
Link to a pdf of the textbook: 
https://dl.ebooksworld.ir/books/Introduction.to.Algorithms.4th.Leiserson.Stein.Rivest.Cormen.MI
T.Press.9780262046305.EBooksWorld.ir.pdf 
 
Another good resource: 
https://static.packt-cdn.com/downloads/4874OS_Appendix_Big_O_Cheat_Sheet.pdf 
 
 
 
Correctness, Readability, Efficiency 
 
Data structures: To manage complexity 
Algorithms: Finite set of instructions to complete a task, abstract 
 
 
Insertion sort: 

●​ Prefix array is the already sorted array in the beginning of the array that you expand 
upon 

●​ Keep moving all elements larger than the pivot one position to the right 
●​ Place the pivot in the position after the first element that is smaller than it 

 

 
Loop invariant: something that is always true before and after each iteration of the loop 

●​ For insertion sort, the loop invariant is that the prefix array is always sorted 
○​ vec[from 0 to i-1] is sorted 

 
 

Measuring Efficiency 
 
We care only about the efficiency when the input size is large 
 
Can’t use clock method to time program because different architectures 
 
For discussing algorithms, we only care about the rate of growth and the efficiency of the 
algorithm itself, not the time it takes for each instruction to complete or the smaller individual 
operations like integer vs float. Because this computation is negligible compared to the rest of 
the algorithm and it can vary from computer to computer. 
 
Asymptotic notation: f(n), where n is the input size 
 
Formal Definition for Big Theta: 
θ(g(n)) = {f(n): exists c1, c2, n0 such that for all n > n0, c1g(n) <= f(n) <= c2g(n)}, f(n) ∈ θ(g(n)) 

●​ θ(g(n)) is a set of functions f(n) that satisfy the above 
●​ Tight bound, bounded from above and below 
●​ c1,c2 can be fractions, n0 must be an integer. All is positive since n is positive 
●​ Negation of this is that for all c1,c2,n0, there exists an n that makes c1g(n) <= f(n) <= 

c2g(n) false 
 
5n, 0.001n are both θ(n) 
 

 
●​ Pay attention to the highest power term 

 

log_10(n) is θ(log_2(n)), bases don’t matter since you just divide by a constant  
 

 
●​ log_b(n^c) still belongs to the logarithmic class since you can change it to clog_b(n) 

where c is a constant 
●​ log(log(n)) is a different class than log(n). It grows slower. 
●​ We call quadratic and cubic polynomial running time, but they belong to different 

classes. n^2 is not θ(n^3). 
 
 
In most cases, we can’t have a big-theta for an algorithm because it is hard to get a lower bound 
and upper bound to match. This is why we use big-oh to give a general upper bound (worst 
case scenario) for efficiency 
 
O(g(n)) = {for all n > n0, f(n) <= c*g(n)} 

●​ n ∈ O(n^2), but n^2 is not O(n) 
 
Big omega Ω for lower bound, lets us know the minimum time (best case) scenario 
 
 
NP-complete: non-deterministic polynomial, set of problems. This class of problems cannot be 
solved in polynomial time (hasn’t been proved). P = NP? Don’t know if they are the same class 
 
 
Recursive factorial example: 

 
●​ This is O(n) because the function must execute the multiplication for each integer from n 

to 1 
 
 
 

Data Structures 
 
Stack: LIFO, push to top, pop from top. 

 
●​ Need a buff variable to store the array 
●​ Need a capacity variable to record the total possible size of the array 
●​ Need a top variable to keep track of the index of where you’re popping/pushing to, in 

actual implementation it’s at the position just above the current filled top and when you 
pop you decrement it before you return the element. 

 
●​ Don’t need to remove element when you pop in this implementation since its an array 

implementation, and you’ll overwrite it anyways 
 
Queue: FIFO, push to end, pop from front 

●​ Need head and tail variables. Push to the tail and pop from the head. Increment tail 
when pushing, increment head when popping. When the head or tail is at the end, wrap 
back around because if you push all the way to the end and pop all the way to the end, 
you still have space in the beginning. Tail should always point to an empty slot 

 
 

●​ Need a capacity variable  
●​ When Q.head = Q.tail + 1, or when Q.head = 0 and Q.tail = capacity-1, then the queue is 

full 
○​ Or when (head - tail + capacity) % capacity == 1 

●​ When Q.head = Q.tail, then the queue is empty. 
●​ The queue can only hold up to capacity-1 elements. When the tail is at the end and you 

push, the front of the array needs to be empty. Tail always needs to point to an empty 
slot. This is so we can distinguish between an empty queue (tail and head are the same) 
and a full queue. 

 

 
 
Side Note: Inserting into an array is O(n) since worst case is needing to shift all elements one 
right 

●​ When you do need to shift elements: the preferred way is taking the end element and 
shifting it forward and shifting the previous element forward, etc. Instead of shifting from 
any specific point in the array that you insert or remove from. They’re both O(n) though. 

 
 

Linked Lists: 
 
Each node in a singly linked list has a val and a next pointer. The tail’s next pointer is nullptr. 
Head and Tail are both pointers to nodes.  
 
