iterations, 
increasingly more complete versions of the engineered system are produced. 

 



 

A spiral model is divided into a set of framework activities defined by the software 
engineering team. Each of the framework activities represent one segment of the spiral 
path illustrated in Figure 2.7. 

 

 
As this evolutionary process begins, the software team performs activities that are 
implied by a circuit around the spiral in a clockwise direction, beginning at the center. 
Risk is considered as each revolution is made. Anchor point milestones—a combination 
of work products and conditions that are attained along the path of the spiral—are noted 
for each evolutionary pass. 

 
The first circuit around the spiral might result in the development of a product 
specification; subsequent passes around the spiral might be used to develop a prototype 
and then progressively more sophisticated versions of the software. Each pass through 
the planning region results in adjustments to the project plan. Cost and schedule are 
adjusted based on feedback derived from the customer after delivery. In addition, the 
project manager adjusts the planned number of iterations required to complete the 
software. 

 
Unlike other process models that end when software is delivered, the spiral model can 
be adapted to apply throughout the life of the computer software. The spiral model is a 
realistic approach to the development of large-scale systems and software. Because 
software evolves as the process progresses, the developer and customer better 
understand and react to risks at each evolutionary level. 

 
1.9.4​ Concurrent Models: The concurrent development model, sometimes called 
concurrent engineering, allows a software team to represent iterative and concurrent 
elements of any of the process models. Figure 2.8 provides a schematic representation 

 



 

of one software engineering activity within the modeling activity using a concurrent 
modeling approach. The activity—modeling—may be in any one of the states noted at 
any given time. Similarly, 
other activities, actions, or tasks (e.g., communication or construction) can be 
represented in an analogous manner. All software engineering activities exist 
concurrently but reside in different states. 

 

 
Concurrent modeling defines a series of events that will trigger transitions from state to 
state for each of the software engineering activities, actions, or tasks. For example, 
during early stages of design, an inconsistency in the requirements model is uncovered. 
This generates the event analysis model correction, which will trigger the requirements 
analysis action from the done state into the awaiting changes state. Concurrent odeling 
is applicable to all types of software development and provides an accurate picture of the 
current state of a project. 

 



 

1.10​SPECIALIZED PROCESS MODELS 
 

These models tend to be applied when a specialized or narrowly defined software 
engineering approach is chosen. 

 
1.10.1​Component-Based Development: Commercial off-the-shelf (COTS) software 
components, developed by vendors who offer them as products, provide targeted 
functionality with well-defined interfaces that enable the component to be integrated into 
the software that is to be built. The component-based development model incorporates 
many of the characteristics of the spiral model. It is evolutionary in nature, demanding an 
iterative approach to the creation of software. However, the component-based 
development model constructs applications from prepackaged software components. 

 
Modeling and construction activities begin with the identification of candidate 
components. These components can be designed as either conventional software 
modules or object-oriented classes or packages of classes. Regardless of the 
technology that is used to create the components, the component-based development 
model incorporates the following steps 

 
1.​ Available component-based products are researched and evaluated for the 
application domain in question. 
2.​Component integration issues are considered. 
3.​A software architecture is designed to accommodate the components. 
4.​Components are integrated into the architecture. 
5.​Comprehensive testing is conducted to ensure proper functionality. 

 
The component-based development model leads to software reuse, and reusability 
provides software engineers with a number of measurable benefits. 

 
1.10.2​The Formal Methods Model: The formal methods model encompasses a set of 
activities that leads to formal mathematical specification of computer software. Formal 
methods enable you to specify, develop, and verify a computer-based system by 
applying a rigorous, mathematical notation. A variation on this approach, called 
cleanroom software engineering, is currently applied by some software development 
organizations. 

 
When formal methods are used during design, they serve as a basis for program 
verification and therefore enable you to discover and correct errors that might otherwise 
go undetected. 

 



 

Although not a mainstream approach, the formal methods model offers the promise of 
defect-free software. Yet, concern about its applicability in a business environment has 
been voiced: 

•​ The development of formal models is currently quite time consuming and 
expensive. 

•​ Because few software developers have the necessary background to apply formal 
methods, extensive training is required. 

•​ It is difficult to use the models as a communication mechanism for technically 
unsophisticated customers. 

 
1.10.3​Aspect-Oriented Software Development:Regardless of the software process 
that is chosen, the builders of complex software invariably implement a set of localized 
features, functions, and information content. These localized software characteristics are 
modeled as components (e.g., object oriented classes) and then constructed within the 
context of a system architecture. 

 
As modern computer-based systems become more sophisticated (and complex), Other 
concerns affect functions (e.g., the application of business rules), while others are 
systemic (e.g., task synchronization or memory management). 

