
On VMAF’s property in the presence of
image enhancement operations
Zhi Li, Netflix
July 13, 2020 (Last updated Aug. 1, 2021)

A high-level slide deck summarizing the ideas can be found in this link. Leave questions as
comments to this memo, or direct your questions to zli@netflix.com.

TL;DR: We discuss VMAF’s property in the presence of image enhancement operations,
and propose a solution for applications such as codec evaluation where the pre-/post-
processing gain needs to be disabled. To disable the enhancement gain, a user can use the
vmaf_v0.6.1neg.json model (“neg” stands for “no enhancement gain”) with the vmaf
executable from the open source package.

VMAF, or Video Multi-method Assessment Fusion, is a video quality assessment algorithm
developed by Netflix. VMAF was designed with Netflix’s streaming use case in mind, in
particular, to capture the video quality of professionally generated movies and TV shows, in
the presence of compression and scaling artifacts, as perceived by end viewers. At Netflix,
VMAF has been applied in codec evaluation, encoding optimization, A/B experimentation,
among others.

Since its open-sourcing on Github, a number of new use cases of VMAF have started to
emerge, including gaming, VR and user-generated content. In these applications, it is not
uncommon to include custom image enhancement operations in the video processing
pipeline, in order to enhance the end viewer’s subjective experience. As developers started
optimizing their video pipelines, it became evident that certain image enhancement
techniques, including sharpening, contrasting, histogram equalization, among others, could
boost VMAF scores. While such operations could enhance the image quality as perceived by
the end viewers if applied properly, it is evident that VMAF tends to overpredict the perceptual
quality even when such operations are overused.

More importantly, these operations can be applied within an encoder as its pre-processing
step, or, if standardized, as a normative post-processing step within a decoder. Most recently,
Google introduced a tune=vmaf mode in libaom as an option to perform quality-optimized
AV1 encoding with pre-processing. We highly respect this effort. On the other hand, in codec
evaluation, it is often desirable to measure the pure gain achieved from compression without
also accounting for the gain from image enhancement. As demonstrated by the block diagram
below, since it is difficult to strictly separate an encoder from its pre-processing step
(especially for proprietary encoders), it may become difficult to use VMAF to assess the pure
compression gain.

https://docs.google.com/presentation/d/1ZVQPsA4N6K8uGW3aFgw4Ei9w953nYORUUPvgpigOq58/edit?usp=sharing
https://github.com/Netflix/vmaf
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12
https://streaminglearningcenter.com/blogs/vmaf-is-hackable-what-now.html
https://aomedia.googlesource.com/aom/+/615dc24579d531cb3a2c9627ab25a3026f9e2b47

We consider that there is value for VMAF to disregard the gain introduced by the
enhancements that are not part of the codec. In other words, there needs to be knob(s) in
VMAF through which we can control the gain measurable from pre-/post-processing
enhancement operations.

In this memo, we start by discussing the foundations on why VMAF can capture the quality
gain from image enhancement operations, which put VMAF in a different class compared to
traditional metrics like PSNR or SSIM. Having understood the foundations, we proceed to
discuss our proposed modification to the VMAF implementation, where two knobs are
introduced to control the measured image enhancement gain. We present experiment results
to demonstrate that the modification does not hurt VMAF’s correlation with subjective scores
in the presence of compression and scaling artifacts. Lastly, we provide details on how a user
of the VMAF open-source package could disable or limit the enhancement gain.

Foundations
In a nutshell, VMAF combines human vision modeling with machine learning. It builds on top
of a number of state-of-the-art image quality metrics, including visual information fidelity
(VIF) and detail loss metric (DLM) as its building blocks, and rely on support vector regression
(SVR) to fuse the predictions from elementary metrics into a final score, to be aligned with the
mean opinion scores (MOS) collected from subjective experiments. The key to understanding
how VMAF captures the image enhancement gain is to understand the properties of the
elementary metrics. To be more specific, both VIF and DLM have incorporated considerations
for image enhancement gains.

