
Mesos Executor HTTP API design documentation

Terminology/Motivation
Solution Overview

Summary of Messages
Calls sent by Executor to Agent
Events sent by Agent to Executor (via streaming connection)

Calls
SUBSCRIBE

Subscription Request (JSON)
Subscription Response (JSON)
Subscription Request (JSON)
Subscription Response (JSON)

UPDATE
UPDATE request (JSON)
UPDATE response

MESSAGE
MESSAGE request (JSON)
MESSAGE response

Events
LAUNCH

LAUNCH (JSON)
KILL

KILL (JSON)
ACKNOWLEDGED

ACKNOWLEDGED Event (JSON)
MESSAGE

MESSAGE Event (JSON)
SHUTDOWN

SHUTDOWN Event (JSON)
HTTP Response Codes
Mandatory Environment Variables to be set by Agent
Agent Recovery
Backoff Strategies

Terminology/Motivation

Much of the terminology/motivation in this document has been borrowed over from the Mesos
HTTP API design document.

https://docs.google.com/document/d/1pnIY_HckimKNvpqhKRhbc9eSItWNFT-priXh_urR-T0/edit#
https://docs.google.com/document/d/1pnIY_HckimKNvpqhKRhbc9eSItWNFT-priXh_urR-T0/edit#

Unacknowledged Status Updates: An executor is expected to keep running when
disconnected from the agent. The disconnection can happen due to an agent process failure.
The status update messages produced by the executor during the time it was disconnected are
known as unacknowledged status updates.

Unacknowledged Tasks: An agent process can die after sending its intent to launch a task to
the executor or the message can be lost due to network intermediaries. An executor is expected
to maintain a list of tasks for which it has not yet generated any status updates. This helps the
agent in marking the tasks as lost when the executor subscribes with the agent again after a
disconnection.

Solution Overview

Following the design of the new scheduler HTTP API, the executor now interacts with Mesos via
“api/v1/executor” endpoint hosted by the Mesos agent. The fully qualified URL of the
endpoint is:

http://agent:5051/api/v1/executor/

This endpoint accepts HTTP POST requests with data encoded in JSON (Content-Type:
application/json) or binary Protobuf (Content-Type: application/x-protobuf).
The first request that an executor sends to “/api/v1/executor” endpoint is called SUBSCRIBE
and results in a streaming response. The agent keeps the subscription connection open (barring
errors in network, software, hardware etc) and streams the events via HTTP response (“200
OK” status code) using chunked encoding (Transfer-Encoding: chunked). Executors are
expected to keep the subscription connection open as long as possible (barring errors in
network, software, hardware etc.) and incrementally process the response (NOTE: HTTP client
libraries that can only parse the response after the connection is closed cannot be used). For
the encoding used, please refer to “Events” section below.

All the subsequent (non subscribe) requests to “/api/v1/executor” endpoint (see details below in
Calls section) must be sent using a different connection(s) than the one being used for
subscription. Agent responds to these HTTP POST requests with “202 Accepted” status codes
(or, for unsuccessful requests, with 4xx or 5xx status codes; details in later sections). In line with
the HTTP standard, a “202 Accepted” response just means that a request has been accepted
for processing, not that the processing of the request has been completed. The request might
or might not be acted upon by Mesos (e.g., agent fails during the processing of the request).
Any asynchronous responses to these requests will be streamed on long-lived subscription
connection.

https://docs.google.com/document/d/1pnIY_HckimKNvpqhKRhbc9eSItWNFT-priXh_urR-T0/edit?usp=sharing
http://agent:5051/ap1/v1/executor/
https://github.com/apache/mesos/blob/master/include/mesos/v1/executor/executor.proto#L28
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Summary of Messages

Calls sent by Executor to Agent

SUBSCRIBE Mandatory initial request; opens a long-lived streaming connection

UPDATE Notifies the scheduler that a task has transitioned from one state to
another

MESSAGE Arbitrary binary message proxied by Master to Scheduler

Events sent by Agent to Executor (via streaming connection)