 
When concerns cut across multiple system functions, features, and information, they are 
often referred to as crosscutting concerns. Aspectual requirements define those 
crosscutting concerns that have an impact across the software architecture. Aspect- 
oriented software development (AOSD), often referred to as aspect-oriented 
programming (AOP), is a relatively new software engineering paradigm that provides a 
process and methodological approach for defining, specifying, designing, and 
constructing aspects. 

 
AOCE uses a concept of horizontal slices through vertically-decomposed software 
components, called “aspects,” to characterize cross-cutting functional and non- 
functional properties of components. Common, systemic aspects include user interfaces, 
collaborative work, distribution, persistency, memory management, transaction 
processing, security, integrity and so on. 

 
1.11​The UNIFIED PROCESS 

 
1.11.1​Introduction: The Unified Process is an attempt to draw on the best features and 
characteristics of traditional software process models, but haracterize them in a way that 
implements many of the best principles of agile software development. 

 
The Unified Process recognizes the importance of customer communication and 
streamlined methods for describing the customer’s view of a system. It emphasizes the  

 



 

important role of software architecture and “helps the architect focus on the right goals, 
such as understandability, reliance to future changes, and reuse”. 

 
1.11.2​Phases of the Unified Process: The Unified Process is with five basic 
framework activities depicted in figure 2.9. It depicts the “phases” of the UP and relates 
them to the generic activities. 

 
 

 
The inception phase of the UP encompasses both customer communication and 
planning activities. The elaboration phase encompasses the communication and 
modeling activities of the generic process model. The construction phase of the UP is 
identical to the construction activity defined for the generic software process. The 
transition phase of the UP encompasses the latter stages of the generic construction 
activity and the first part of the generic deployment (delivery and feedback) activity. 
Software is given to end users for beta testing and user feedback reports both defects 
and necessary changes. In addition, the software team creates the necessary support 
information (e.g., user manuals, troubleshooting guides, installation procedures) that is 
required for the release. The production phase of the UP coincides with the deployment 
activity of the generic process. During this phase, the ongoing use of the software is 
monitored, support for the operating environment (infrastructure) is provided, and defect 
reports and requests for changes are submitted and evaluated. A software engineering 
workflow is distributed across all UP phases. 

 
1.12​PERSONAL AND TEAM PROCESS MODELS 

 
1.12.1​Introduction: If a software process model has been developed at a corporate or 
organizational level, it can be effective only if it is agreeable to significant adaptation to 
meet the needs of the project team that is actually doing software engineering work. In 

 

 



 

an ideal setting, you would create a process that best fits your needs, and at the same 
time, meets the broader needs of the team and the organization. Alternatively, the team 
itself can create its own process, and at the same time meet the narrower needs of 
individuals and the broader needs of the organization. 

 
1.12.2​Personal Software Process (PSP): Every developer uses some process to build 
computer software. The Personal Software Process (PSP) emphasizes personal 
measurement of both the work product that is produced and the resultant quality of the 
work product. In addition PSP makes the practitioner responsible for project planning 
(e.g., estimating and scheduling) and empowers the practitioner to control the quality of 
all software work products that are developed. The PSP model defines five framework 
activities: 
Planning. This activity isolates requirements and develops both size and resource 
estimates. In addition, a defect estimate is made. All metrics are recorded on worksheets 
or templates. Finally, development tasks are identified and a project schedule is created. 
High-level design. External specifications for each component to be constructed are 
developed and a component design is created. Prototypes are built when uncertainty 
exists. All issues are recorded and tracked. 
High-level design review. Formal verification methods are applied to uncover errors in 
the design. Metrics are maintained for all important tasks and work results. 
Development. The component-level design is refined and reviewed. Code is generated, 
reviewed, compiled, and tested. Metrics are maintained for all important tasks and work 
results. 
Postmortem. Using the measures and metrics collected, the effectiveness of the 
process is determined. Measures and metrics should provide guidance for modifying the 
process to improve its effectiveness. 

 
PSP emphasizes the need to record and analyze the types of errors you make, so that 
you can develop strategies to eliminate them. 

 
1.12.3​Team Software Process (TSP): Because many industry-grade software projects 
are addressed by a team of practitioners, The goal of TSP is to build a “self-directed” 
project team that organizes itself to produce high-quality software. 
Humphrey defines the following objectives for TSP: 
•​ Build self-directed teams that plan and track their work, establish goals, and own 
their processes and plans. These can be pure software teams or integrated product 
teams (IPTs) of 3 to about 20 engineers. 
•​ Show managers how to coach and motivate their teams and how to help them 
sustain peak performance. 
•​ Accelerate software process improvement by making CMM Level 5 behavior 
normal and expected.​  

 



 

•​Provide improvement guidance to high-maturity organizations. 
•​Facilitate university teaching of industrial-grade team skills. 

