
MODULE 04: TREE(CONTINUATION) 

 

4.1 BINARY SEARCH TREES:  

Definition: A binary search tree is a binary tree. It may be empty. If it is not empty, it satisfies 
the following properties:  
(1) Every element has a key, and no two elements have the same key, that is, the keys are 
unique.  
(2) The keys in a nonempty left subtree must be smaller than the key in the root of the 
subtree.  
(3) The keys in a nonempty right subtree must be larger than the key in the root of the 
subtree. 
 (4) The left and right subtrees are also binary search trees. 
 
4.1.1 Searching A Binary Search Tree  

Suppose we wish to search for an element with a key. We begin at the root. If the root is 
NULL, the search tree contains no elements and the search is unsuccessful. Otherwise, we 
compare key with the key value in root. If key equals root's key value, then the search 
terminates successfully. If key is less than roofs key value, then no element in the right 
subtree can have a key value equal to key. Therefore, we search the left subtree of root. If key 
is larger than roofs key value, we search the right subtree of root. 

 

Recursive search of a binary search tree 

We can easily replace the recursive search function with a comparable iterative one. The 
function searches! accomplishes this by replacing the recursion with a while loop. 



 

Iterative search of a binary search tree 

4.1.2 Inserting into A Binary Search Tree: 

To insert a new element, key, we must first verify that the key is different from those of 
existing elements. To do this we search the tree. If the search is unsuccessful, then we insert 
the element at the point the search terminated. For instance, to insert an element with key 80 
into the tree, we first search the tree for 80. This search terminates unsuccessfully, and the 
last node examined has value 40. We insert the new element as the right child of this node. 
The resulting search tree is shown in Figure 5.31(a). Figure 5.31(b) shows the result of 
inserting the key 35 into the search tree of Figure 5.31(a). This strategy is implemented by 
insert-node (Program 5.17). This uses the function modified -search which is a slightly 
modified version of function search 2 (Program 5.16). This function searches the binary 
search tree *node for the key num. If the tree is empty or if num is present, it returns NULL. 
Otherwise, it returns a pointer to the last node of the tree that was encountered during the 
search. The new element is to be inserted as a child of this node. 

 



 

 

 

4.1.3: Deletion from A Binary Search Tree:  

Deletion of a leaf node is easy. For example, to delete 35 from the tree of Figure 5.31(b), we 
set the left child field of its parent to NULL and free the node. This gives us the tree of Figure 
5.31(a). The deletion of a nonleaf node that has only a single child is also easy. We erase the 
node and then place the single child in the place of the erased node. For example, if we delete 
40 from the tree of Figure 5.31 (a) we obtain the tree in Figure 5.32. 

 

When we delete a nonleaf node with two children, we replace the node with either the largest 
element in its left subtree or the smallest element in its right subtree. Then we proceed by 
deleting this replacing element from the subtree from which it was taken. For instance, 
suppose that we wish to delete 60 from the tree of Figure 5.33(a). We may replace 60 with 
either the largest element (55) in its left subtree or the smallest element (70) in its right 
subtree. Suppose we opt to replace it with the largest element in the left subtree. We move the 



55 into the root of the subtree. We then make the left child of the node that previously 
contained the 55 the right child of the node containing 50, and we free the old node 
containing 55. Figure 5.33(b) shows the final result. One may verify that the largest and 
smallest elements in a subtree are always in a node of degree zero or one. 

 

 

4.1.3 Joining and splitting Binary search tree:  

In a binary search tree, the following additional operations are useful in certain applications. 
(a) three Way Join (small, mid, big): This creates a binary search tree consisting of the pairs 
initially in the binary search trees small and big, as well as the pair mid. It is assumed that 
each key in small is smaller than mid, key and that each key in big s greater than mid. key. 
Following the join, both small and big are empty. (b) two Way Join (small, big): This joins 
the two binary search trees small and big to obtain a single binary search tree that contains all 
the pairs originally in smalt and big. It is assumed that all keys of small are smaller than all 
keys of big and that following the join both small and big are empty. (c) split (theTree ,k, 
small, mid, big): The binary search tree the Tree is split into three parts: small is a binary 
search tree that contains all pairs of the Tree that have key less than k; mid is the pair (if any) 
in the Tree whose key is k, and big is a binary search tree that contains all pairs of the Tree 
that have key larger than k. Following the split operation theTree is empty. When the Tree has 
no pair whose key is k, mid.key is set to -1 (this assumes that-1 is not a valid key for a 
dictionary pair). 