SUBSCRIBED Received when an executor is successfully subscribed

LAUNCH Received when the scheduler attempts to launch a task

KILL Received when the scheduler wants to kill a specific task

ACKNOWLEDGED Received when a status update is acknowledged

MESSAGE Arbitrary binary message from Executor, proxied back to
Scheduler

ERROR Any asynchronous error events generated by the agent

SHUTDOWN Received when the scheduler/agent asks the executor to shutdown/kill
itself

Calls

The following calls would be accepted by Mesos Agent. The canonical source of this information
is include/mesos/v1/executor/executor.proto (NOTE: The exact protobuf definitions are subject
to change before this doc is finalized).
Calls made without subscription result in a `403 Forbidden` response instead of the `202
Accepted` response.

https://github.com/apache/mesos/blob/master/include/mesos/executor/executor.proto

SUBSCRIBE

This is the very first step in the communication process between the executor and the agent.
This is also to be considered as subscription to the “/api/v1/executor” events stream.

To subscribe to the agent, the executor sends an HTTP POST request with an encoded
SUBSCRIBE message with the required ExecutorID, FrameworkID fields. These values are set
based on the environment variables MESOS_EXECUTOR_ID, MESOS_FRAMEWORK_ID
provided by the agent when the executor is launched.

The HTTP response in this case is a stream with RecordIO encoding, with the first event being
SUBSCRIBED event (see details in Events section).

Subscription Request (JSON)

POST /api/v1/executor HTTP/1.1

Host: agent0:5051

Content-Type: application/json

Accept: application/json

Connection: keep-alive

{

 "type" : "SUBSCRIBE",

 "executor_id" : {"value" : "387aa966-8fc5-4428-a794-5a868a60d3eb"},

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 “subscribe” : {}

}

Subscription Response (JSON)

HTTP/1.1 200 OK

Content-Type: application/json

Transfer-Encoding: chunked

Connection: keep-alive

<event-length>

{

 "type" : "SUBSCRIBED",

 "subscribed" : {

 "executor_info" : {

 "executor_id" : {"value" : "387aa966-8fc5-4428-a794-5a868a60d3eb"},

 "command" : {

 "value" : "/path/to/executor"

 }

 },

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 "framework_info" : {

https://github.com/apache/mesos/blob/master/include/mesos/v1/executor/executor.proto#L132
https://github.com/apache/mesos/blob/master/include/mesos/v1/executor/executor.proto#L161
https://github.com/apache/mesos/blob/master/include/mesos/v1/executor/executor.proto#L162
https://docs.google.com/document/d/1ztcB-eFVxDUqhLT7XEVJjKhkIzyAGvx8zRiGcKo7EJE/edit#heading=h.it4hcxg6dzg

 "user" : "foo",

 "name" : "my_framework"

 },

 "agent_id" : {"value" : "f1c9cdc5-195e-41a7-a0d7-adaa9af07f81"},

 "agent_info" : {

 "host" : "agent0",

 "port" : 5051

 }

 }

}

<more events>

Alternatively, if the executor is connecting to the agent after a disconnection, it can also send a
list of unacknowledged tasks and status updates.
Subscription Request (JSON)

POST /api/v1/executor HTTP/1.1

Host: agent0:5051

Content-Type: application/json

Accept: application/json

Connection: keep-alive

{

 "type" : "SUBSCRIBE",

 "executor_id" : {"value" : "387aa966-8fc5-4428-a794-5a868a60d3eb"},

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 “subscribe” : {

 "tasks" : [

 {

 "name" : "dummy-task",

 "task_id" : {"value" : "d40f3f3e-bbe3-44af-a230-4cb1eae72f67"},

 "agent_id" : {"value" : "f1c9cdc5-195e-41a7-a0d7-adaa9af07f81"},

 "command" : {

 "value" : "ls",

 "arguments" : ["-l", "/tmp"]

 }

],

 "updates" : [

 {

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 "status" : {

 "source" : "EXECUTOR",

 "task_id" : {"value" : "d40f3f3e-bbe3-44af-a230-4cb1eae72f67"},

 "state" : "TASK_RUNNING"