 
A self-directed team has a consistent understanding of its overall goals and objectives; 
defines roles and responsibilities for each team member; tracks quantitative project data 
identifies a team process that is appropriate for the project and a strategy for 
implementing the process; defines local standards that are applicable to the team’s 
software engineering work; continually assesses risk and reacts to it; and tracks, 
manages, and reports project status. 

 
TSP defines the following framework activities: project launch, high-level design, 
implementation, integration and test, and postmortem. 

 
TSP makes use of a wide variety of scripts, forms, and standards that serve to guide 
team members in their work. TSP recognizes that the best software teams are self- 
directed. Team members set project objectives, adapt the process to meet their needs, 
control the project schedule, and through measurement and analysis of the metrics 
collected, work continually to improve the team’s approach to software engineering. 

 
1.13​PROCESS TECHNOLOGY 

 
Process technology tools allow a software organization to build an automated model of 
the process framework, task sets, and umbrella activities. The model, normally 
represented as a network, can then be analyzed to determine typical workflow and 
examine alternative process structures that might lead to reduced development time or 
cost. 

 
Once an acceptable process has been created, other process technology tools can be 
used to allocate, monitor, and even control all software engineering activities, actions, 
and tasks defined as part of the process model. Each member of a software team can 
use such tools to develop a checklist of work tasks to be performed, work products to be 
produced, and quality assurance activities to be conducted. The process technology tool 
can also be used to coordinate the use of other software engineering tools that are 
appropriate for a particular work task. 

 
1.14​PRODUCT AND PROCESS 

 
If the process is weak, the end product will undoubtedly suffer. All of human activity may 
be a Process. And the outcome of the process is Product. 

 



 

Software is  more  than  just  a  program  code. Software  engineering is an engineering 
branch associated with development of software product using well- defined scientific 
principles, methods and procedures which is process. The outcome of software 
engineering is an efficient and reliable software product. 

 
About every ten years give or take five, the software community redefines “the problem” 
by shifting its focus from product issues to process issues. Thus, we have embraced 
structured programming languages (product) followed by structured analysis methods 
(process) followed by data encapsulation (product) followed by the current emphasis on 
the Software Engineering Institute’s Software Development Capability Maturity Model 
(process) 

 

 
People: The primary element of any project is the people. People gather requirements, 
people interview users (people), people design software, and people write software for 
people. No people -- no software. 

 
Process: Process is how we go from the beginning to the end of a project. All projects 
use a process. Many project managers, however, do not choose a process based on the 
people and product at hand. They simply use the same process they've always used or 
misused. Let's focus on two points regarding process: (1) process improvement and 
(2) using the right process for the people and product at hand. 

 



 

Product: The product is the result of a project. The desired product satisfies the 
customers and keeps them coming back for more. Sometimes, however, the actual 
product is something less. 

 
The product pays the bills and ultimately allows people to work together in a process and 
build software. Always keep the product in focus. Our current emphasis on process 
sometimes causes us to forget the product. This results in a poor product, no money, no 
more business, and no more need for people and process. 

 
 
 
 
 

1.15​WHAT IS AGILITY? 

AGILITY 

 
An agile team is a nimble team able to appropriately respond to changes. Change is 
what software development is very much about. Changes in the software being built, 
changes to the team members, changes because of new technology, changes of all 
kinds that may have an impact on the product they build or the project that creates the 
product. Support for changes should be built-in everything we do in software, something 
we embrace because it is the heart and soul of software. An agile team recognizes that 
software is developed by individuals working in teams and that the skills of these people, 
their ability to collaborate is at the core for the success of the project. 

 
It encourages team structures and attitudes that make communication (among team 
members, between technologists and business people, between software engineers and 
their managers) more facile. It emphasizes rapid delivery of operational software and 
de-emphasizes the importance of intermediate work products. 

 
Agility can be applied to any software process. However, to accomplish this, it is 
essential that the process be designed in a way that allows the project team to adapt 
tasks and to streamline them, conduct planning in a way that understands the fluidity of 
an agile development approach, eliminate all but the most essential work products and 
keep them lean, and emphasize an incremental delivery strategy that gets working 
software to the customer as rapidly as feasible for the product type and operational 
environment. 

 
1.16​AGILITY AND THE COST OF CHANGE 

 
The conventional wisdom in software development is that the cost of change increases 
nonlinearly as a project progresses (Figure: solid black curve). It is relatively easy to 

 



 

accommodate a change when a software team is gathering requirements (early in a 

 



 

project). A usage scenario might have to be modified, a list of functions may be 
extended, or a written specification can be edited. The costs of doing this work are 
minimal, and the time required will not adversely affect the outcome of the project. 

