FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id, laman: http://fkip.unila.ac.id

Bachelor of Education in Physics

MODULE HANDBOOK

Module Name	Development of Practical Simulation					
Module Level, if Applicable	Bachelor					
Code	KFI620319					
Sub-Heading, (*if Applicable)	-					
Classes, (*if Applicable)	-					
Description	The Practicum Simulation Development course aims to prepare					
	students to design and develop effective simulations for practicum					
	learning in various disciplines. The application of the Socio-Scientific					
	Issues (SSI) approach in this course allows students to integrate					
	relevant social issues into the simulation, thus encouraging students to					
	think critically and consider the social impact of scientific knowledge.					
	In addition, the integration of TPACK (Technological Pedagogical and					
	Content Knowledge) is essential in simulation development, as					
	students must be able to effectively combine technology, pedagogy,					
	and content to create interactive and engaging learning experiences.					
	An understanding of the Nature of Science (NOS) is also a key					
	element, as it helps students understand the scientific process and how					
	science develops, so that the simulations developed are not only					
	scientifically accurate but also enrich students' understanding of					
	scientific practices. Overall, this course plays an important role in					
	preparing educators who are able to use technology and contemporary					
	approaches in science education.					
Semester	6 th					
Module Coordinator	Prof. Dr. Agus Suyatna, M.Pd.					
Lecturers	Individual Teaching of Development of Practical Simulation					
Language	Indonesian/English					

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id,

laman: http://fkip.unila.ac.id

Classification With in the	Study Program Elective Courses in the third year (6 th semester)						
Curriculum	Bachelor Degree						
Teaching Format/Class Hours	Learning activity can be carried out in the form of lecture or students'						
Per Week During the Semester	response						
	a. Face to face : 50 minutes/SKS						
	b. Structured activity: 60 minutes/SKS						
	c. Independent activity: 60 minutes/SKS						
Teaching methods	In class activity: Case Method						
	Structured activity: Group Discussion using worksheet						
	Independent activity: Individual task, lecture, test and assignment.						
Workload	1 CU (SKS) for bachelor degree equal to 3 work hours per week or						
	170 minutes. 3x50 minutes face to face, 3x60 minutes structured tasks						
	3x60 minutes independent learning, for 16 weeks (including midterm						
	and final exam), a total of 136 hours/semester. One CU equals to 1.51						
	ECTS						
Credit Points	3 (3-0) CU (SKS) = 3 x 1,51 = 4,53 ETCS						
Prerequisites Courses	-						
Course Outcomes (CO)	1. PLO 3: Applying Technology, Pedagogy, and Content						
	Knowledge (TPACK) in planning, teaching, and evaluating						
	physics learning						
	2. PLO 6 : Able to develop physics learning resources according						
	to the needs and development of science and technology.						
	3. PLO 7:Able to manage, use, and develop physics learning						
	laboratory tools.						
	4. CO 1. Students are able to design practical simulations that						
	meet specific training or learning needs in their professional						
	context.						

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id,

laman: http://fkip.unila.ac.id

	5. CO 2. Students are able to select and apply appropriate						
	simulation tools to effectively improve skills and concept						
	understanding.						
	6. CO 3. Students are able to analyze and evaluate simulation						
	results, and integrate them with related theories or concepts to						
	enhance their practical understanding in the specific field.						
	7. CO 4. Students are expected to be able to use simulation to						
	develop analytical skills in facing real-world challenges						
	through a safe and structured approach.						
Content	Development of Practical Simulation course is a 3 (2-1) credit course.						
	includes an introduction to basic simulation principles and techniques						
	applied in various disciplines, such as education, business, and						
	engineering, creating and utilizing simulations to replicate real-world						
	situations, identifying training needs, and developing realistic						
	scenarios that support real-world learning and experimentation.						
Study/Exam Achievements	Participants are evaluated based on ;						
	Midterm Exam 20%						
	Final Exam 20%						
	Assignment 10%						
	Project Assignment 50 %						
	The initial cut - off points for grades A, B+, B, C+, C, and D should						
	not be less than 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, and						
	40%, respectively.						
Examination Methods	1. Midterm Exam (UTS)						
	✓ UTS is held at the 8th meeting						
	✓ UTS is a oral test in the form of objective, and carried out in the						
	classroom with an implementation time of 120 minutes according to						
	the module schedule						

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id,

10.p	laman: http://fkip.unila.ac.id					
	✓ UTS is carried out to see the achievements of the PLO and CO					
	which are in accordance with the characteristics of the Measurement					
	and Testing					
	2. Final Exam (UAS)					
	✓ UAS is held at the 16th meeting					
	✓ UAS is a oral test in the form of objectiv, and carried out in the					
	classroom with an implementation time of 120 minutes which follows					
	the UAS implementation schedule of the department					
	✓ UAS is carried out to see the achievements of the PLO and CO					
	which are in accordance with the characteristics of the Measurement					
	and Testing.					
	3. Assignments					
	✓ Assignments are given as individual tasks or group tasks and					
	submitted in a limited time.					
	✓ The assignments are carried out to see the achievements of the PLO					
	CO which are in accordance with the characteristics of the					
	Measurement and Testing.					
	4. Project Assignment					
	✓ Project assignment is given as group task in making some of simple					
	article and lesson plan about physics material					
	✓ Project assignment is carried out for one semester and presente					
	the end of semester					
	✓ Project assignment is carried out to see the achievements of the					
	PLO and CO which are in accordance with the characteristics of the					
	Evaluation of Educational Programme.					

LCD, whiteboard, and online resources

Forms of Media

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id, laman: http://fkip.unila.ac.id

Literature	 Jaya, H. (2012). Pengembangan laboratorium virtual untuk kegiatan praktikum. Yogyakarta: Universitas Negeri Yogyakarta. Kurniati, K. (2020). Pengembangan Panduan Praktikum
	Laboratorium Spektroskopi pada Mata Kuliah Fisika Modern. Jurnal Inovasi dan Pembelajaran Fisika, 2(1), 77-87.
	3. Nisa, F., & Adi, S. (2020). Simulasi Pembelajaran Interaktif pada Praktikum. Multinetics, 3(2), 124-130.
	4. Zeidler, D. L. (2019). New directions in socioscientific issues research. <i>International Journal of Science Education</i> , 41(12), 1624-1646.
	5. Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. <i>Teachers College Record</i> , 108(6), 1017-1054.
	6. Lingga. W. 2006. Mikrokontroler AVR Seri ATMega8535 Simulasi, Hardware, dan Aplikasi. Andi Offset. Yogyakarta Link.
	7. Wolfgang. 1993. Pengukuran, Pengendalian dan Pengaturan dengan PC. PT Elexmedia Komputindo. Jakarta

PLO and CO Mapping

	PLO1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9	PLO 10	PLO 11
CO 1			✓								
CO 2			√								
CO 3						✓					
CO 4							✓				