 },

 "timestamp" : 12345.543,

 "uuid" : "ZDQwZjNmM2UtYmJlMy00NGFmLWEyMzAtNGNiMWVhZTcyZjY3Cg=="

 }

]

 },

}

Subscription Response (JSON)

HTTP/1.1 200 OK

Content-Type: application/json

Transfer-Encoding: chunked

Connection: keep-alive

<event-length>

{

 "type" : "SUBSCRIBED",

 "subscribed" : {

 "executor_info" : {

 "executor_id" : {"value" : "387aa966-8fc5-4428-a794-5a868a60d3eb"},

 "command" : {

 "value" : "/path/to/executor"

 }

 },

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 "framework_info" : {

 "user" : "foo",

 "name" : "my_framework"

 },

 "agent_id" : {"value" : "f1c9cdc5-195e-41a7-a0d7-adaa9af07f81"},

 "agent_info" : {

 "host" : "agent0",

 "port" : 5051

 }

 }

}

<more events>

If subscription fails for whatever reason, a HTTP 4xx response is returned with the error
message as part of the body and the connection is closed.

If the persistent HTTP connection is closed for any reason, except after a `SHUTDOWN` event,
the executor should prepare for agent recovery. To do so, it should attempt to reconnect with the
agent using a Subscribe request. The reconnection retry mechanisms depend on whether
framework has ‘checkpointing’ enabled.

●​ If checkpointing is enabled, executors retry subscription for
‘MESOS_RECOVERY_TIMEOUT’ seconds (environment variable) set by the agent. If
the executor is unable to reconnect with the agent within this time, it should gracefully
shutdown. It is recommended to attempt reconnection for a finite number of times using
an exponential backoff strategy.

●​ If checkpointing is not enabled, executors are encouraged to gracefully shutdown as
soon as they detect a disconnection. This is similar to the existing semantics for the old
ExecutorDriver implementation.

Note that the older version of the API supported bidirectional communication which allowed the
agent to notify its executors once it was back on-line. With the new client–server approach this
is no longer possible, and the executor is responsible now to detect agent failures and attempt
reconnection.

UPDATE

Sent by the executor to reliable communicate the state of the managed tasks. It is crucial that a
terminal update (e.g., `TASK_FINISHED`, `TASK_KILLED` or `TASK_FAILED`) is sent to the
scheduler as soon as the task terminates, in order to allow Mesos to release the resources
allocated to the task.

The scheduler must explicitly respond to this call through an `ACKNOWLEDGE` message (see the
`ACKNOWLEDGE` event). The executor must keep a list of unacknowledged updates. The
executor should resend the unacknowledged messages until they are acknowledged by the
agent. If there's a communication failure, these messages must be sent in the subscribe request
in the `updates` field.

Note: Sending a `TASK_STAGING` is invalid behavior and in the old API this generated an error
in the log followed by the executor shutdown. With the HTTP API sending an invalid status
update `TASK_STAGING` will result in a 400 Bad Request.

UPDATE request (JSON)

POST /executor/call HTTP/1.1

Host: agent0:5051

Content-Type: application/json

{

 "type" : "UPDATE",

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 "executor_id" : {"value" : "387aa966-8fc5-4428-a794-5a868a60d3eb"},

 "update" : {

 "status" : {

 "source" : "SOURCE_EXECUTOR",

 "task_id" : {"value" : "d40f3f3e-bbe3-44af-a230-4cb1eae72f67"},

 "state" : "TASK_RUNNING"

 },

 "timestamp" : 12345.543,

 "uuid" : "ZDQwZjNmM2UtYmJlMy00NGFmLWEyMzAtNGNiMWVhZTcyZjY3Cg=="

 }

https://github.com/apache/mesos/blob/master/include/mesos/executor/executor.proto#L144

}

UPDATE response

HTTP/1.1 202 Accepted

MESSAGE

Sent by the executor in order to deliver arbitrary binary data to the scheduler. Note that Mesos
neither interprets this data nor it makes any guarantees about the delivery of this message to
the scheduler. This can be used by frameworks to exchange data without the overhead of
reliability.