 
The change requires a modification to the architectural design of the software, the design 
and construction of three new components, modifications to another five components, 
the design of new tests, and so on. Costs escalate quickly, and the time and cost 
required to ensure that the change is made without unintended side effects is nontrivial. 
Although debate about the degree to which the cost curve flattens is ongoing, there is 
evidence to suggest that a significant reduction in the cost of change can be achieved. 

 

 
1.17​WHAT IS AN AGILE PROCESS? 

 
Any agile software process is characterized in a manner that addresses a number of 
key assumptions about the majority of software projects: 
1.​ It is difficult to predict in advance which software requirements will persist and 
which will change. It is equally difficult to predict how customer priorities will change as 
the project proceeds. 
2.​ For many types of software, design and construction are interleaved. That is, both 
activities should be performed in tandem so that design models are proven as they are 
created. It is difficult to predict how much design is necessary before construction is used 
to prove the design. 
3.​ Analysis, design, construction, and testing are not as predictable as we might like. 
Given these three assumptions, an important question arises: How do we create a 
process that can manage unpredictability? The answer, as I have already noted, lies in 
process adaptability. An agile process, therefore, must be adaptable. But continual 
adaptation without forward progress accomplishes little. Therefore, an agile software 

 



 

process must adapt incrementally. To accomplish incremental adaptation, an agile team 
requires customer feedback. An effective catalyst for customer feedback is an 
operational prototype or a portion of an operational system. Hence, an incremental 
development strategy should be instituted. Software increments must be delivered in 
short time periods so that adaptation keeps pace with change. This iterative approach 
enables the customer to evaluate the software increment regularly, provide necessary 
feedback to the software team, and influence the process adaptations that are made to 
accommodate the feedback. 

 
1.17.1​Agility Principles: The Agile Alliance defines 12 agility principles for those who 
want to achieve agility: 
1.​ Our highest priority is to satisfy the customer through early and continuous 
delivery of valuable software. 
2.​Welcome changing requirements, even late in development. Agile processes harness 
change for the customer’s competitive advantage. 
3.​ Deliver working software frequently, from a couple of weeks to a couple of 
months, with a preference to the shorter timescale. 
4.​Business people and developers must work together daily throughout the project. 
5.​ Build projects around motivated individuals. Give them the environment and 
support they need, and trust them to get the job done. 
6.​ The most efficient and effective method of conveying information to and within a 
development team is face-to-face conversation. 
7.​Working software is the primary measure of progress. 
8.​ Agile processes promote sustainable development. The sponsors, developers, 
and users should be able to maintain a constant pace indefinitely. 
9.​Continuous attention to technical excellence and good design enhances agility. 
10.​Simplicity—the art of maximizing the amount of work not done—is essential. 
11.​ The best architectures, requirements, and designs emerge from self–organizing 
teams. 
12.​ At regular intervals, the team reflects on how to become more effective, then 
tunes and adjusts its behavior accordingly. 

 
1.17.2​The Politics of Agile Development: There is considerable debate about the 
benefits and applicability of agile software development as opposed to more 
conventional software engineering processes. No one is against agility. The real 
question is: What is the best way to achieve it? As important, how do you build software 
that meets customers’ needs today and exhibits the quality characteristics that will 
enable it to be extended and scaled to meet customers’ needs over the long term? 

 
There are no absolute answers to either of these questions. Even within the agile school 
itself, there are many proposed process models, each with a subtly different approach to 

 



 

the agility problem. Within each model there is a set of “ideas”  that represent a 

 



 

significant departure from traditional software engineering. And yet, many agile concepts 
are simply adaptations of good software engineering concepts. Bottom line: there is 
much that can be gained by considering the best of both schools and virtually nothing to 
be gained by denigrating either approach. 