To check if a linked list contains a cycle, create two head pointers p and q. Keep pushing q and 
p, but push q faster than p. if ever p == q then you know there is a cycle. O(n) 

PSEUDO LL 
 
 
 
 

Hash Tables: 
 
Hash Tables are a data structure that maps keys to values. Use hash tables when you need fast 
O(1) look up times, and when you have large amounts of data (or the potential number of 
different inputs is a lot) in key-value pair format 
 
 
Have an array called buffer. For each input (key), compute a hash (index/new key) to insert an 
element in the array. 

●​ The hash is a numerical representation of the key. We can refer to it as the 
key/hash/index interchangeably 

 
 
A hash function converts inputs into numerical hashes/keys. h(k): k -> [0, b-1] 

●​ k becomes converted into the range 0 to b-1 where b is the size of the buffer array 
 
 
For different inputs the hash function can produce the same hashes (collision). We use chaining 
to handle the collisions.  

●​ Each element in the buffer array is a bucket (linked list or dynamic array) 
○​ It is important to keep the capacity of each bucket constant to maintain O(1). 

Don’t expand the capacity of a bucket.  
●​ When you have a collision, store the key-value pair as an element in the linked list  
●​ In the same bucket, each key-value pair points to the next key-value pair (all the keys 

will be the same) 
●​ When you want to access a specific value, go to the bucket using the key associated 

with that bucket and iterate through each element in the linked list to find the value you 
are looking for 

○​ This is always O(1) since each bucket is the same fixed size. It does not depend 
on input size. 

 
 
Think of buckets as being specific keys, and within each key there is a linked list of values that 
belong to that key 
 
 
RESIZE WHEN ANY BUCKET IS FULL  
 
When a bucket becomes full due to too many collisions, you need to resize the entire hash 
table (buffer array). Create a new hash table with a size 2b + 1 where b is the size of the current 
buffer array.  

●​ Now you need to rehash all the key-value pairs of the old hash table to the new one. We 
do this so they get scrambled and there won’t be a full bucket again. Each key-value pair 
will receive a new hash/key. 

○​ We can’t directly copy one hash table to a larger hash table because the original 
hashes would not necessarily hash to the same buckets in the new table, since 
the hash function is different because we change x%b to x%2b+1. Moreover, you 
would just have a full bucket in the new hash table since you copied the old hash 
table over. 

●​ Deallocate the previous hash table and its associated buckets 
●​ When you expand the size of the hash table, the hash function will stay O(1) since you 

are just changing the value of b in x % b. And access will stay O(1) since all buckets 
are the same size. 

 
 
Max number of inputs before you need to resize:  

●​ b * s (if buckets are kept at constant size) b is buffer size, s is the size of each bucket 
 
Min number of keys to insert where you must have a collision: b + 1 (pigeonhole) 
 
Hash tables have a time complexity of O(1) because you access the value directly at the 
bucket/key and each bucket is a constant size that you iterate through.  
 
 
 

PSEUDO HASH TABLE 
 
 

Binary Search Trees 
 
All nodes to the left are less than nodes to the right 
 
Levels of a tree start from 1 at the root node 
Height of a tree is equal to the level of the deepest leaf node 
 
 
Max number of nodes at level i: 2^(i-1), because each level you go down can have at max 2 
times the number of nodes of the previous level. 
 
Max number of nodes in the entire tree of height i: (2^i) - 1 (just summation of all the number of 
nodes at level i for all levels) 
 
If n_0 is the number of nodes with zero children and n_2 is the number of nodes with 2 children 

●​ Then for any binary tree with at least one node, n_0 - n_2 = 1 
○​ Proof by induction on the number of nodes on the tree. Base case is 1 node. 

 
 
 
A full binary tree is a tree where all nodes have 2 or 0 children. No nodes can have one child. 

●​ Total number of nodes is in the interval: [2h-1, (2^h) - 1] 
 
A complete binary tree is where you fill a tree from top to bottom and all levels should be filled 
to their maximum, except perhaps the bottom where you would fill from left to right. 

●​ Total number of nodes is the interval: [2^(h-1), (2^h) - 1] 
 
 
A perfect binary tree is a complete and full tree AND all leaves are at the same level 

●​ (2^h) -1 
 
 

 

 
●​ This is a perfect tree with height 3 

 
 
Complexity is determined by the balance of the tree. The complexity is O(h) where h is the 
height of the tree. 

●​ log_2(n) <= Height <= n 
○​ We want the height of the tree to be log_2(n) and we can achieve this by creating 

a balanced tree. 
 
Traversal to all nodes in a tree: 

●​ Pre-order traversal: CLR 
●​ In-order traversal: LCR 
●​ Post-order traversal: LRC 

C is the current node, sometimes also represented as lowercase r. 
 