4.1.3 Height of a binary search tree: 

Unless care is taken, the height of a binary search tree with n elements can become as large as 
n. This is the case, for instance, when we use insert-node to insert the keys 1, 2, 3, • • •, n, in 
that order, into an initially empty binary search tree. However, when insertion and deletions 
are made at random using the above functions, the height of the binary search tree is 
O(log2n), on the average. 

4.2 SELECTION TREE: 



4.2.1 Introduction: 

Suppose we have k ordered, called and is in merged into single ordered sequence. Each run 
consists of some records and is in non-decreasing order of a designated field called the key. 
Let n be the number of records in all k runs together task can be by the record with the 
smallest key. The smallest has to be found from k possibilities, and it could be the leading 
record in any of the k runs. The most direct way to merge k runs is to make k-1 to determine 
the next record to output. For k > 2, we can achieve a reduction in the number of needed to 
find the next smallest element by using the selection tree data structure. There are two kinds 
of selection trees: winner trees and loser trees. 

4.2.1 Winner Tree: 

A winner tree is a binary tree in which each node represents the smaller of its two children. 
Thus, the root node the smallest node in the tree. Figure 5.32 illustrates a winner tree for the 
case k = 8. The of this winner tree may be compared to the playing of a tournament in which 
the winner is the record with the smaller key. Then, each nonleaf node in the tree the winner 
of a , and the root node the overall winner, or the smallest key. Each leaf node the first record 
in the corresponding run. Since the records being merged are large, each node will contain 
only a pointer to the record it represents. Thus, the root node contains a pointer to the first 
record in run 4 A winner tree may be represented using the sequential allocation scheme for 
binary trees that results from Lemma 5.4. The number above each node in Figure 5.32 is the 
address of the node in this sequential. The record pointed to by the root has the smallest key 
and so may be output. Now, the next record from run 4 enters the winner tree. It has a key 
value of 15. To the tree, the tournament has to be replayed only along the path from node 11 
to the root. Thus, the winner from nodes 10 and 11 is again node 11 (15 <20) The winner 
from nodes 4 and 5 is node 4 9 <15) The winner from 2 and 3 is node 3 (8 < 9) The new tree 
is shown in Figure 5.33. The is played between sibling nodes and the result put in the parent 
node. Lemma 5.4 may be used to compute the address of sibling and parent nodes efficiently. 
Each new take place at the next higher level in the tree. 



 

 

 

 

4.2.1 Loser Tree: 

After the record with the smallest key value is output, the winner tree of Figure 5.32 is to be 
restructured. Since the record with the smallest key value is in run 4this re- involves inserting 
the next record from this run into the tree. The next record has key value 15. are played 
between sibling nodes along the path from node 11 to the root. Since these sibling nodes 
represent the losers of played earlier, we can simplify the process by placing in each nonleaf 
node a pointer to the record that loses the rather than to the winner of the tournament. A 
selection tree in which each nonleaf node retains a pointer to the loser is called a loser tree. 
Figure 5.34 shows the loser tree that to the winner tree of Figure 5.32. For, each node the key 



value of a record rather than a pointer to the record represented. The leaf nodes the first 
record in each run. An additional node, node 0has been added to represent the overall winner 
of the tournament. Following the output of the overall winner, the tree is by playing along the 
path from node 11 to node 1The records with which these tournaments are to be played are 
readily available from the parent nodes. As a result, sibling nodes along the path from 11 to 1 
are not accessed. 

 

4.3: Forest 

Definition: A forest is a set of n> 0 disjoint trees. When we remove the root of a tree we 
obtain a forest. For example, removing the root of any binary tree produces a forest of two 
trees. 