VIF
VIF is based on the premise that quality is complementary to the measure of information loss.
Rooted in information theory, VIF models the image quality assessment problem as a
communication channel, and the final VIF score can be considered as the ratio between two
mutual information measures I(C; F | s) and I(C; E | s). This is illustrated in the system diagram
below:

https://live.ece.utexas.edu/research/Quality/VIF.htm

Here C represents the original source signal, and E presents the source signal as perceived by
the human vision system (HVS). The source follows a model of C = sU, where s can be thought
as the “context” in the source signal which can be estimated through low-pass filtering, and U
is a Gaussian random variable characterizing the local variability. The HVS is modeled as a
simple white additive noise channel with noise N. I(C; E | s) represents the maximum
information that can be conveyed through this channel. Similarly, D represents the distorted
signal and F represents the distorted signal as perceived by the HVS. The distortion is
modeled by two terms: 1) a gain term g, and 2) an additive noise term V ~ N(0, σV2). Given the
input C and the output D, the parameters g and σV can be solved by maximum likelihood
estimation (MLE) with the following optimal solution:

𝑔 = σ
𝐶𝐷

/σ
𝐶

2

σ
𝑉

2 = σ
𝐷

2 − 𝑔· σ
𝐶𝐷

where is the covariance between C and D. It is crucial to understand the gain term g.σ
𝐶𝐷

Regular operations such as lossy compression and downsampling act as low-pass filtering,
and will result in a gain . However, image enhancement operations, such as sharpening𝑔 < 1
and contrast enhancement, could result in a gain . Take a linear contrast operation for𝑔 > 1
example, where the entire image is multiplied by 1.5, the resulting estimated terms are

and .𝑔 = 1. 5 σ
𝑉

= 0

VMAF implements the pixel-domain version of VIF, where the coefficients are calculated in
the pixel domain after successive Gaussian filtering. In total, coefficients are calculated in 4
different scales. After simplification, the VIF value at scale () can be calculated as:λ λ = 1,..., 4

https://live.ece.utexas.edu/research/Quality/VIF.htm

(1)𝑉𝐼𝐹
λ

=
𝑖=1

𝑁

∑ log
2

1+
𝑔

𝑖
2𝑠

𝑖
2σ

𝑢
2

σ
𝑣𝑖

2+σ
𝑁

2()

𝑖=1

𝑁

∑ log
2

1+
𝑠

𝑖
2σ

𝑢
2

σ
𝑁

2()
In VMAF version 0.6.x, the VIF scores calculated in the 4 different scales are thrown into the
SVR as 4 distinct features. It is noted that in a regular use case with compression and scaling,
where the gain term and , the resulting VIF has value . As a special case,𝑔 < 1 σ

𝑉
𝑖

2 > 0 ≤ 1

when C and D are identical, and , the VIF has a value of precise 1.𝑔 = 1 σ
𝑉

𝑖

2 = 0

For image enhancement operations, such as the linear contrast operation as mentioned
above, if plugging the term and , one can immediately see that this will result in𝑔 = 1. 5 σ

𝑉
= 0

a VIF value of . And this will translate into a gain in the final VMAF after the SVR.> 1

DLM
DLM is part of a perceptual image quality metric that separately evaluates detail losses and
additive impairments. The premise is that humans respond to the losses of details and the
addition of impairments differently, and it is worth treating them separately before combining
them. Due to historical reasons, the term ADM is used in the VMAF source code as the
combination of the terms DLM (detail loss metric) and AIM (additive impairment metric), but it
is in fact only the DLM part of the metric that is used in VMAF.

DLM operates in the wavelet domain. Specifically, it uses 4-scale Daubechies 2 (db2)
wavelets. After the wavelets decomposition, a key step is to decompose the target image T
into a restored image R and an additive impairment image A, guided by the original image O.
Specifically: , where the restored image can be calculated as:𝑇 = 𝑅 + 𝐴

(2)𝑅 = 𝑐𝑙𝑖𝑝
[0,1]

𝑇
𝑂() · 𝑂

Here T, R, A and O each represents a coefficient of a location (x, y) in a subband of scale .θ λ

A special case is made to handle contrast enhancement. The authors propose to detect
contrast enhancement operation using the rule , where is the angular|ψ

𝑂
− ψ

𝑇
| < 1◦ ψ

representation (i.e. arctan) of the ratio between two coefficients co-located in the vertical
subband () and the horizontal subband () of the same scale . This intuitivelyθ = 2 θ = 4 λ

https://www.researchgate.net/publication/220516648_Image_Quality_Assessment_by_Separately_Evaluating_Detail_Losses_and_Additive_Impairments

makes sense. Consider the simple example of linear contrast where the original image O is
multiplied by 1.5 to produce the target image T. Since the magnitude of the coefficients gets
proportionally scaled by 1.5, the ratio between the vertical and the horizontal subbands remain
unchanged, and thus . The more complicated image enhancement operations such asψ