 
1.17.3​Human Factors: Proponents of agile software development take great pains to 
emphasize the importance of “people factors.” If members of the software team are to 
drive the characteristics of the process that is applied to build software, a number of key 
traits must exist among the people on an agile team and the team itself: 
Competence: In an agile development (as well as software engineering) context, 
“competence” encompasses innate talent, specific software-related skills, and overall 
knowledge of the process that the team has chosen to apply. Skill and knowledge of 
process can and should be taught to all people who serve as agile team members. 
Common focus:. Although members of the agile team may perform different tasks and 
bring different skills to the project, all should be focused on one goal—to deliver a 
working software increment to the customer within the time promised. To achieve this 
goal, the team will also focus on continual adaptations (small and large) that will make 
the process fit the needs of the team. 
Collaboration: Software engineerinG is about assessing, analyzing, and using 
information that is communicated to the software team; creating information that will help 
all stakeholders understand the work of the team; and building information that provides 
business value for the customer. To accomplish these tasks, team members must 
collaborate—with one another and all other stakeholders. 
Decision-making ability. Any good software team must be allowed the freedom to 
control its own destiny. This implies that the team is given autonomy—decision-making 
authority for both technical and project issues. 
Fuzzy problem-solving ability. Software managers must recognize that the agile team 
will continually have to deal with ambiguity and will continually be buffeted by change. In 
some cases, the team must accept the fact that the problem they are solving today may 
not be the problem that needs to be solved tomorrow. However, lessons learned from 
any problem-solving. activity (including those that solve the wrong problem) may be of 
benefit to the team later in the project. 
Mutual trust and respect. The agile team must become what DeMarco and Lister call a 
“jelled” team. A jelled team exhibits the trust and respect that are necessary to make 
them “so strongly knit that the whole is greater than the sum of the parts.” 
Self-organization. In the context of agile development, self-organization implies three 
things: (1) the agile team organizes itself for the work to be done, (2) the team organizes 
the process to best accommodate its local environment, (3) the team organizes the work 
schedule to best achieve delivery of the software increment. Self- organization has a 
number of technical benefits, but more importantly, it serves to improve collaboration and 
boost team morale. In essence, the team serves as its own management.​  

 



 

1.18​EXTREME PROGRAMMING (XP) 
 

Extreme Programming (XP), the most widely used approach to agile software 
development. 
1.18.1​XP Values: Beck defines a set of five values that establish a foundation for all 
work performed as part of XP—communication, simplicity, feedback, courage, and 
respect. Each of these values is used as a driver for specific XP activities, actions, and 
tasks. 
Communication: In order to achieve effective communication between software 
engineers and other stakeholders (e.g., to establish required features and functions for 
the software), XP emphasizes close, yet informal (verbal) collaboration between 
customers and developers, the establishment of effective metaphors for communicating 
important concepts, continuous feedback, and the avoidance of voluminous 
documentation as a communication medium. 
Simplicity: To achieve simplicity, XP restricts developers to design only for immediate 
needs, rather than consider future needs. The intent is to create a simple design that can 
be easily implemented in code. If the design must be improved, it can be refactored at a 
later time. 
Feedback: It is derived from three sources: the implemented software itself, the 
customer, and other software team members. By designing and implementing an 
effective testing strategy, the software provides the agile team with feedback The degree 
to which the software implements the output, function, and behavior of the use case is a 
form of feedback. Finally, as new requirements are derived as part of iterative planning, 
the team provides the customer with rapid feedback regarding cost and schedule impact. 
Courage: Beck argues that strict adherence to certain XP practices demands courage. A 
better word might be discipline. An agile XP team must have the discipline (courage) to 
design for today, recognizing that future requirements may change dramatically, thereby 
demanding substantial rework of the design and implemented code. 
Respect: By following each of these values, the agile team inculcates respect among 
its members, between other stakeholders and team members, and indirectly, for the 
software itself. As they achieve successful delivery of software increments, the team 
develops growing respect for the XP process. 

 
1.18.2​The XP Process: Extreme Programming uses an object-oriented approach as its 
preferred development paradigm and encompasses a set of rules and practices that 
occur within the context of four framework activities: planning, design, coding, and 
testing. Figure 3.2 illustrates the XP process . 

 
Planning: The planning activity  begins with listening—a requirements gathering activity 
that enables the technical members of the XP team to understand the business 

 



 

context for the software and to get a broad feel for required output and major features 
and functionality. 

 
Design: XP design rigorously follows the KIS (keep it simple) principle. A simple design 
is always preferred over a more complex representation. In addition, the design provides 
implementation guidance for a story as it is written—nothing less, nothing more. If a 
difficult design problem is encountered as part of the design of a story, XP 

 

 
recommends the immediate creation of an operational prototype of that portion of the 
design. Called a spike solution, the design prototype is implemented and evaluated. A 
central notion in XP is that design occurs both before and after coding commences. 
Refactoring means that design occurs continuously as the system is constructed. In fact, 
the construction activity itself will provide the XP team with guidance on how to improve 
the design. 
Coding. After stories are developed and preliminary design work is done, the team 
does not move to code, but rather develops a series of unit tests that will exercise 
each of the stories that is to be included in the current release. Once the unit test has 
been created, the developer is better able to focus on what must be implemented to pass 
the test. Nothing extraneous is added (KIS). Once the code is complete, it can be 
unit-tested immediately, thereby providing instantaneous feedback to the developers. 
A key concept during the coding activity is pair programming. XP recommends that two 
people work together at one computer workstation to create code for a story. Problem 
solving (two heads are often better than one) and real-time quality assurance. 
Testing: I have already noted that the creation of unit tests before coding commences 

 



 

is a key element of the XP approach. The unit tests that are created should be 
implemented using a framework that enables them to be automated. This encourages a 
regression testing strategy whenever code is modified. As the individual unit tests are 
organized into a “universal testing suite”. 
integration and validation testing of the system can occur on a daily basis. XP 
acceptance tests, also called customer tests, are specified by the customer and focus on 
overall system features and functionality that are visible and reviewable by the customer. 