MESSAGE request (JSON)

POST /executor/call HTTP/1.1

Host: agent0:5051

Content-Type: application/json

{

 "type" : "MESSAGE",

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 "executor_id" : {"value" : "387aa966-8fc5-4428-a794-5a868a60d3eb"},

 "message" : {

 "agent_id" : {"value" : "f1c9cdc5-195e-41a7-a0d7-adaa9af07f81"},

 "data" : "VGhpcyBpcyBhIHVucmVsaWFibGUgc2VudCBtZXNzYWdlCg=="

 }

}

MESSAGE response

HTTP/1.1 202 Accepted

Events

The executor is expected to keep a persistent connection open to the `/api/v1/executor`
endpoint, even after getting a `SUBSCRIBED` HTTP response event chunk. This is indicated by
the `Connection: keep-alive` and `Transfer-Encoding: chunked` headers, and by
not setting the `Content-Length` header. All subsequent events that are relevant to this
executor generated by Mesos are streamed on this connection. Agent encodes each Event in
RecordIO format, i.e., string representation of length of the event followed by JSON or binary
Protobuf (possibly compressed) encoded event. Note that the value of length will never be ‘0’
and the size of the length will be the size of unsigned integer (i.e., 64 bits). Also note that the
RecordIO encoding should be decoded by the executor whereas the underlying HTTP chunked

https://github.com/apache/mesos/blob/master/include/mesos/executor/executor.proto#L154

encoding is typically invisible at the application (executor) layer. The type of content encoding
used for the events will be determined by the accept header of the POST request (e.g., Accept:
application/json).

LAUNCH

Sent by the framework whenever it needs to assign a new task to the executor. The executor is
required to send an `UPDATE` response back to the agent indicating the success or failure of
the task initialization. Note that the `id` field of the `framework_info` must always be set.

LAUNCH (JSON)

<event-length>

{

 "type" : "LAUNCH",

 "launch" : {

 "framework_info" : {

 "id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 "user" : "foo",

 "name" : "my_framework"

 },

 "task" : {

 "name" : "dummy-task",

 "task_id" : {"value" : "d40f3f3e-bbe3-44af-a230-4cb1eae72f67"},

 "agent_id" : {"value" : "f1c9cdc5-195e-41a7-a0d7-adaa9af07f81"},

 "command" : {

 "value" : "sleep",

 "arguments" : ["100"]

 }

 }

 }

}

KILL

The `KILL` message is sent whenever the scheduler needs to stop execution of a specific task.
The executor is required to send `TASK_KILLED` (or `TASK_FAILED`) terminal update back to
the scheduler once it has stopped/killed the task. Mesos will mark the resources as freed once
the terminal update is received.

KILL (JSON)

<event-length>

{

 "type" : "KILL",

https://github.com/apache/mesos/blob/master/include/mesos/executor/executor.proto#L57
https://github.com/apache/mesos/blob/master/include/mesos/executor/executor.proto#L65

 "kill" : {

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 "agent_id" : {"value" : "f1c9cdc5-195e-41a7-a0d7-adaa9af07f81"},

 "task_id" : {"value" : "d40f3f3e-bbe3-44af-a230-4cb1eae72f67"}

 }

}

ACKNOWLEDGED

Sent by the agent in order to signal the executor that a status update was received as part of
the reliable message passing mechanism. Acknowledged updates must not be retried.

ACKNOWLEDGED Event (JSON)

<event-length>

{

 "type" : "ACKNOWLEDGE",

 "acknowledge" : {

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 "agent_id" : {"value" : "f1c9cdc5-195e-41a7-a0d7-adaa9af07f81"},

 "task_id" : {"value" : "d40f3f3e-bbe3-44af-a230-4cb1eae72f67"},

 "uuid" : "ZDQwZjNmM2UtYmJlMy00NGFmLWEyMzAtNGNiMWVhZTcyZjY3Cg=="

 }

}

MESSAGE

Custom message generated by the scheduler and forwarded all the way to the executor. These
messages are delivered "as-is" by Mesos and they come with no delivery guarantees. It is up to
the scheduler to retry if a message is dropped for any reason.