𝑂
= ψ

𝑇

sharpening and histogram equalization can be considered as localized linear contrasting
operations. The coefficient in the restored image is updated to:

if (3)𝑅 = 𝑇, |ψ
𝑂

− ψ
𝑇
| < 1◦

One can easily see that without triggering the contrast enhancement rule, R is bounded to
. On the other hand, with the contrast enhancement rule triggered, it is possible to|𝑅| ≤ |𝑂|

have . This is crucial to understand the image enhancement gain in DLM.|𝑅| = |𝑇| > |𝑂|

After decoupling, the restored signal R and the original signal O go through a contrast
sensitivity function (CSF) and a contrast masking (CM) function. The final formula of DLM can
be summarized as:

(4)𝐷𝐿𝑀 = λ=1

4

∑
θ=2

4

∑
𝑖,𝑗∈𝑐𝑒𝑛𝑡𝑒𝑟

∑ 𝐶𝑀 𝐶𝑆𝐹 𝑅(λ,θ,𝑖,𝑗)()()3()
1
3

λ=1

4

∑
θ=2

4

∑
𝑖,𝑗∈𝑐𝑒𝑛𝑡𝑒𝑟

∑ 𝐶𝑆𝐹 𝑂(λ,θ,𝑖,𝑗)()3()
1
3

The coefficients in R after CSF and CM (and O after CSF) are then Minkowski-pooled with
power 3, and summed within the center region of each subband with a border factor 0.1. The
results are then summed over the vertical (), horizontal () and diagonal ()θ = 2 θ = 4 θ = 3
subbands, and then over the 4 scales (). For the formula, one can easily see that withλ = 1,..., 4
the contrast enhancement rule triggered, will result in a DLM value of . And this|𝑅| > |𝑂| > 1
will translate into a gain in the final VMAF after the SVR.

Modifications
Having understood the foundations on why VMAF’s elementary metrics VIF and DLM
incorporate considerations for image enhancement gains, let us look at possible modifications
to the two metrics such that the enhancement gains can be fully or partially disabled.

VIF
From Equation (1), it is straightforward to see that to boost the VIF values, the “positive”
influence from needs to outweigh the “negative” influence from . We empirically find𝑔

𝑖
σ

𝑉
𝑖

2

that to limit each local gain term to below 1.0 is a good strategy to limit the image𝑔
𝑖

enhancement gain while balancing the impact on VMAF’s correlation with subjective scores.
Intuitively speaking, a upper limit of at 1.0 eliminates the possibility of having VIF’s value to𝑔

𝑖

go above 1.0. To control the enhancement gain measurable by VIF, we introduce a parameter
called VIF enhancement gain limit , where . In the VMAF source code, this𝐸𝐺𝐿

𝑉𝐼𝐹
𝐸𝐺𝐿

𝑉𝐼𝐹
≥ 1. 0

parameter is named vif_enhn_gain_limit. The proposed modification is

𝑔
𝑖

= min (𝑔
𝑖
, 𝐸𝐺𝐿

𝑉𝐼𝐹
)

To fully disable the enhancement gain, we simply set .𝐸𝐺𝐿
𝑉𝐼𝐹

= 1. 0

DLM
To control the enhancement gain achievable by DLM, we modify Equation (3) such that
increment in R can be constrained. Similar to VIF, we introduce a parameter called DLM
enhancement gain limit , where . In the VMAF source code, this𝐸𝐺𝐿

𝐷𝐿𝑀
𝐸𝐺𝐿

𝐷𝐿𝑀
≥ 1. 0

parameter is named adm_enhn_gain_limit instead. The proposed modification to (3) is:

● , if and ;𝑅 = min 𝑅 · 𝐸𝐺𝐿
𝐷𝐿𝑀

, 𝑇() |ψ
𝑂

− ψ
𝑇
| < 1◦ 𝑅 > 0

● , if and .𝑅 = max 𝑅 · 𝐸𝐺𝐿
𝐷𝐿𝑀

, 𝑇() |ψ
𝑂

− ψ
𝑇
| < 1◦ 𝑅 < 0

One can make the following observations:
● With set to 1.0, the modification restrains R’s value to , thus effectively𝐸𝐺𝐿

𝐷𝐿𝑀
|𝑅| ≤ |𝑂|

limiting the DLM value to below 1.0.
● With set to a large value, say 100.0, the new formulation is almost identical to𝐸𝐺𝐿

𝐷𝐿𝑀

the original Equation (3), with one exception: when T and O are of different signs, or
. We have empirically verified that the occurrence of this exception is rare,𝑇 · 𝑂 ≤ 0

and the numerical change to the DLM and the final VMAF value is infinitesimally small.