 

4.3.1: Transforming a forest into a binary tree Definition: If T1, . . ., Tn is a forest of trees, 
then the binary tree corresponding to this forest, denoted by B (T1, . . . , Tn ), (1) is empty, if 



n = 0 (2) has root equal to root (T1); has left subtree equal to B(T11,T12. . . T1m), where T11 
, . . . ,T1m are the subtrees of root (T1); and has right subtree B(T2, . . . ,Tn ) 

 

4.3.2 Forest Traversal 

Preorder Traversal: The preorder traversal of T is equivalent to visiting the nodes of Fin tree 
preorder. We define this as: 1.If F is empty, then return. 2.Visit the root of the first tree of F. 
3.Traverse the subtrees of the first tree in tree preorder. 4.Traverse the remaining trees of F in 
preorder. Inorder Traversal: Inorder traversal of T is equivalent to visiting the nodes of F in 
tree inorder, which is defined as: 1.If F is empty, then return. 2.Traverse the subtrees of the 
first tree in tree inorder. 3.Visit the root of the first tree. 4.Traverse the remaining trees in tree 
inorder. Postorder Traversal: There is no natural analog for the postorder traversal of the 
corresponding binary tree of a forest. Nevertheless, we can define the postorder traversal of a 
forest, F, as: 1.If F is empty, then return. 2.Traverse the subtrees of the first tree of F in tree 
postorder. 3.Traverse the remaining trees of F in tree postorder. 4.Visit the root of the first 
tree of F. 

4.4 Representation of Disjoint Sets 

 4.4.1 Introduction  

The use of trees in the representation of sets. assume that the elements of the sets are the 
numbers 0, 1, 2,. . .n-1. In practice, these numbers might be indices into a symbol table that 
stores the actual names of the elements. For example, if we have 10 elements numbered 0 
through 9, we may partition them into three disjoint sets, 51 = {0, 6, 7, 8), S2 = {1, 4, 9}, and 
S3 = {2, 3, 5}. Figure shows one possible representation for these sets. 



 

The minimal operations that we wish to perform on these sets are: Disjoint set union and 
Find(i). 

4.4.2 Union and Find operations:  

to obtain the union of S1and S2 Since we have linked the nodes from children to parent, we 
simply make one of the trees a subtree of the other. 

 

To implement the set union operation, we simply set the parent field of one of the roots to the 
other root. We can accomplish this easily if, with each set name, we keep a pointer to the root 
of the tree representing that set. 



 

rather than using the set name S1 we refer to this set as 0. The transition to set names is easy. 
We assume that a table, name [ ], holds the set names. If i is an element in a tree with root 7, 
and j has a pointer to entry k in the set name table, then the set name is just name[k]. 

 

Definition: Weighting rule for union(i, j). If the number of nodes in tree i is less than the 
number in tree j then make j the parent of i; otherwise make i the parent of j. 



 

Definition [collapsing rule] : If j is a node on the path from i to its root and parent[i] != 
root(i), then set parent [j] to root(i). 

 

4.4.3Application to equivalence classes  

The equivalence classes to be generated may be regarded as set. These sets are disjoint since 
no polygon can be in two equivalence classes. Initially, all n polygons are in an equivalence 
class of their own; thus parent{i} = -1, 0 < =i < n. If an equivalence pair, i = j, is to be 
processed, we must first determine the sets containing i and j. If they are different, then we 
replace the two sets by their union. If the two sets are the same, then we do nothing since the 



relation i = j is redundant: I and j are already in the same equivalence class. To process each 
equivalence pair, we need to perform two finds and at most one union. 

4.5Counting Binary trees  

4.5.1: Distinct Binary tree 

 if n = 0 or n = 1, there is only one binary tree. If n = 2, then there are two distinct trees and if 
n = 3. 