MESSAGE Event (JSON)

<event-length>

{

 "type" : "MESSAGE",

 "message" : {

 "framework_id" : {"value" : "49154f1b-8cf6-4421-bf13-8bd11dccd1f1"},

 "agent_id" : {"value" : "f1c9cdc5-195e-41a7-a0d7-adaa9af07f81"},

 "executor_id" : {"value" : "387aa966-8fc5-4428-a794-5a868a60d3eb"},

 "data" : "VGhpcyBpcyBhIHVucmVsaWFibGUgc2VudCBtZXNzYWdlCg=="

 }

}

https://github.com/apache/mesos/blob/master/include/mesos/executor/executor.proto#L75
https://github.com/apache/mesos/blob/master/include/mesos/executor/executor.proto#L85

SHUTDOWN

Sent by the scheduler in order to shutdown the executor. Once an executor gets a shutdown
event it is required to kill all its tasks, send `TASK_KILLED` updates back to the scheduler and
gracefully exit. If an executor doesn't terminate within a certain period after the event was
emitted (grace_period_seconds, part of the SHUTDOWN event), the agent will forcefully destroy
the container where the executor is running (which in turn will kill the executor and its tasks) and
send an `TASK_FAILED` update to the master for all active tasks.

SHUTDOWN Event (JSON)

<event-length>

{

 "type" : "SHUTDOWN",

 “shutdown” : {

 “grace_period_seconds” : 5

 }

}

HTTP Response Codes

This is the list of expected (but not exhaustive) HTTP status codes for the HTTP API.

Status Reason

200 OK Returned for successful subscription request

202 Accepted Returned for successful non-subscription
requests

400 Bad Request Returned for malformed requests

409 Conflict Returned for requests with an incompatible
version

403 Forbidden Returned for non-subscription requests made
before subscription request

401 Unauthorized Returned for unauthenticated requests

406 Not Acceptable Returned for requests with an unsupported
accept header

https://github.com/apache/mesos/blob/master/include/mesos/executor/executor.proto#L42

Mandatory Environment Variables to be set by Agent

The following environment variables are mandatory and need to be set by the Agent when the
executor starts-up:

●​ MESOS_FRAMEWORK_ID : FrameworkID needed as part of the SUBSCRIBE call.
●​ MESOS_EXECUTOR_ID : ExecutorID needed as part of the SUBSCRIBE call.
●​ MESOS_DIRECTORY : Path to the working directory for the executor.
●​ MESOS_RETRY_MAX_BACKOFF_FACTOR (new) : If set, denotes the maximum

backoff duration to be used by the executor between two retries when disconnected.
●​ MESOS_AGENT_ENDPOINT (new) : A string containing the agent endpoint i.e. ip:port

to be used by the executor to connect to the agent.
●​ MESOS_CHECKPOINT : If set, denotes if framework has checkpointing enabled.

The following mandatory environment variables were needed by the old executor driver but
would no longer be needed:

●​ MESOS_SLAVE_ID : This would now be part of AgentInfo sent as part of SUBSCRIBED
event by the agent.

●​ MESOS_SLAVE_PID : We no longer need a PID for exchanging messages with the
agent with the new HTTP API.

We propose to rename the following environment variables so that they can be reused
elsewhere in the Mesos code:

●​ MESOS_RECOVERY_TIMEOUT -> MESOS_RETRY_INTERVAL_MAX : This refers to
the total time that executor should spend retrying before shutting itself down when it is
disconnected from the agent. See the Backoff strategies section for more details.

More variables can be passed on by the operator to the executor if there is a need by decorator
hooks.

Post MVP, we might think about moving to a JSON based object with all these variables instead
of passing them around individually as part of the environment.