PSEUDO BST 
 
 
Visual representations of traversal methods:​
 

Preorder 

Inorder 

Postorder 
 
 
 
To remove an element from a normal binary search tree, you can follow these steps: 
 

1.​ Start at the root node of the binary search tree. 
2.​ If the value of the node you want to remove is less than the value of the current node, 

move to the left subtree. 
3.​ If the value of the node you want to remove is greater than the value of the current node, 

move to the right subtree. 
4.​ If the value of the node you want to remove is equal to the value of the current node, 

then you have found the node to remove. 
5.​ If the node to remove is a leaf node (i.e., it has no children), simply remove the node 

from the tree. 
6.​ If the node to remove has only one child, replace the node with its child. 
7.​ If the node to remove has two children, find the minimum value node in its right subtree 

(or the maximum value node in its left subtree), replace the node to remove with this 
node, and then remove the minimum (or maximum) value node from the subtree. 

 
To delete the entire binary tree use a recursive postorder 
 
 
 
Red-black trees: 

●​ We color each node as either red or black 
●​ The root is black, all the leaves are black 
●​ The children of a red node must be black 
●​ Every simple path (moving downward) from any node to any leaf node contains the 

same number of black nodes. 
●​ When a node is inserted into the red-black tree, it is initially colored red. However, this 

may cause a violation of the red-black tree properties, so the tree must be restructured 
by performing rotations and recolorings to restore the properties. 

 
These properties ensure that the tree remains balanced, with a worst-case height of 2log(n+1), 
where n is the number of nodes in the tree. The properties also ensure that basic operations 
such as searching, insertion, and deletion can be performed efficiently in O(logn) time. 
 
 
Let the black height bh(x) be the number of black nodes in the path from x to a leaf node, not 
including x itself 

●​ Lemma: if a red-black tree has a black height bh(x) then it has least 2^bh(x) -1 nodes 
●​ Lemma: A red-black tree with n internal nodes has height of at most 2log(n+1) 

○​ Number of nodes >= 2^bh(x) -1 >= 2^(h/2) -1 
●​ Guarantees search time of O(logn) 

 
Red-Black Trees Implementation: 

 

 

https://dl.ebooksworld.ir/books/Introduction.to.Algorithms.4th.Leiserson.Stein.Rivest.Cormen.MIT.Press.9780262046305.EBooksWorld.ir.pdf
https://dl.ebooksworld.ir/books/Introduction.to.Algorithms.4th.Leiserson.Stein.Rivest.Cormen.MIT.Press.9780262046305.EBooksWorld.ir.pdf
https://static.packt-cdn.com/downloads/4874OS_Appendix_Big_O_Cheat_Sheet.pdf


 
 
 

Disjoint Sets 
 
Suppose we have the following graph of vertices (nodes) and edges: 

 
●​ This graph’s connected components are the maximal subgraphs of connected nodes 

○​  
 
 
Our goal is to design an algorithm that can compute the connected components of a graph 
 
 
Assume we have a set of nodes S. Divide S into a set of k disjoint subsets.  

 
●​ Disjoint subsets means that the intersection of any pair of subsets is empty 

 
 
Each disjoint subset has a representative element. This element will be used to refer to the 
subset as a whole. 

●​ You can treat disjoint sets as trees with the representative element being the root 
 
 
We will have a couple different operations: 

●​ Make-Set(x) 
○​ We make a new subset in S that contains the element x. O(1) 
○​ Don’t need to check if the subset already exists because we treat it as a 

precondition 
●​ Find-Set(x)  

○​ Tells us which subset the element x belongs to. Climbs up x’s parents until you 
reach the root. Returns the root/representative element. O(h), where h is the 
height of the tree 

■​ Assuming you union by rank, it will be O(logn). 
●​ Union(rep1,rep2) 

○​ Take a union of the set which rep1 is representative and the set which rep2 is 
representative. O(1) 

■​ The Union operation merges the two subsets into a single subset with a 
new representative element. 

●​ Does this by setting the representative of one of the subsets to the 
other subset. Do this in a way so it minimizes the height. Union by 
Rank: always point the root of the shorter tree to the root of the 
taller tree. If the same height, point the arrow either way.  

 
Calling m number of make-set(), find-set(), and union() operations, of which n are make-set(), 
takes O(mlogn) time. 
 
 
Make-Set(1),Make-Set(3),Make-Set(2),Make-Set(4),Make-Set(9),Union(3,2),Union(1,9),Union(4,
1),Union(3,1) yields: 

 
 
 

Heaps 
 
Max heap properties:  

●​ Complete tree 
●​ The root of any subtree is the largest element in the subtree 

 
Min heap properties: 

●​ Complete tree 
●​ The root of any subtree is the smallest element in the subtree 

 
For heaps the order of the children does not matter 
 
For a binary search tree with two nodes: 

●​ It is possible to make a max heap 2,1 
●​ It is not possible to make a min heap (violates the complete rule for heaps) 

 
 
Assuming we have a max-heap 

●​ push(x): O(logn) 
○​ First insert the element at the bottom level at the rightmost position (that still 

makes it a complete tree) 
○​ Compare this newly inserted element with its parent, if the parent is less than 

than this element, swap them. 
○​ Percolate up as needed, don’t need to check the children (also known as heapify 

up or sift up) 
●​ pop(x): O(logn) 

○​ Store the root’s value in a variable. 
○​ Take the rightmost value at the bottom level and make it the root’s new value, 

delete the node you took from. 
○​ If the new root’s value is less than a child’s value, swap the root value with the 

child value. Make sure you compare to both children and swap with the child with 
the larger value. 