 
1.18.3​Industrial XP: IXP is an organic evolution of XP. It is imbued with XP’s 
minimalist, customer-centric, test-driven spirit. IXP incorporates six new practices that 
are designed to help ensure that an XP project works successfully for significant projects 
within a large organization. 
Readiness assessment: Prior to the initiation of an IXP project, the organization should 
conduct a readiness assessment. The assessment ascertains whether (1) an 
appropriate development environment exists to support IXP, (2) the team will be 
populated by the proper set of stakeholders, (3) the organization has a distinct quality 
program and supports continuous improvement, (4) the organizational culture will 
support the new values of an agile team, and (5) the broader project community will be 
populated appropriately. 
Project community. Classic XP suggests that the right people be used to populate the 
agile team to ensure success. The implication is that people on the team must be well- 
trained, adaptable and skilled, and have the proper temperament to contribute to a self- 
organizing team. When XP is to be applied for a significant project in a large 
organization, the concept of the “team” should morph into that of a community. A 
community may have a technologist and customers who are central to the success of a 
project as well as many other stakeholders (e.g., legal staff, quality auditors, 
manufacturing or sales types) who “are often at the periphery of an IXP project yet they 
may play important roles on the project”. In IXP, the community members and their roles 
should be explicitly defined and mechanisms for communication and coordination 
between community members should be established. 
Project chartering. The IXP team assesses the project itself to determine whether an 
appropriate business justification for the project exists and whether the project will further 
the overall goals and objectives of the organization. Chartering also examines the 
context of the project to determine how it complements, extends, or replaces existing 
systems or processes. 
Test-driven management. An IXP project requires measurable criteria for assessing the 
state of the project and the progress that has been made to date. Test-driven 
management establishes a series of measurable “destinations” and then defines 
mechanisms for determining whether or not these destinations have been reached. 
Retrospectives. An IXP team conducts a specialized technical review after a software 
increment is delivered. Called a retrospective, the review examines “issues, events, and 

 



 

lessons-learned” across a software increment and/or the entire software release. The 
intent is to improve the IXP process. Continuous learning. Because learning is a vital part 
of continuous process improvement, members of the XP team are encouraged to learn 
new methods and techniques that can lead to a higher quality product. 

 
1.18.4​The XP Debate: Issues that continue to trouble some critics of XP are: 
•​ Requirements volatility. Because the customer is an active member of the XP 
team, changes to requirements are requested informally. As a consequence, the scope 
of the project can change and earlier work may have to be modified to accommodate 
current needs. 
•​ Conflicting customer needs. Many projects have multiple customers, each with 
his own set of needs. In XP, the team itself is tasked with assimilating the needs of 
different customers, a job that may be beyond their scope of authority. 
•​ Requirements are expressed informally. User stories and acceptance tests are 
the only explicit manifestation of requirements in XP. Critics argue that a more formal 
model or specification is often needed to ensure that omissions, inconsistencies, and 
errors are uncovered before the system is built. Proponents counter that the changing 
nature of requirements makes such models and specification obsolete almost as soon as 
they are developed. 
•​ Lack of formal design. XP deemphasizes the need for architectural design and 
in many instances, suggests that design of all kinds should be relatively informal. 

 
1.19​OTHER AGILE PROCESS MODELS 

 
The most widely used of all agile process models is Extreme Programming (XP). But 
many other agile process models have been proposed and are in use across the 
industry. Among the most common are: 
•​Adaptive Software Development (ASD) 
•​Scrum 
•​Dynamic Systems Development Method (DSDM) 
•​Crystal 
•​Feature Drive Development (FDD) 
•​Lean Software Development (LSD) 
•​Agile Modeling (AM) 
•​Agile Unified Process (AUP) 

 
1.19.1​Adaptive Software Development (ASD): Adaptive Software Development 
(ASD) has been proposed by Jim Highsmith as a technique for building complex 
software and systems. The philosophical underpinnings of ASD focus on human 
collaboration and team self-organization. 