Results
We first demonstrate the modifications’ impact on the VMAF prediction in the presence of
pure image enhancement operations. For simplicity, we only illustrate the case where the
enhancement gain is fully disabled. That is, we set and .𝐸𝐺𝐿

𝑉𝐼𝐹
= 1. 0 𝐸𝐺𝐿

𝐷𝐿𝑀
= 1. 0

The images below illustrate pure image enhancement operations on the first frame of Akiyo
(352x288), without any compression. The left is the original image; the center is the image
after applying unsharp filtering with radius 1.0 and amount 1.0; the right is the image after
applying histogram equalization with clip limit 0.005.

Original Sharpening Histogram Equalization

The table below summarizes the elementary feature scores and the final VMAF prediction,
with the enhancement gain enabled/disabled. For each column, the VMAF calculation is
against the original image (for example, the first column is original vs. original; the second
column is sharpening vs. original, and so on).

Original Sharpening Histogram Equalization

VIF Scale 0 1.0 0.7616 1.0537

Enhn. VIF Scale 1 1.0 0.9639 1.0791

Gain VIF Scale 2 1.0 0.9924 1.0773

Enabled VIF Scale 3 1.0 0.9993 1.0689

DLM 1.0 1.0692 1.1682

VMAF 97.4277 111.9868* 144.0195*

VIF Scale 0 1.0 0.6772 0.9455

Enhn. VIF Scale 1 1.0 0.9396 0.9643

Gain VIF Scale 2 1.0 0.9766 0.9617

Disabled VIF Scale 3 1.0 0.9900 0.9560

DLM 1.0 0.9531 0.9380

VMAF 97.4280 85.3330 78.7122

*Note: by default, the VMAF score is clipped between [0, 100] in the last step of the calculation. To
better illustrate the numerical change, we disable the clipping (by the command line option
disable_clip).

https://scikit-image.org/docs/dev/auto_examples/filters/plot_unsharp_mask.html
https://scikit-image.org/docs/dev/api/skimage.exposure.html#skimage.exposure.equalize_adapthist

Next, we show how VMAF behaves with the enhancement gain disabled in libaom’s
tune=vmaf mode. The image on the left below is the first frame of Akiyo (352x288)
compressed with libaom tune=vmaf mode and CQ 43. The center is the visualization of the
enhancement gain achievable by VIF, where the gray level represents the strength of the gain,
in 4 scales concatenated horizontally. The right is the visualization of the enhancement gain
achievable by DLM represented in a wavelet fashion, where the white represents the loci
where the gain is positive.

libaom tune=vmaf VIF enhancement gain DLM enhancement gain

The table below summarizes the elementary feature scores and the final VMAF prediction,
with the enhancement gain enabled/disabled. As comparison, we also show the result on the
first frame of a libaom encode with CQ 43 but no tune=vmaf, with enhancement gain
enabled/disabled.

libaom tune=vmaf libaom

VIF Scale 0 0.7053 0.7979

Enhn. VIF Scale 1 0.9653 0.9843

Gain VIF Scale 2 0.9906 0.9931

Enabled VIF Scale 3 0.9967 0.9958

DLM 1.0375 0.9928

VMAF 104.8277* 95.1425

VIF Scale 0 0.6403 0.7686

Enhn. VIF Scale 1 0.9436 0.9769

Gain VIF Scale 2 0.9763 0.9879

Disabled VIF Scale 3 0.9879 0.9921

DLM 0.9645 0.9873

https://aomedia.googlesource.com/aom/+/615dc24579d531cb3a2c9627ab25a3026f9e2b47

VMAF 87.6951 93.4151

*Note: by default, the VMAF score is clipped between [0, 100] in the last step of the calculation. To
better illustrate the numerical change, we disable the clipping (by the command line option
disable_clip).

