	,
1	
Write balanced equations for the dissolution (dissociation) reactions and the corresponding solubility product expressions for each of the following solids:	a)Ksp = $[Ag^{+1}][C_2H_3O_2^{-1}]$
) A CHO	b)Ksp = $[Al^{+3}][OH^{-1}]^3$
a)AgC ₂ H ₃ O ₂ b)Al(OH) ₃	$c)Ksp = [Ca^{+2}]^3[PO_4^{-3}]^2$
c)Ca ₃ (PO ₄) ₂	
2	
The molar solubility of Ag_2SO_4 is 1.44 x 10^{-2} mol/L. Calculate the K_{sp} of this compound.	$Ksp = 1.19 \times 10^{-5}$
and the compound.	
3	
The solubility of $CaSO_4$ (MM = 136.04 g/mol) is 0.955 g/L.	$Ksp = 4.93 \times 10^{-5}$
Calculate the K_{sp} of CaSO ₄ .	KSp 4.75 x 10
4	
Calculate the molar solubility of $Co(OH)_3$ ($K_{sp} = 2.51 \times 10^{-43}$) in	9.82 x 10 ⁻¹² M
moles per liter	
5	
Barium sulfate is a contrast agent for X-ray scans that are most	1 .
often associated with the gastrointestinal tract. Calculate the mass	9.02 x 10 ⁻⁴ g
of BaSO ₄ that can dissolve in 100.0 mL of solution. The K _{sp} value for BaSO ₄ is 1.5 x 10 ⁻⁹ .	
101 Bu504 15 1.5 X 10 .	
6	
A saturated solution of AgCl ($K_{sp} = 1.77 \times 10^{-10}$) contains a white precipitate of solid AgCl. When a solution of I ions is added, the	AgI is less soluble since Ksp is lower. Added I ion
white precipitate disappears and is replaced by a yellow precipitate	precipitates free Ag ⁺ ions causing more AgCl to dissolve until most of the AgCl has been converted
of AgI, $(K_{sp} = 8.52 \times 10^{-17})$. How can this observation be	to the less soluble AgI.
explained?	to the rose corners right
7	
M1:1: 111 A CL K 2 10:10	$AgCl \Rightarrow 1.4 \times 10^{-5} M$
Which is more soluble, AgCl, $K_{sp} = 2x \cdot 10^{-10}$ or Ag ₂ CO ₃ , $K_{sp} = 8 \times 10^{-12}$? Show calculations to support your	A CO \12 104\4
answer.	$Ag_2CO_3 \Rightarrow 1.3 \times 10^{-4} M$
	Ag ₂ CO ₃ is more soluble (note: comparing Ksp is not
	enough since number of ions in each compound is
	not the same)
8	
Consider the solubility equilibrium: AgI ⇔Ag⁺(aq) + I⁻(aq)	in pure water: 9.23 x 10 ⁻⁹ M
Consider the solubility equilibrium. Agi \Leftrightarrow Ag (aq) + 1 (aq) ($K_{sp} = 8.52 \times 10^{-17}$). Calculate the solubility of AgI in pure water.	in 1.00 x 10 ⁻³ M NaI: 8.52 x 10 ⁻¹⁴ M
Then calculate the new solubility of AgI in a solution containing	(less soluble due to common ion effect with I ⁻¹)
$1.00 \times 10^{-3} \text{ M NaI}.$	(1655 Soldole due to common fon effect with 1)
9	
	a)3.2 x 10 ⁻⁴ M
Determine the solubility of lead(II) fluoride, $K_{sp} = 4.0 \times 10^{-8}$ in: a) 0.10 M Pb(NO ₃) ₂	1240 40424
b) 0.010 M NaF	b)4.0 x 10 ⁻⁴ M
0) 0.010 W Wai	· ·

$\frac{10}{\text{A 200.0 mL solution of } 4.00 \times 10^{-3} \text{ M BaCl}_2 \text{ is added to a } 600.0}$ mL solution of $8.00 \times 10^{-3} \text{ M K}_2\text{SO}_4$. Assuming that the volumes are additive, will BaSO ₄ (K _{sp} = 1.08×10^{-10}) precipitate from this solution? $\frac{11}{\text{Will a precipitate of Ca(OH)}_2 \text{ (K}_{sp} = 5.02 \times 10^{-6}) \text{ form if } 2.00 \text{ mL}}$ of 0.200 M NaOH is added to $1.00 \times 10^3 \text{ mL of } 0.100 \text{ M CaCl}_2$?	$Q = 6 \times 10^{-6}$ (don't forget to account for mutual dilution due to mixing to higher total volume) $Q > Ksp$ so precipitate forms $Q = 1.59 \times 10^{-8}$ $Q < Ksp$ so NO precipitate forms
Lead(II) chromate has a K _{sp} of 2.0 x 10 ⁻¹⁶ . Exactly 4.0 mL of 0.0040 M lead(II) nitrate is mixed with 2.0 mL of 0.00020 M sodium chromate. a) Write the precipitation reaction (net ionic). b) Show the K _{sp} expression for this solid precipitate dissociating. c) Will a precipitate form? Show calculations to support your answer. d) What would be the effect on the solubility equilibrium system if concentrated potassium chromate solution is added?	a)Pb ⁺² + CrO ₄ ⁻² \Leftrightarrow PbCrO ₄ b)Ksp = [Pb ⁺²][CrO ₄ ⁻²] = 2.0 x 10 ⁻¹⁶ c)Q = 1.78 x 10 ⁻⁷ ; Q > Ksp; precipitate forms d)Adding common ion (CrO ₄ ⁻²) decreases solubility
A solution is prepared by adding 50.0 mL of 0.10 Pb(NO ₃) ₂ with 50.0 mL of 1.0 M KCl. Calculate the concentrations of Pb ²⁺ and Cl at equilibrium (K_{sp} for PbCl _{2 (s)} = 1.6 x 10 ⁻⁵).	$[Pb^{+2}] = 1 \times 10^{-4} M$ $[C1^{-1}] = 0.40 M$