 

4.5.2Stack permutations: 

Suppose we have the preorder sequence: ABCDEFGHI and the inorder sequence: 
BCAEDGHFI of the binary tree. To construct the binary tree from these sequences, we look 
at the first letter in the preorder sequence, A. This letter must be the root of the tree by 
definition of the preorder traversal (VLR.}. We also know by definition of the inorder 
traversal {LVR} that all nodes preceding A in the inorder sequence (B Q are in the left 
subtree, while the remaining nodes {ED GHFI) are in the right subtree. Figure 5.49(a) is our 
first approximation to the correct tree. Moving right in the preorder sequence, we find B as 
the next root. Since no node precedes B in the inorder sequence, B has an empty left subtree, 
which means that C is in its right subtree. Figure 5.49(b) is the next approximation. 
Continuing in this way, we arrive at the binary tree of Figure 5.49(c). By formalizing this 
argument (see the exercises for this section), we can verify that every binary tree has a unique 
pair of preorder inorder sequences. 



 

4.5.3 Matrix multiplication 

Suppose that we wish to compute the product of n matrices: M1 * M2* • • • * Mn . Since 
matrix multiplication is associative, we can perform these multiplications in any order. We 
would like to know how many different ways we can perform these multiplications. For 
example, if n = 3, there are two possibilities: 



 

The number of distinct ways to obtain M1iand M1 + Iare biand bn-i , respectively. Therefore, 
letting b 1 = 1, we have 

 

Then we see that bn is the sum of all the possible binary trees formed in the following way: a 
root and two subtrees with biand bn-i-1 nodes, for 0 < i < n. This explanation says that  

 

Therefore, the number of binary trees with n nodes, the number of permutations of 1 to n 
obtainable with a stack, and the number of ways to multiply n + 1 matrices are all equal.  

4.5.4 Number of Distinct binary trees  

To obtain the number of distinct binary trees with n nodes, we must solve the recurrence 

 

To begin we let: 



 

 

 



5. GRAPHS 

5.1 The graph Abstract Data Type  

5.1.1 Introduction 

In Koenigsberg, the Pregal river flows around the island of Kneiphof. There are four land 
areas, labelled A through D in Figure 6.1, that have this river on their border. Seven bridges, 
labelled a through g, connect the land areas. The Koenigsberg bridge problem is as follows: 
Starting at some land area, is it possible to return to our starting location after walking across 
each of the bridges exactly once?  

A possible walk might be:  

•start from land area B 
 •walk across bridge a to island A 
 •take bridge e to area D  
•take bridge g to C 
 •take bridge d to A 
 •take bridge b to B 
 •take bridge f to D  
This walk does not cross all bridges exactly once, nor does it return to the starting land area 
B. Euler solved the problem by using a graph (actually a multigraph) in which the land areas 
are vertices and the bridges are edges. His solution is not only elegant, it applies to all graphs. 

 

Euler defined the degree of a vertex as the number of edges incident on it. He then showed 
that there is a walk starting at any vertex, going through each edge exactly once, and 
terminating at the starting vertex iff the degree of each vertex is even. We now call a walk 
that does this an Eulerian walk. Since this first application, graphs have been used in a wide 



variety of applications, including analysis of electrical circuits, finding shortest routes, project 
planning, and the identification of chemical compounds. Indeed graphs may be the most 
widely used of all mathematical structures. 

5.1.2 Definitions 

A graph, G, consists of two sets: a finite, nonempty set of vertices, and a finite, possibly 
empty set of edges. V(G) and E(G) represent the sets of vertices and edges of G, respectively. 
Alternately, we may write G = (V, E) to represent a graph. An undirected graph is one in 
which the pair of vertices representing any edge is unordered. For example, the pairs (v0, v1) 
and (v0, v1 ) represent the same edge. A directed graph is one in which we represent each 
edge as a directed pair of vertices. For example, the pair <v0, v1> represents an edge in 
which v0is the tail and v1 is the head. Therefore, <v0, v1> and <v1, v0 > represent two 
different edges in a directed graph. 

 

The degree of a vertex is the number of edges incident to that vertex. 



 

5.1.3 Graph representations 

Adjacency Matrix: 

Let G = (V, E) be a graph with n vertices, n>= 1. The adjacency matrix of G is a two- 
dimensional n x n array, say adj-mat. If the edge (Vi, Vj) (<Vi,Vj >for a digraph) is in E(G), 
adj-mat[i][j] = 1. If there is no such edge in E(G), adj~mat[i][j] = 0. The adjacency matrices 
for graphs Gi, G3, and G4 are shown in Figure. The adjacency matrix for an undirected graph 
is symmetric since the edge (vi, vj) is in E(G) iff the edge (vi, Vj ) is also in E(G). In contrast, 
the adjacency matrix for a digraph need not be symmetric. (This is true of G3.) ) For 
undirected graphs, we can save space by storing only the upper or lower triangle of the 
matrix. 