Lastly, we demonstrate VMAF’s prediction accuracy compared to the subjective scores, on
two datasets: 1) NFLX Public dataset (compression and scaling distortions) and 2) VQEG HD3
dataset (compression distortion only). The plots below show the scatter plot of the predicted
scores (y-axis) versus the MOS scores (x-axis). The numbers are reported in SRCC (Spearman
rank-order correlation coefficient), PCC (Pearson linear correlation coefficient, after sigmoid
fitting) and RMSE (root mean-squared error, after sigmoid fitting). By showing that the
correlation number does not move before and after muting the enhancement gain, we virtually
demonstrate that the modification only affects the corner cases of enhancement gains, thus
does not impact the accuracy of VMAF in the traditional use case. One thing to note is that the
absolute score of VMAF does drop slightly, typically by 1~3.

NFLX Public VQEG HD3

Enhn.

Gain

Enabled

https://github.com/Netflix/vmaf/blob/master/resource/doc/datasets.md#netflix-public-dataset
https://github.com/Netflix/vmaf/blob/master/resource/doc/datasets.md#vqeg-hd3-dataset
https://github.com/Netflix/vmaf/blob/master/resource/doc/datasets.md#vqeg-hd3-dataset

Enhn.

Gain

Disabled

Usages
The option to disable the enhancement gain is implemented in the VMAF open-source
package. Note that there is an old executable vmafossexec and a new executable vmaf. The
option to disable the enhancement gain is only implemented in the new executable vmaf. We
are in the process of making the new libvmaf API compatible with FFmepg.

We offer two options to disable the enhancement gain:
● a) by taking in a new VMAF model file vmaf_v0.6.1neg.json (“neg” stands for “no

enhancement gain”) instead of using the default model file vmaf_v0.6.1.json.
● b) by directly controlling the enhancement gain knobs through command-line options.

This option allows disabling enhancement gain to work with any models (e.g.
vmaf_b_v0.6.3.json).

1) Get the latest VMAF master from:
https://github.com/Netflix/vmaf

2) Build by (VMAF build depends on python3 meson and ninja. Check here for instructions):
make

3) Download test videos from:
https://github.com/Netflix/vmaf_resource/tree/master/python/test/resource/yuv
The following two video sequences will be needed:
refp_vmaf_hacking_investigation_0_0_akiyo_cif_notyuv_0to0_identity_vs
_akiyo_cif_notyuv_0to0_multiply_q_352x288
disp_vmaf_hacking_investigation_0_0_akiyo_cif_notyuv_0to0_identity_vs
_akiyo_cif_notyuv_0to0_multiply_q_352x288

https://github.com/Netflix/vmaf
https://github.com/Netflix/vmaf/tree/master/libvmaf
https://github.com/Netflix/vmaf_resource/tree/master/python/test/resource/yuv

4) Run VMAF on a linearly contrasted akiyo frame:

./libvmaf/build/tools/vmaf --reference

./python/test/resource/yuv/refp_vmaf_hacking_investigation_0_0_akiyo_
cif_notyuv_0to0_identity_vs_akiyo_cif_notyuv_0to0_multiply_q_352x288
--distorted
./python/test/resource/yuv/disp_vmaf_hacking_investigation_0_0_akiyo_
cif_notyuv_0to0_identity_vs_akiyo_cif_notyuv_0to0_multiply_q_352x288
--width 352 --height 288 --pixel_format 420 --bitdepth 8 --output
/dev/stdout --model path=./model/vmaf_v0.6.1.json:name=vmaf

This will generate output:

<VMAF version="2.1.1">
<params qualityWidth="352" qualityHeight="288" />
<fyi fps="160.93" />
<frames>

<frame frameNum="0" integer_adm2="1.116700"
integer_adm_scale0="1.044966" integer_adm_scale1="1.104599"
integer_adm_scale2="1.127935" integer_adm_scale3="1.137287"
integer_motion2="0.000000" integer_motion="0.000000"
integer_vif_scale0="1.052402" integer_vif_scale1="1.070149"
integer_vif_scale2="1.072518" integer_vif_scale3="1.072513"
vmaf="100.000000" />

</frames>
...