○​ Percolate down as needed.  
○​ Return the root’s old value you stored in a variable. 

 
For a min heap do the same but change all “less than” in the above steps with “greater than”, 
and for pop swap with the child with the lowest value. 
 
NOTES: 

●​ Search is O(n). Have to look through every element 
 
 
 

Sorting Algorithms 
 

Heap Sort 
To use a heap for sorting, just push elements into a heap and pop them out. Sorts in increasing 
order if you use a min-heap, sorts in decreasing order if you use a max-heap. O(nlogn) 

●​ Push n times, pop n times. Both push and pop are O(logn) 
●​ Space complexity is O(n), since you need to store all the keys of the tree in a heap 

○​ To get space complexity to O(1), use the array itself as the heap (in-place 
sorting). 

 
Heapifying an array: 
 
Index 0 of the array is the root, each subsequent element may be treated as a node filled in a 
complete tree format. Now we need to reorder the array to sort it 
 
If a node is at index i, its children will be at index 2i+1 and 2i+2 (given that your root is at index 
0). 
 
Steps for in-place heap sort (using a max heap for descending order): 

1.​ Parse through the leaf nodes (right to left in the array) until you reach an internal node (a 
node which if its index is i, there exists an element at at 2i+1). You can also do this by 
doing floor(n/2) - 1 where n is the size of the array. This gives the index of the last 
internal node 

●​ Thus: the elements from index floor(n/2) to n are all leaves 
 

2.​ For the last internal node, if it has two children and one or more of the children are larger 
than the parent, then swap the parent with the largest child. If it has one child, swap if 
the child is bigger than the parent. 

 
3.​ Find the next internal node and repeat until you reach the root 

 
4.​ Once you are at the root, we know each subtree is a max heap so just percolate this last 

node down as needed. 
 
Invariant: heap properties are guaranteed at every level (since we’re starting from the bottom 
and going up) 
 
 
 
IMPLEMENTATION: 

 
●​ Precondition of max_heapify is that both left and right children are heaps.  

 
 
 
Heap sort has a time complexity of O(nlogn) since we have one call to build_maxheap which 
takes O(n) and max_heapify takes O(logn) and gets called n-1 times so we have O(n + nlogn) = 
O(nlogn) 
 
 

Merge Sort (Divide and Conquer) 
 

1.​ First divide up the array into n subarrays where n is the number of elements. Each 
subarray should have only one element 

 
2.​ Merge adjacent subarrays into new subarrays and sort those 

 
3.​ Continue doing step 2 until you get back to an array the same size as your original one 

 
Invariant: each subarray being merged is already sorted 
 
Time complexity: O(nlogn). Need to run logn iterations, each iteration is n dependent 
Space complexity: O(n), can’t sort in-place because you would ruin the already sorted arrays, 
need a temp array 
 
Heap sort and merge sort have the same worst case running time and merge sort has a worse 
space complexity, but merge sort may be more effective depending on the nature of the data. 
Merge sort is a stable sort (meaning if two elements have the same value, their relative 
positions in the sorted array will be the same as their positions in the original array) 
 
 

Quick Sort (also Divide and Conquer) 
 
Most commonly used sorting algorithm 

1.​ Pick a random pivot (any element) 
 

2.​ Partition the array into two subarrays: elements less than the pivot and elements greater 
than or equal to the pivot. All elements less than the pivot are positioned to the left of it. 
Elements greater than the pivot are to be placed to the right of it. The pivot itself will be 
in its final sorted position 

●​ This can be accomplished by having two pointers: left and right. Left is the 
leftmost element in the array. Right is the rightmost element. Keep shifting the left 
pointer towards the right until you find an element larger than the pivot. Once you 
do, stop. Now keep moving the right pointer towards the left until you find an 
element smaller than the pivot. Once you do, stop. Swap the elements pointed to 
by left and right. Keep doing this until left and right meet.  

 
3.​ Recursively apply steps 1 and 2 to the subarrays created in the previous step. This is 

done separately for the subarray to the left of the pivot and the subarray to the right of 
the pivot. 

 
Invariant: After each partitioning step, all elements to the left of the pivot are smaller than the 
pivot, and all elements to the right of the pivot are greater than the pivot. (some elements can 
also be equal to the pivot if there are duplicates) 
 
Time complexity: O(nlogn) 
Space complexity is O(1) if you do it iteratively. O(logn) if you do it recursively. 
 
If you accidentally pick an extreme value (min or max) for the pivot, time will be O(n^2) 

●​ Picking the first or last index as your pivot in an already sorted array will trigger O(n^2) 
●​ If every element in the array is the same, then it will also be O(n^2) 

 
 
 
 

Summary 
 
Complexities: average time, worst time, space complexity 
Heap Sort: O(nlogn), O(nlogn), O(1) 
Merge Sort: O(nlogn), O(nlogn), O(n) 
Quick Sort: O(nlogn), O(n^2), O(1) 
 
 
For space complexity, we only care about the memory allocated by the algorithm, not the 
original array.  
 
