| | , | |---|--| | 1 | | | Write balanced equations for the dissolution (dissociation) reactions and the corresponding solubility product expressions for each of the following solids: | a)Ksp = $[Ag^{+1}][C_2H_3O_2^{-1}]$ | |) A CHO | b)Ksp = $[Al^{+3}][OH^{-1}]^3$ | | a)AgC ₂ H ₃ O ₂
b)Al(OH) ₃ | $c)Ksp = [Ca^{+2}]^3[PO_4^{-3}]^2$ | | c)Ca ₃ (PO ₄) ₂ | | | | | | 2 | | | The molar solubility of Ag_2SO_4 is 1.44 x 10^{-2} mol/L. Calculate the K_{sp} of this compound. | $Ksp = 1.19 \times 10^{-5}$ | | and the compound. | | | 3 | | | The solubility of $CaSO_4$ (MM = 136.04 g/mol) is 0.955 g/L. | $Ksp = 4.93 \times 10^{-5}$ | | Calculate the K_{sp} of CaSO ₄ . | KSp 4.75 x 10 | | 4 | | | Calculate the molar solubility of $Co(OH)_3$ ($K_{sp} = 2.51 \times 10^{-43}$) in | 9.82 x 10 ⁻¹² M | | moles per liter | | | 5 | | | Barium sulfate is a contrast agent for X-ray scans that are most | 1 . | | often associated with the gastrointestinal tract. Calculate the mass | 9.02 x 10 ⁻⁴ g | | of BaSO ₄ that can dissolve in 100.0 mL of solution. The K _{sp} value for BaSO ₄ is 1.5 x 10 ⁻⁹ . | | | 101 Bu504 15 1.5 X 10 . | | | | | | 6 | | | A saturated solution of AgCl ($K_{sp} = 1.77 \times 10^{-10}$) contains a white precipitate of solid AgCl. When a solution of I ions is added, the | AgI is less soluble since Ksp is lower. Added I ion | | white precipitate disappears and is replaced by a yellow precipitate | precipitates free Ag ⁺ ions causing more AgCl to dissolve until most of the AgCl has been converted | | of AgI, $(K_{sp} = 8.52 \times 10^{-17})$. How can this observation be | to the less soluble AgI. | | explained? | to the rose corners right | | 7 | | | M1:1: 111 A CL K 2 10:10 | $AgCl \Rightarrow 1.4 \times 10^{-5} M$ | | Which is more soluble, AgCl, $K_{sp} = 2x \cdot 10^{-10}$ or Ag ₂ CO ₃ , $K_{sp} = 8 \times 10^{-12}$? Show calculations to support your | A CO \12 104\4 | | answer. | $Ag_2CO_3 \Rightarrow 1.3 \times 10^{-4} M$ | | | Ag ₂ CO ₃ is more soluble (note: comparing Ksp is not | | | enough since number of ions in each compound is | | | not the same) | | 8 | | | Consider the solubility equilibrium: AgI ⇔Ag⁺(aq) + I⁻(aq) | in pure water: 9.23 x 10 ⁻⁹ M | | Consider the solubility equilibrium. Agi \Leftrightarrow Ag (aq) + 1 (aq) ($K_{sp} = 8.52 \times 10^{-17}$). Calculate the solubility of AgI in pure water. | in 1.00 x 10 ⁻³ M NaI: 8.52 x 10 ⁻¹⁴ M | | Then calculate the new solubility of AgI in a solution containing | (less soluble due to common ion effect with I ⁻¹) | | $1.00 \times 10^{-3} \text{ M NaI}.$ | (1655 Soldole due to common fon effect with 1) | | 9 | | | | a)3.2 x 10 ⁻⁴ M | | Determine the solubility of lead(II) fluoride, $K_{sp} = 4.0 \times 10^{-8}$ in:
a) 0.10 M Pb(NO ₃) ₂ | 1240 40424 | | b) 0.010 M NaF | b)4.0 x 10 ⁻⁴ M | | 0) 0.010 W Wai | · · | | $\frac{10}{\text{A 200.0 mL solution of } 4.00 \times 10^{-3} \text{ M BaCl}_2 \text{ is added to a } 600.0}$ mL solution of $8.00 \times 10^{-3} \text{ M K}_2\text{SO}_4$. Assuming that the volumes are additive, will BaSO ₄ (K _{sp} = 1.08×10^{-10}) precipitate from this solution? $\frac{11}{\text{Will a precipitate of Ca(OH)}_2 \text{ (K}_{sp} = 5.02 \times 10^{-6}) \text{ form if } 2.00 \text{ mL}}$ of 0.200 M NaOH is added to $1.00 \times 10^3 \text{ mL of } 0.100 \text{ M CaCl}_2$? | $Q = 6 \times 10^{-6}$ (don't forget to account for mutual dilution due to mixing to higher total volume) $Q > Ksp$ so precipitate forms $Q = 1.59 \times 10^{-8}$ $Q < Ksp$ so NO precipitate forms | |--|--| | Lead(II) chromate has a K _{sp} of 2.0 x 10 ⁻¹⁶ . Exactly 4.0 mL of 0.0040 M lead(II) nitrate is mixed with 2.0 mL of 0.00020 M sodium chromate. a) Write the precipitation reaction (net ionic). b) Show the K _{sp} expression for this solid precipitate dissociating. c) Will a precipitate form? Show calculations to support your answer. d) What would be the effect on the solubility equilibrium system if concentrated potassium chromate solution is added? | a)Pb ⁺² + CrO ₄ ⁻² \Leftrightarrow PbCrO ₄
b)Ksp = [Pb ⁺²][CrO ₄ ⁻²] = 2.0 x 10 ⁻¹⁶
c)Q = 1.78 x 10 ⁻⁷ ; Q > Ksp; precipitate forms
d)Adding common ion (CrO ₄ ⁻²) decreases solubility | | A solution is prepared by adding 50.0 mL of 0.10 Pb(NO ₃) ₂ with 50.0 mL of 1.0 M KCl. Calculate the concentrations of Pb ²⁺ and Cl at equilibrium (K_{sp} for PbCl _{2 (s)} = 1.6 x 10 ⁻⁵). | $[Pb^{+2}] = 1 \times 10^{-4} M$
$[C1^{-1}] = 0.40 M$ |