</VMAF>

5a) Run VMAF on a linearly contrasted akiyo frame with the “no enhancement gain” model
vmaf_v0.6.1neg.json:

./libvmaf/build/tools/vmaf --reference

./python/test/resource/yuv/refp_vmaf_hacking_investigation_0_0_akiyo_
cif_notyuv_0to0_identity_vs_akiyo_cif_notyuv_0to0_multiply_q_352x288
--distorted
./python/test/resource/yuv/disp_vmaf_hacking_investigation_0_0_akiyo_
cif_notyuv_0to0_identity_vs_akiyo_cif_notyuv_0to0_multiply_q_352x288
--width 352 --height 288 --pixel_format 420 --bitdepth 8 --output
/dev/stdout --model name=vmaf:path=./model/vmaf_v0.6.1neg.json

This will generate output:

<VMAF version="2.1.1">
<params qualityWidth="352" qualityHeight="288" />
<fyi fps="141.56" />
<frames>

<frame frameNum="0" integer_adm2_egl_1="0.957433"
integer_adm_scale0_egl_1="0.979451"
integer_adm_scale1_egl_1="0.964563"
integer_adm_scale2_egl_1="0.956307"
integer_adm_scale3_egl_1="0.947698" integer_motion2="0.000000"
integer_motion="0.000000" integer_vif_scale0_egl_1="0.983708"
integer_vif_scale1_egl_1="0.997443"
integer_vif_scale2_egl_1="0.998483"
integer_vif_scale3_egl_1="0.999151" vmaf="88.030464" />

</frames>
...

</VMAF>

5b) Run VMAF on a linearly contrasted akiyo frame, with enhancement gain disabled through
command-line options (vif_enhn_gain_limit=1.0 and adm_enhn_gain_limit=1.0):

./libvmaf/build/tools/vmaf --reference

./python/test/resource/yuv/refp_vmaf_hacking_investigation_0_0_akiyo_
cif_notyuv_0to0_identity_vs_akiyo_cif_notyuv_0to0_multiply_q_352x288
--distorted
./python/test/resource/yuv/disp_vmaf_hacking_investigation_0_0_akiyo_
cif_notyuv_0to0_identity_vs_akiyo_cif_notyuv_0to0_multiply_q_352x288
--width 352 --height 288 --pixel_format 420 --bitdepth 8 --output
/dev/stdout --model
version=vmaf_v0.6.1:vif.vif_enhn_gain_limit=1.0:adm.adm_enhn_gain_lim
it=1.0

This will generate output:

<VMAF version="2.1.1">
<params qualityWidth="352" qualityHeight="288" />
<fyi fps="167.08" />
<frames>

<frame frameNum="0" integer_adm2_egl_1="0.957433"
integer_adm_scale0_egl_1="0.979451"
integer_adm_scale1_egl_1="0.964563"
integer_adm_scale2_egl_1="0.956307"
integer_adm_scale3_egl_1="0.947698" integer_motion2="0.000000"

integer_motion="0.000000" integer_vif_scale0_egl_1="0.983708"
integer_vif_scale1_egl_1="0.997443"
integer_vif_scale2_egl_1="0.998483"
integer_vif_scale3_egl_1="0.999151" vmaf="88.030464" />

</frames>
...

</VMAF>

6) Run VMAF with additional metrics, such as PSNR, SSIM, MS-SSIM:

./libvmaf/build/tools/vmaf --reference

./python/test/resource/yuv/refp_vmaf_hacking_investigation_0_0_akiyo_
cif_notyuv_0to0_identity_vs_akiyo_cif_notyuv_0to0_multiply_q_352x288
--distorted
./python/test/resource/yuv/disp_vmaf_hacking_investigation_0_0_akiyo_
cif_notyuv_0to0_identity_vs_akiyo_cif_notyuv_0to0_multiply_q_352x288
--width 352 --height 288 --pixel_format 420 --bitdepth 8 --output
/dev/stdout --model name=vmaf:path=./model/vmaf_v0.6.1neg.json
--feature float_psnr --feature float_ssim --feature float_ms_ssim

This will generate output:

<VMAF version="2.1.1">
<params qualityWidth="352" qualityHeight="288" />
<fyi fps="23.96" />
<frames>

<frame frameNum="0" integer_adm2_egl_1="0.957433"
integer_adm_scale0_egl_1="0.979451"
integer_adm_scale1_egl_1="0.964563"
integer_adm_scale2_egl_1="0.956307"
integer_adm_scale3_egl_1="0.947698" integer_motion2="0.000000"
integer_motion="0.000000" integer_vif_scale0_egl_1="0.983708"
integer_vif_scale1_egl_1="0.997443"
integer_vif_scale2_egl_1="0.998483"
integer_vif_scale3_egl_1="0.999151" float_psnr="24.383040"
float_ssim="0.986562" float_ms_ssim="0.991559" vmaf="88.030464" />

</frames>
...

</VMAF>