Agent Recovery

Currently, the agent supports two recovery mechanisms, specified by using the --recover flag at
startup. Let’s go over in detail on how each of them would be affected by the move to the HTTP
API.

●​ reconnect : This mode allows the agent to reconnect with any of it’s old live executors
provided the framework has enabled checkpointing.

In the old API (libprocess message passing , bi-directional communication), the
agent used to send a ReconnectExecutorMessage to the Executor during the recovery

https://github.com/apache/mesos/blob/master/src/slave/containerizer/containerizer.cpp#L319

process. The executors, then, had a grace period of
EXECUTOR_REREGISTER_TIMEOUT (2 seconds) to reconnect, failing, the container
where the executor was running in was destroyed. The recovery for the slave was
marked as complete after this step.

It’s not possible to have this earlier mechanism owing to the unidirectional nature
of the new API, the executors are encouraged to use the
MESOS_RETRY_MAX_BACKOFF_FACTOR when retrying to ensure that the agent is
able to receive at least one SUBSCRIBE request before marking the recovery as
complete. If the agent, receives no SUBSCRIBE requests within this time, it assumes
that the executor is hung and destroys the container it is running.

For the Initial MVP implementation, the agent would set the value of
MESOS_RETRY_MAX_BACKOFF_FACTOR to just be equal to
EXECUTOR_REREGISTER_TIMEOUT.

If the framework does not have checkpointing enabled, the executor should kill
itself as soon as it notices a disconnection from the slave after a small grace period to
clean up whatever pending tasks it is executing.

●​ cleanup : This mode kills any old live executors and then exits the agent. This is usually

done by operators when making a non-compatible slave/executor upgrade.
In the old API, the agent used to send a ShutdownExecutorMessage to the live

executors, followed by a executor_shutdown_grace_period (default: 5 seconds). The
agent would then destroy the container where the executor is running in.

In the new API, in the absence, of a bi-directional communication mechanism, for
the executors connected via HTTP, the agent would first wait for the executor to
SUBCRIBE again and would send it a SHUTDOWN event as soon as it reconnects. For
hung executors, it would wait for executor_shutdown_grace_period and then kill the
container where the executor is running in forcefully.

​

Backoff Strategies

The executors are encouraged to use a suitable backoff strategy like linear backoff when they
notice a disconnection with the agent. Since in most cases for executor, the disconnection
would be primarily TCP/IP level network errors i.e. an agent process going down/agent upgrade
etc. These problems are generally temporary and tend to clear quickly. it is advisable to
increase the delay in reconnects by e.g. 250ms for each attempt up to
MESOS_RETRY_INTERVAL_MAX.

Furthermore, the executor should retry only if framework checkpointing is enabled. The
executors can use the environment variable MESOS_RETRY_MAX_BACKOFF_FACTOR that
denotes the maximum amount of time to wait in between two retries. This is specifically needed
for Agent Recovery. The recovery of the agent is only marked complete once all the
disconnected executors have connected and back/hung executors have been destroyed.

Hence, it is mandatory that every executor retries at least once within the maximum backoff
period to ensure it is not shut-down by the agent due to being hung/unresponsive.

	Mesos Executor HTTP API design documentation
	Terminology/Motivation
	Solution Overview
	Summary of Messages
	Calls sent by Executor to Agent
	
	Events sent by Agent to Executor (via streaming connection)

	
	Calls
	SUBSCRIBE
	Subscription Request (JSON)
	Subscription Response (JSON)
	Subscription Request (JSON)
	Subscription Response (JSON)

	UPDATE
	UPDATE request (JSON)
	UPDATE response

	MESSAGE
	MESSAGE request (JSON)
	MESSAGE response

	Events
	LAUNCH
	LAUNCH (JSON)

	KILL
	KILL (JSON)

	ACKNOWLEDGED
	ACKNOWLEDGED Event (JSON)

	
	MESSAGE
	MESSAGE Event (JSON)

	SHUTDOWN
	SHUTDOWN Event (JSON)

	HTTP Response Codes
	Mandatory Environment Variables to be set by Agent
	Agent Recovery
	Backoff Strategies