 

Adjacency Lists:  

For any given list, i, the nodes in the list contain the vertices that are adjacent from vertex i. 
Figure 6.8 shows the adjacency lists for G1, G3, and G4 . 

 

sequential representation for the graph G4 of Figure 6.5. We can determine the degree of any 
vertex in an undirected graph by simply counting the number of nodes in its adjacency list. 
This also gives us the number of edges incident on the vertex. 



 

Adjacency Multilists: 

In the adjacency list representation of an undirected graph, we represent each edge, (vi, Vj ), 
by two entries. One entry is on the list for vi, and the other is on the list for Vj . For each edge 
there is exactly one node, but this node is on the adjacency list for each of the two vertices it 
is incident to the new node structure. 



 

Weighted Edges:  

The edges of a graph are assigned weights. These weights may represent the distance from 
one vertex to another or the cost of going from one vertex to an adjacent vertex. A graph with 
weighted edges is called a network. 

 5.2 Elementary Graph Operations  

Given an undirected graph, G = (V, E), and a vertex, v, in V(G) we wish to visit all vertices in 
G that are reachable from v, that is, ail vertices that are connected to v. There are two ways of 
doing this: depth first search and breadth first search.  

5.2.1 Depth First Search  

Depth first search is similar to a preorder tree traversal. We begin the search by visiting the 
start vertex, v. visiting consists of printing the node's vertex field. Next, we select an 
unvisited vertex, w, from v's adjacency list and carry out a depth first search on w. Eventually 
our search reaches a vertex, M, that has no unvisited vertices on its adjacency list. At this 
point, we remove a vertex from the stack and continue processing its adjacency list. 
Previously visited vertices are discarded; unvisited vertices are visited and placed on the 
stack. The search terminates when the stack is empty. 



 

5.2.2 Breadth First Search 

breadth first search resembles a level order tree traversal. Breadth first search starts at vertex 
v and marks it as visited. It then visits each of the vertices on v's adjacency list. When we 
have visited all the vertices on v's adjacency list, we visit all the unvisited vertices that are 
adjacent to the first vertex on v's adjacency list. To implement this scheme, as we visit each 
vertex, we place the vertex in a queue. When we have exhausted an adjacency list, we 
remove a vertex from the queue and proceed by examining each of the vertices on its 
adjacency list. Unvisited vertices are visited and then placed on the queue; visited vertices are 
ignored. We have finished the search when the queue is empty. 

The queue definition and the function prototypes used by BFS are: 



 

5.2.3 Connected Components: 



 

5.2.4 Spanning Trees  

A spanning tree is any tree that consists solely of edges in G and that includes all the vertices 
in G. 

 

we may use either dfs or bfs to create a spanning tree. When dfs is used, the resulting 
spanning tree is known as a depth first spanning tree. When bfs is used, the resulting 
spanning tree is called a breadth first spanning tree. 



 

A spanning tree is a minimal subgraph G' of G such that V (G) = V(G) and G' is connected. 
We define a minimal subgraph as one with the fewest number of edges. Any connected graph 
with n vertices must have at least n - 1 edges, and all connected graphs with n - 1 edges are 
trees. Therefore, we conclude that a spanning tree has n - 1 edges. 

5.2.5 Biconnected Components  

An articulation point is a vertex v of G such that the deletion of v, together with all edges 
incident on v, produces a graph, G', that has at least two connected components. For example, 
the connected graph of Figure has four articulation points, vertices 1, 3, 5, and 7. A 
biconnected component of a connected undirected graph is a maximal biconnected subgraph, 
H, of G. By maximal, we mean that G contains no other subgraph that is both biconnected 
and properly contains H. F We can find the biconnected components of a connected 
undirected graph, G, by using any depth first spanning tree of G. F 



 

 



 