Worst case is dependent on the arrangement of the array 
 
 
Asymptotically heap sort would be the best but practically we use quick sort more. If you know 
nothing about the data, it’s better to use quick sort. This is because it is in-place, has a simple 
implementation, and in practice has a lower coefficient of nlogn in its time complexity. 
 
Can’t have a comparison sorting algorithm better than O(nlogn) because we need to look at all 
elements at least once (n) and we need to compare the elements, which takes at least 
logarithmic time (logn) in a comparison-based sorting algorithm. 
 
 

Graph Algorithms 
 
Definition of a tree: there exists exactly one path between any two pair of vertices and there are 
no cycles 
 
 
We have two ways of representing graphs: adjacency lists and adjacency matrices 
 
Adjacency List: Space is O(n) 

●​ Have an array of vertices where each vertex is a linked list  
●​ Represent all neighbors of a vertex as elements in the linked list associated with that 

vertex 
○​ Like a hash table. Think of vertices as buckets and adjacent vertices as elements 

in those buckets 
 
Adjacency Matrix: Space is O(n^2) 

●​ Make a matrix where each row represents a vertex and each column represents a vertex 
●​ Each cell in the matrix is either 1 or 0, depending on if there exists an edge between the 

vertex represented by the row of that cell and the vertex represented by the column of 
that cell. 1 for edge, 0 for no edge 

 
 
Adjacency list is beneficial for sparse graphs (not a lot of edges). Saves space 
Adjacency matrix is beneficial for telling if an edge exists in constant time 
 
Two types of access: 

1.​ Find if an edge exists between two vertices 
●​ O(n) for adjacency list 
●​ O(1) for adjacency matrix 

2.​ Find all adjacent vertices of a vertex. 
●​ O(1) for adjacency list because we can just return the sublist 
●​ O(n) for adjacency matrix 

 
 
Saving space with undirected graphs: 

●​ For an adjacency matrix, you can just make half of the matrix since everything across 
the diagonal will be mirrored. Still O(n^2). 

●​ For an adjacency list, you only need to store each vertex once. Instead of storing both i-j 
and j-i, you can just store i-j (have a convention like the largest vertex holds all smaller 
adjacent vertices inside its linked list). Saves half the space but still O(n) 

○​ For example, O-I-J-K would only be stored once 
 
 

EXTRA GRAPH INFO: 
Remember, a complete graph is where every pair of vertices is connected by an edge: 
|V| = n 
|E| = n(n-1)/2 
 
A connected graph is where every vertex has a path to any other vertex. There can be a 
minimum of n-1 edges and a maximum of n(n-1)/2 edges (thus making it a complete graph) 
 
Some rules: 

●​ A graph with n vertices and n-1 edges is a connected graph 
●​ A graph which is connected, has no cycles, and has n vertices has n-1 edges 
●​ A graph which is connected, has n vertices, and n-1 edges, has no cycles 

All these graphs are also Trees 
 
Sparse if E < V^2 
Dense if E ~= V^2 
 

Breadth-First Search 
 
 
BFS visits all the closest nodes of a graph first. It does this by using a queue 
 
So we don’t visit the same vertex twice: 

●​ Color a vertex white if you haven’t visited 
●​ Color a vertex black if you have visited 
●​ Initially all vertices are white 

 
We want to traverse the closest vertices first. To do this we: 

1.​ Create a queue and put the starting vertex into the queue 
2.​ Every iteration, pop a vertex from the queue and visit that vertex, then push all of the 

neighbors of that vertex into the queue.  
●​ Remember to color vertices black when you visit them 

3.​ Eventually all vertices that you can reach will be visited 
 
 
Note: Can’t use a stack for BFS because you would not traverse the closest nodes first 
 
 
We can also keep a distance value for each node so we can find the shortest distance (number 
of edges) between the starting node and any other node: 

 
●​ This implementation of BFS also works on disconnected graphs 

 
 
For BFS, running time: O(n + |E|) where n is number of vertices, |E| is the number of edges 
 
Explanation: The for-loop that sets everything to white iterates |V| times, the while loop iterates 
|V| times, the inner for-loop iterates |V|*|Eaj| times (|V| times from the while loop and |Eaj| times 
from the loop itself). Therefore we get O(|V| + |V| + |V|*|Eaj|) == O(2|V| + |E|) == O(|V| + |E|) == 
O(n + |E|) 

●​ Eaj is the set of adjacent edges to a vertex 
●​ If we wish to express the running time of BFS in purely terms of n, it would be O(n) 

amortized and O(n + n^2) == O(n^2) worst case. This is less precise than n+|E| though 
○​ Refer to the bit about complete graphs and connected graphs in the section 

above to understand why 
 
 

Depth-First Search 
 
BFS goes as wide as possible, DFS goes as deep as possible. DFS can use a stack or can be 
recursively called (shown below) 
 

 
●​ This implementation of DFS also works on disconnected graphs 

 
 
DFS is O(n+|E|) because we call DFS visit on each vertex only once (n) and we look at each 
edge only once (|E|). Similar to BFS 
 
EXTRA NOTES: 

●​ Can obtain a tree from BFS and DFS by following the path of visits 
●​ Both BFS and DFS are not unique 

 

 
 

Topological Sort 
 
Assuming you have a spreadsheet with each cell having an expression in it that may depend on 
expressions in other cells, which order would you use to evaluate the cells? We use topological 
sorting to determine the order. 
 
