Cell Cycle Simulation

Name:	

Go to the <u>cell cycle simulation</u> on Biology Simulations.

Experimental Question: How do the selected treatments affect the rate of mitosis in an onion root tip?

Treatment I:

Select one of the root treatments available to test (do not choose control, that will automatically be part of your experiment).

Treatment I:	

Write the *null hypothesis*. The null hypothesis is often used for statistical testing and states that there is not a significant difference between the two groups.

Null Hypothesis:	
------------------	--

Procedure:

- 1. Record the number of cells in interphase and the number of cells dividing for a control sample.
- 2. Select the treatment you are testing and click "Prepare New Sample."
- 3. Record the number of cells in interphase and the number of cells dividing for the experimental sample.

Data:

	Control	Experimental
Interphase		
Mitosis		

Make a graph comparing your experimental and control samples.

Analysis:

You will use a chi-square test to determine if the experimental treatment differs significantly from the control. The chi-square equation uses the variables **o** and **e** representing the **observed** and **expected** values.

$$\chi^2 = \sum \frac{(o-e)^2}{e}$$

The Σ symbol means that you will do the equation for each group and then add those values together. For this lab, you have *four groups*; Interphase and Mitosis for the control and the experimental treatment.

- 1. The **observed** values come directly from the results recorded in the Data section. Record these values in the observed column in the step 3 chart.
- 2. Use the chart below to find the expected values.
 - a. The following values come from the recorded data:
 - i. CI = Control Interphase
 - ii. CM = Control Mitosis
 - iii. EI = Experimental Interphase
 - iv. EM = Experimental Mitosis
 - b. Because the simulation produces the same number of cells for both samples, the **total** number of cells counted using this procedure is 200.
 - c. Use the Expected Guide to calculate the expected values and record them in the Expected Values chart.
 - d. After calculating the expected values, record them in the expected column in the Step 3 chart.

Expected Guide	Control	Experimental		
Interphase	$\frac{(CI + EI)(CI + CM)}{total}$	$\frac{(CI+EI)(EI+EM)}{total}$		
Mitosis	$\frac{(CM + EM)(CI + CM)}{total}$	$\frac{(CM + EM)(EI + EM)}{total}$		

Expected Values	Control	Experimental
Interphase		
Mitosis		

3. Complete the chart.

	Observed (o)	Expected (e)	o – e	$(o-e)^2$	$\frac{(o-e)^2}{e}$
Control Interphase					
Control Mitosis					
Experimental Interphase					
Experimental Mitosis					

4. To find your chi-squared value, add the numbers in the final column.

This test has **1** degree of freedom. Based on the data in the arrangement in the chart (ignoring the row and column labels, df = (rows - 1)(columns - 1). In this lab, there are 2 rows (Interphase and Mitosis) and 2 columns (Control and Experimental).

$$df = (2-1)(2-1) = 1$$

For this lab, use a **p-value of .05**. The p-value represents the likelihood that a difference between the observed and expected is due to chance.

5. Use the p-va	alue, df, and the	chart below to	find the	critical value.
-----------------	-------------------	----------------	----------	-----------------

Critical Value:	
-----------------	--

Chi-Square Table

p	Degrees of Freedom							
value	1	2	3	4	5	6	7	8
0.05	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51
0.01	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09

The **critical value** is the threshold for defining if a difference is significant or not. The null hypothesis is rejected if the chi-square value is greater than or equal to the critical value.

Conclusion:	
Discussion: Base results you obse	d on your results and research, write an explanation of what is happening to cause the rved.
Treatment II:	
Select another it	pot treatment to test.
	Treatment II:
Null Hypothesis	e.

Repeat the procedure from Treatment I.

Data:

	Control	Experimental
Interphase		
Mitosis		

Make a graph comparing your experimental and control samples.

www.biologysimulations.com

Analysis:

	Observed (o)	Expected (e)	o – e	$(o-e)^2$	$\frac{(o-e)^2}{e}$
Control Interphase					
Control Mitosis					
Experimental Interphase					
Experimental Mitosis					

Experimental Mitosis								
χ^2 =								
Critical Value:								
Conclusion:								
Discussion: Based on your results and research, write an explanation of what is happening to cause the results you observed.								