 



 

 

 
 
 

1.19.2​Scrum: Scrum is an agile software development method that was conceived by 
Jeff Sutherland in the early 1990s. Scrum principles are consistent with the agile 
manifesto and are used to guide development activities within a process that 
incorporates the following framework activities: requirements, analysis, design, 
evolution, and delivery. Within each framework activity, work tasks occur within a 
process pattern called a sprint. The work conducted within a sprint is adapted to the 
problem at hand and is defined and often modified in real time by the Scrum team. The 
overall flow of the Scrum process is illustrated in Figure 

 

 



 

Scrum emphasizes the use of a set of software process patterns that have proven 
effective for projects with tight timelines, changing requirements, and business criticality. 
Each of these process patterns defines a set of development actions: 
Backlog—a prioritized list of project requirements or features that provide business 
value for the customer. Items can be added to the backlog at any time. The product 
manager assesses the backlog and updates priorities as required. 
Sprints—consist of work units that are required to achieve a requirement defined in the 
backlog that must be fit into a predefined time-box. 
Changes (e.g., backlog work items) are not introduced during the sprint. Hence, the 
sprint allows team members to work in a short-term, but stable environment. 
Scrum meetings—are short (typically 15 minutes) meetings held daily by the Scrum 
team. Three key questions are asked and answered by all team members: 
•​What did you do since the last team meeting? 
•​What obstacles are you encountering? 
•​What do you plan to accomplish by the next team meeting? 
A team leader, called a Scrum master, leads the meeting and assesses the responses 
from each person. The Scrum meeting helps the team to uncover potential problems as 
early as possible. Also, these daily meetings lead to “knowledge socialization” and 
thereby promote a self-organizing team structure. 
Demos—deliver the software increment to the customer so that functionality that has 
been implemented can be demonstrated and evaluated by the customer. It is important 
to note that the demo may not contain all planned functionality, but rather those functions 
that can be delivered within the time-box that was established. 

1.19.3​Dynamic Systems Development Method (DSDM): The Dynamic Systems 
Development Method (DSDM) is an agile software development approach that “provides 
a framework for building and maintaining systems which meet tight time constraints 
through the use of incremental prototyping in a controlled project environment”. The 
DSDM philosophy is borrowed from a modified version of the Pareto principle—80 
percent of an application can be delivered in 20 percent of the time it would take to 
deliver the complete (100 percent) application. 

 
DSDM is an iterative software process in which each iteration follows the 80 percent rule. 
That is, only enough work is required for each increment to facilitate movement to the 
next increment. The remaining detail can be completed later when more business 
requirements are known or changes have been requested and accommodated. 
DSDM consortium has defined an agile process model, called the DSDM life cycle that 
defines three different iterative cycles, preceded by two additional life cycle activities: 
Feasibility study—establishes the basic business requirements and constraints 
associated with the application to be built and then assesses whether the application is 
a viable candidate for the DSDM process. 

 



 

Business study—establishes the functional and information requirements that will allow 
the application to provide business value; also, defines the basic application architecture 
and identifies the maintainability requirements for the application. 
Functional model iteration—produces a set of incremental prototypes that 
demonstrate functionality for the customer. The intent during this iterative cycle is to 
gather additional requirements by eliciting feedback from users as they exercise the 
prototype. 
Design and build iteration—revisits prototypes built during functional model iteration to 
ensure that each has been engineered in a manner that will enable it to provide 
operational business value for end users. In some cases, functional model iteration and 
design and build iteration occur concurrently. 
Implementation—places the latest software increment into the operational environment. 
It should be noted that (1) the increment may not be 100 percent complete or (2) 
changes may be requested as the increment is put into place. In either case, DSDM 
development work continues by returning to the functional model iteration activity. 

 
1.19.4​Crystal: To achieve maneuverability, Cockburn and Highsmith have defined a set 
of methodologies, each with core elements that are common to all, and roles, process 
patterns, work products, and practice that are unique to each. The Crystal family is 
actually a set of example agile processes that have been proven effective for different 
types of projects. The intent is to allow agile teams to select the member of the crystal 
family that is most appropriate for project and environment. 

 
1.19.5​Feature Driven Development (FDD): Like other agile approaches, FDD adopts a 
philosophy that (1) emphasizes collaboration among people on an FDD team; (2) 
manages problem and project complexity using feature-based decomposition followed 
by the integration of software increments, and (3) communication of technical detail 
using verbal, graphical, and text-based means. FDD emphasizes software quality 
assurance activities by encouraging an incremental development strategy, the use of 
design and code inspections, the application of software quality assurance audits, the 
collection of metrics, and the use of patterns 

 
In the context of FDD, a feature “is a client-valued function that can be implemented in 
two weeks or less”. The emphasis on the definition of features provides the following 
benefits: 

•​ Because features are small blocks of deliverable functionality, users can describe 
them more easily; understand how they relate to one another more readily; and 
better review them for ambiguity, error, or omissions. 

•​ Features can be organized into a hierarchical business-related grouping. 
•​ Since a feature is the FDD deliverable software increment, the team develops 

​ operational features every two weeks.​  

 



 

•​ Because features are small, their design and code representations are easier to 
inspect effectively. 