If cell B depends on cell A, evaluate A first. Always evaluate the dependent after the 
independent. Having a dependency is an asymmetric relation. 
 
Must use a directed graph for this situation 

●​ Each vertex represents a cell 
●​ Each edge represents a dependency 

○​ A->B means B depends on A 
■​ The arrow goes to the dependent 

 
 
We sort a linear order: 

●​ For A->B, A must come before B in the order, but they don’t necessarily have to be next 
to each other. 

○​ If X->Z and Y->Z, the order of X relative to Y doesn’t matter but they both must 
come before Z. 

●​ Formal Definition: Topological order of a directed graph is a linear order of all the vertices 
such that if there is an edge from U to V, then U appears before V in the order.  

 
Topological Sorting: 

1.​ Evaluate all independent vertices. Independent vertices have no incoming edges/arrows. 
2.​ Remove each node you evaluate 
3.​ Repeat steps 1 and 2 until you evaluate all the nodes 

 
This works since you destroy the nodes that you evaluate, thereby making more nodes 
independent, etc  
 

 
 
Overall complexity is O(n+|E|), where n is the number of vertices and |E| is the number of edges 
 
EXTRA NOTES: 

●​ Topological graphs cannot have cycles (they are acyclic graphs) 
●​ All acyclic graphs have a topological order 
●​ A directed graph may have multiple different topological orders 

 
Minimum Spanning Trees 

 
Assume we have a weighted, connected graph: 

 
●​ The number on each edge is the weight of that edge 

 



 
Then the minimum spanning tree is the subset of edges (that connect all the vertices) with the 
minimum total weight. 

●​ This subset will have exactly n-1 edges (where n is the number of vertices) 
○​ Because if it has any more than n-1 edges, it will have a cycle. So there are extra 

edges that you can remove to reduce the weight of the graph. 
●​ In general, spanning trees and MSTs are not unique 

○​ Reworded: for a given graph, there can be multiple minimum spanning trees. 
■​ However, all MSTs must have the same total weight  

 
Extra Rules: 

●​ All connected graphs have at least one (minimum) spanning tree. All (M)STs are 
connected graphs. 

●​ The subset of edges with the minimum total weight of any connected graph always 
makes a tree 

 
 
 
The essence of computing a MST is: 

1.​ Create an empty subgraph (candidate MST). Let’s call it A 
2.​ Given a vertex u, find an edge (u,v) that is safe for A 

●​ A safe edge is an edge that can be added to A while ensuring that A is a subset 
of a MST 

3.​ Add (u,v) to A 
4.​ Repeat steps #2 and #3 until A has n-1 edges 

Invariant: A is always a subset of a MST 
 
To find a safe edge in step#2, we need some more definitions: 

●​ A cut (S, V - S) is a partition of V (set of vertices) into the disjoint subsets S and V-S.  
●​ An edge (u,v) crosses the cut if one of its endpoints belongs to S and the other belongs 

to V-S.  
●​ A cut respects a set A of edges if no edge in A crosses the cut 
●​ An edge is a light edge crossing the cut if its weight is the minimum of any edge 

crossing the cut. There can be more than one light edge crossing a cut in the case of 
ties. 

 
Thus, we can find a safe edge using the following theorem: if A is a subset of edges of a MST 
and a cut respects A, then any light edge crossing the cut is safe for A.  

●​ Any cut that respects A can be utilized to find a safe edge for A 
 
Brief proof by contradiction: Assume that the light edge (u,v) is not part of the minimum 
spanning tree. Then there must exist another pair of vertices x and y with a "lighter edge" 
crossing the cut. Implies the existence of another valid MST with a lower total weight. 
Contradicts definition of a MST 
 
 
 
Corollary: Let A be a subset of a MST, and C is a connected component in GA=(V,A). If (u,v) is a 
light edge connecting C to another connected component of GA, then (u,v) is safe for A. 

●​ GA is a subgraph that contains all the vertices from the original graph but only the edges 
from A (candidate MST).  

●​ GA doesn’t have to be connected initially. We want to grow A such that GA becomes 
connected and an MST 

●​ Reworded: If there is a light edge (u,v) connecting a connected component to another 
connected component in GA, then (u,v) is a safe edge 

 
 
 
 

IMPLEMENTATIONS: 
 
Kruskal’s Algorithm: Uses the corollary 

1.​ Create a forest A (a set of trees), where each vertex in the graph is a separate tree 
2.​ Create a sorted set containing all the edges in the graph in increasing weight 
3.​ While A is not yet spanning 

a.​ Take the next smallest edge from the sorted set. If the edge connects two 
different trees then add it to the forest A, combining two trees into a single tree 

 

 
 

 
●​ Running time is O(Elogn)/O(ElogE) 

 
 
 
Prim’s Algorithm (using heap): Uses the theorem 

1.​ Create a tree A with just the starting vertex 
2.​ Find all edges connecting any tree vertex with a vertex not included in A, pick the 

minimum of these edges to include into A such that it does not form a cycle 
3.​ Repeat step#2 until you have an MST 

 

 
●​ Running time is O(Elogn)/O(ElogE) 
●​ We use a min-heap to keep track of all the vertices. The key of a vertex is the minimum 

weight of an edge from it to any neighbor  
 
 
IMPORTANT DISTINCTIONS 

●​ In Kruskal, A is always a forest until the end 
●​ In Prim, A is always a tree 
●​ Prim needs a starting vertex while Kruskal does not 
●​ Both are greedy algorithms 

 
 

Single-Source Shortest Path 
 
We want to find the path with the least weight from a source vertex to any destination vertex 
given a connected graph. 
 
 
Each vertex will have a parent pointer and a distance value 
Each edge will have a weight value 
 
We will follow Dijsktra’s algorithm: 

1.​ Create a set of visited nodes S. Push the start node into it and set its distance value to 0. 
Set all other nodes distance values to infinity 

2.​ Create a min heap Q and push all nodes into it 
3.​ Extract the node with the minimum distance in Q and add it to S. (initially this is just the 

start node) 
4.​ For this node U, examine all neighbors of it. If U.distance + the weight of the edge 

connecting U and its neighbor < neighbor.distance, then you need to update 
neighbor.distance. Neighbor.distance becomes U.distance + connecting weight. You also 
need to set neighbor.parent = U. (relaxation) 

5.​ Repeat steps #3 and #4 until all nodes have been visited 
6.​ To trace the shortest path, start with the destination node and go back through the graph 

to the start by jumping through the parent pointers. 
 

 
 
Total running time: O(Elogn)/O(ElogE) 

●​ θ(n) <= E <= θ(n^2), we don’t know specifically what E is 
 
EXTRA NOTES: 

●​ Can use BFS for shortest path if all edges are the same weight 
●​ Dijsktra’s algorithm doesn’t work with negative weights 
●​ The distance value of any node cannot increase at any point, it must decrease or stay 

the same 
 
 

Advanced Data Structures 
 

B-Trees 
 
B-trees are self-balancing trees optimized for search. We minimize the worst case complexity. 
 
Disk accesses are expensive so we minimize the number of times we need to access a node. 
As a result each node will have more children and contain more keys. 
 
Given a complete tree where each node can have k children, time complexity for all operations 
will be logk(n) instead of log2(n) (as for a normal binary tree). Still O(logn) but smaller coefficient 

●​ k = (max) degree of the tree 
 
We want k to be as high as possible provided that the node can be stored in a disk block 
 
 
In a binary tree, each node can hold one key and two child pointers (left and right). So in total 
we have 3 fields for each node. 
 
In a B-tree of degree k, each node can hold k-1 keys and k child pointers. So in total we have 
2k-1 fields for each node. ptr1,key1,ptr2,key2, … ptrk  
 
 
 
Properties of B-Trees: 

●​ Keys and children are sorted 
●​ All leaves appear at the same level 
●​ Each node has at most 2t-1 keys 
●​ Each node has at least t-1 keys, except the root which has at least 1 key 
●​ If there are n keys in a node, there are n + 1 children, therefore… 
●​ Each node has at most 2t children 
●​ Each node has at least t children, except the root which has at least 2 children 

 
t = minimum degree of the B-Tree (aka the min number of children each node can have). This is 
different from k (maximum degree of the tree) 

●​ Caveat: t must be greater than 1 for a b-tree. 
B-tree ⊄ binary tree 
 
Assuming we have a B-tree with t = 2 

●​ Each node except the root may have 2,3, or 4 children. Therefore k = 4 
●​ Called a 2-3-4 tree 
●​ Time complexity is log4(n) 

 
 
 
 
Minimum number of nodes at each depth: 
Level 1 (root): 1 
Level 2: 2 
Level 3: 2t 
Level 4: 2(t^2) 
etc.. 
 
Therefore, the total number of nodes n in a B-tree with height h is bounded by: 

 
●​ Remember the height of a tree is equal to the number of nodes from the root to the 

deepest leaf (height = total number of levels) 
●​ If you want to find the maximum number of nodes in a B-tree replace t with k (max 

degree) 
 
 
 

Insertion into a B-tree 
Insertion properties: 

●​ A B-tree grows and shrinks from the root, unlike BSTs which grow and shrink from 
leaves 

●​ Insertion into a B-tree can only happen at a leaf node 
 
 
Steps: 

1.​ Start at the root of the B-tree and traverse it to find the appropriate leaf node where the 
value should be inserted. To do this, compare the value to be inserted with the keys in 
each node and proceed down the tree by following the appropriate child pointer 

 
2.​ Once you reach a leaf node, check if there is enough space to insert the new value (has 

less than 2t - 1 filled keys). If there is, proceed to step #4. Otherwise, continue to step 
#3. 