•​ Project planning, scheduling, and tracking are driven by the feature hierarchy, 
rather than an arbitrarily adopted software engineering task set. 

 

 
1.19.6​Lean Software Development (LSD): The lean principles that inspire the LSD 
process can be summarized as eliminate waste, build quality in, create knowledge, defer 
commitment, deliver fast, respect people, and optimize the whole. Each of these 
principles can be adapted to the software process. For example, eliminate waste within 
the context of an agile software project can be interpreted to mean (1) adding no 
extraneous features or functions, (2) assessing the cost and schedule impact of any 
newly requested requirement, (3) removing any superfluous process steps, (4) 
establishing mechanisms to improve the way team members find information, (5) 
ensuring the testing finds as many errors as possible, (6) reducing the time required to 
request and get a decision that affects the software or the process that is applied to 
create it, and (7) streamlining the manner in which information is transmitted to all 
stakeholders involved in the process. 

 
1.19.7​Agile Modeling (AM): There are many situations in which software engineers 
must build large, business critical systems. The scope and complexity of such systems 
must be modeled so that (1) all constituencies can better understand what needs to be 
accomplished, (2) the problem can be partitioned effectively among the people who must 
solve it, and (3) quality can be assessed as the system is being engineered and built. 

 
Agile modeling adopts all of the values that are consistent with the agile manifesto. The 
agile modeling philosophy recognizes that an agile team must have the courage to make 
decisions that may cause it to reject a design and re factor. The team must also 

 



 

have the humility to recognize that technologists do not have all the answers and that 
business expert and other stakeholders should be respected and embraced. Although 
AM suggests a wide array of “core” and “supplementary” modeling principles, those that 
make AM unique are: 

•​ Model with a purpose 
•​ Use multiple models 
•​ Travel light 
•​ Content is more important than representation 
•​ Know the models and the tools you use to create them 
•​ Adapt locally 

 
1.19.8​Agile Unified Process (AUP): The Agile Unified Process (AUP) adopts a “serial 
in the large” and “iterative in the small” philosophy for building computer-based systems. 
By adopting the classic UP phased activities—inception, elaboration, construction, and 
transition—AUP provides a serial overlay that enables a team to visualize the overall 
process flow for a software project. However, within each of the activities, the team 
iterates to achieve agility and to deliver meaningful software increments to end users as 
rapidly as possible. Each AUP iteration addresses the following activities 
•​ Modeling. UML representations of the business and problem domains are 
created. However, to stay agile, these models should be “just barely good enough” to 
allow the team to proceed. 
•​Implementation. Models are translated into source code. 
•​ Testing. Like XP, the team designs and executes a series of tests to uncover 
errors and ensure that the source code meets its requirements. 
•​ Deployment. Like the generic process activity. Deployment in this context 
focuses on the delivery of a software increment and the acquisition of feedback from end 
users. 
•​ Configuration and project management. In the context of AUP, configuration 
management addresses change management, risk management, and the control of any 
persistent work products that are produced by the team. Project management tracks and 
controls the progress of the team and coordinates team activities. 
•​ Environment management. Environment management coordinates a process 
infrastructure that includes standards, tools, and other support technology available to 
the team. 

 


	MODULE – 1 
	1.0​SOFTWARE AND SOFTWARE ENGINEERING 
	1.1​THE NATURE OF SOFTWARE 
	New Challenges 

	1.2​THE UNIQUE NATURE OF WEBAPPS 
	1.3​SOFTWARE ENGINEERING 
	1.4​The software Process 
	1.5​Software Engineering Practice 
	The First Principle: The Reason It All Exists 
	The Second Principle: KISS (Keep It Simple, Stupid!) 
	The Third Principle: Maintain the Vision 
	The Sixth Principle: Plan Ahead for Reuse 
	The Seventh principle: Think! 
	1.6​Software myths 

	PROCESS MODELS 
	1.7.3​Process Patterns 

	1.8​PROCESS ASSESSMENT AND IMPROVEMENT 
	1.9​PRESCRIPTIVE PROCESS MODELS 
	1.10​SPECIALIZED PROCESS MODELS 
	1.11​The UNIFIED PROCESS 

	1.12​PERSONAL AND TEAM PROCESS MODELS 
	Humphrey defines the following objectives for TSP: 

	1.13​PROCESS TECHNOLOGY 
	1.14​PRODUCT AND PROCESS 

	AGILITY 
	1.16​AGILITY AND THE COST OF CHANGE 
	1.17​WHAT IS AN AGILE PROCESS? 
	1.18​EXTREME PROGRAMMING (XP) 
	1.19​OTHER AGILE PROCESS MODELS 