 
3.​ If the leaf node is full, you need to perform a split operation. Splitting a full leaf node 

involves dividing the keys and values into two smaller leaf nodes and promoting the 
median value to the parent node. This split operation may propagate up the tree if 
necessary. 

 
4.​ Insert the new value into the appropriate position within the leaf node, maintaining the 

order of the keys. 
 
 
 
If your insertion resulted in a split and promotion of a value to the parent node, you need to 
update the parent node by inserting the promoted value into the correct position. If this parent 
node was already full, then you need to split it as well. This can propagate up to the root node. If 
the root node is split, a new root node will be created with the promoted value and the height of 
the tree will increase by one 
 

 
 
 
Implementation of insert: 
 

 

 

 
 
 
Search, insertion, and deletion are all O(logn). Same as a balanced binary search tree but the 
bases of the logs are larger which makes the coefficient smaller and operations more efficient 
 
 

Complexity Guide 
 

MT1 
AVERAGE RUNNING TIME 

 Random Access Random Search Insertion Deletion 

Array (fixed) O(1) O(n) Not supported Not supported 

Array (dynamic) O(1) O(n) See notes below See notes below 

Stack O(n) O(n) O(1) only push 
at top 

O(1) only pop 
from top 

Queue O(n) O(n) O(1) only push 
at tail 

O(1) only pop 
from head 

Linked List O(n) O(n) O(1) only 
prepend/append 

O(1) only delete 
head or tail 

Hash Table O(1) O(1) O(1) O(1) 

Binary Search 
Tree 

O(logn) O(logn) O(logn) O(logn) 

Red Black Tree O(logn) O(logn) O(logn) O(logn) 

 
 
NOTE: 

●​ For a dynamic array, if you insert/remove at the beginning OR middle, complexity is 
O(n). Insert/remove at the end is O(1) amortized (on avg) 

 
●​ In practice, a dynamic array is faster than a linked list for all operations if it holds under 

~20,000 elements (due to memory contingency) 
 

●​ For linked list, if you want to insert in the middle or end then the complexity becomes 
O(n) 

 
●​ For hash table, if the distribution of keys is not uniform: it still may be O(1) if the size of 

the buckets is capped but you will need to resize the hash table more frequently which is 
expensive. If you don’t cap buckets it becomes O(n) for all operations 

 
●​ For binary search tree, if the tree is unbalanced then all operations become O(n) 

○​ A red black tree will never be unbalanced 
 
 
 
In summary: 

 
 
 

FINAL 
 

 Make-Set Find-Set Union 

Disjoint Sets O(1) O(height) O(1) 

●​ If you union by rank, find-set will be O(logn), otherwise O(n) 
 
 

 Random Search Insertion Deletion 

Heaps O(n) O(logn) only push at 
leaf 

O(logn) only pop at 
root 

B-Trees O(logn) O(logn) O(logn) 

 
 
 
SORTING ALGORITHMS 

 Average Time Worst Time Space Complexity 

Insertion Sort O(n^2) O(n^2) O(1) 

Heap Sort O(nlogn) O(nlogn) O(1) 

Merge Sort O(nlogn) O(nlogn) O(n) 

Quick Sort O(nlogn) O(n^2) O(1) 

●​ Best case for Insertion Sort is O(n) if it's already sorted in ascending order. If it’s 
descending order then it is O(n^2) 

 
 
GRAPH ALGORITHMS 

Breadth-First Search O(|V| + |E|)/O(n + |E|) 

Depth-First Search O(|V| + |E|)/O(n + |E|) 

Topological Sort O(|V| + |E|)/O(n + |E|) 

MST (Kruskal) O(|E|log|V|)/O(|E|logn)/O(|E|log|E|) 

MST (Heap Prim) O(|E|log|V|)/O(|E|logn)/O(|E|log|E|) 

Single-Source Shortest Path O(|E|log|V|)/O(|E|logn)/O(|E|log|E|) 

 
 
GRAPH REPRESENTATION 

 
Find if an edge exists between two vertices 

●​ O(n) for adjacency list 
●​ O(1) for adjacency matrix 

 
Find all adjacent vertices of a vertex. 

●​ O(1) for adjacency list 
●​ O(n) for adjacency matrix 

 


	Measuring Efficiency 
	Data Structures 
	Stack: LIFO, push to top, pop from top.  
	Queue: FIFO, push to end, pop from front 
	Linked Lists: 
	Hash Tables: 
	Binary Search Trees 
	Disjoint Sets 
	Heaps 

	Sorting Algorithms 
	 
	Heap Sort 
	Merge Sort (Divide and Conquer) 
	Quick Sort (also Divide and Conquer) 
	Summary 

	Graph Algorithms 
	Breadth-First Search 
	Depth-First Search 
	Topological Sort 
	Minimum Spanning Trees 
	Single-Source Shortest Path 

	Advanced Data Structures 
	B-Trees 

	Complexity Guide 

