
CLARIAH
Shared Development Roadmap
2021-2023

To streamline the development of the CLARIAH infrastructure across work packages, a
CLARIAH Shared Development Roadmap (SDR) is created. This SDR specifies the
“CLARIAH services” within the infrastructure that CLARIAH PLUS will deliver and will serve
as a showcase for the success of CLARIAH.

Timetable
●​ TC meeting of 9 September 2021: discuss products/components/workflows

methodology for Tech Day
●​ 30 September 2021: focussed Tech Day (small group) on CLaaS services
●​ 28 Oktober 2021: SDR 1.0 with key CLARIAH services
●​ 28 Oktober 2021: full Tech Day on services and relation to CLaaS infrastructure
●​ 25 November 2021: full Tech Day on services and relation to CLaaS infrastructure
●​ 3 December 2021: SDR explained on CLARIAH board heidag
●​ 14 December 2021: decision on final version SDR + additional resources
●​ January 2022: Start activities and quarterly monitoring via the board

1

Table of Contents

Timetable​ 1

Table of Contents​ 2

1. Introduction​ 5
1.1 Definitions​ 5
1.2 Objectives​ 6
1.3 Evaluation​ 7
1.4 Instructions​ 7

Template for CLARIAH Services​ 8
Data Model​ 12

2 CLARIAH Services​ 13
2.1 Core Shared Services​ 13

2.1.1 Fair Datasets (Dataset Registry)​ 13
2.1.2 FAIR Vocabularies​ 16
2.1.3 FAIR Tool Discovery​ 18
2.1.4 FAIR annotations (Web Annotation clients)​ 23
2.1.5 Scalable multimedia processing​ 28
2.1.6 Data Stories​ 29
2.1.7 Ineo​ 30

2.2 Domain Services​ 32
2.2.1 OCR & HTR service​ 32
2.2.2 Speech Acquisition​ 37
2.2.3 Geodata entry & management​ 38
2.2.4 FAIR Lexicons​ 41
2.2.5 Linguistic Corpus Search: Text & Annotation Search​ 43
2.2.6 Media Suite​ 48

2.3 Provisioning Services​ 49
2.3.1 Authentication & Authorization​ 49

2.4 Unclassified Services​ 49
2.4.1 Metadata management​ 49
2.4.2 Federated linguistic corpus search: Text & Annotations​ 52
2.4.3 Alignment services​ 53
2.4.4 Reconciliation services​ 54
2.4.5 Text & linguistic annotation​ 55
2.4.6 High resolution annotation of audiovisual data​ 57
2.4.7 FAIR IIIF-style publication of collections​ 58
2.4.8 Web Annotation Server​ 63
2.4.9 Natural Language Processing (automatic annotation)​ 64

2

2.4.9.1 NLP Suite​ 70
2.4.9.2 Spelling correction/normalisation (OCR/HTR post-correction)​ 72
2.4.9.3 Grapheme to Phoneme Conversion​ 74

2.4.10 (Annotated) Text Conversion​ 76
2.4.11 Linguistic Diagnostics Database (LIDIA)​ 79
2.4.12 Glossing Service​ 80
2.4.13 Speech Recognition Services​ 80
2.4.14 Computer Vision​ 85

3 Software Components​ 87
3.1 WP1​ 88
3.2 WP2​ 88
3.3 WP3​ 89
3.4 WP4​ 92
3.5 WP5​ 94
3.6 WP6​ 97
3.7 Partner Projects​ 99
3.8 3rd Party​ 99

4 Data Components​ 102
4.2 WP2​ 102
4.3 WP3​ 102
4.4 WP4​ 103
4.5 WP5​ 104
4.6 WP6​ 105
4.7 Partner Projects​ 105
4.8 3rd Party​ 105

Appendix A: Technology Readiness Levels​ 107

Appendix B: Compatibility Levels​ 108

Appendix C: Stakeholder Readiness Level​ 108

Appendix D: Infrastructure Requirements​ 108

Appendix E: Software Requirements​ 109

Appendix F: Documentation Standard​ 109

Appendix G: Data Readiness Levels​ 109

Appendix H: Mission​ 109

3

4

1. Introduction

1.1 Definitions
We define CLARIAH Services as follows:

●​ A CLARIAH service is a service offered by CLARIAH to scholars, here ‘service’ is
used in the largest sense of the word, as long as it involves software and/or data in
some form. In this sense, offering any form of software to users for local usage is
also considered a service.

●​ A CLARIAH service implements a certain scholarly workflow; a scholarly workflow is
defined as a sequence of steps (e.g. analysis, data transformation, presentation) that
serves specific needs of a scholar.

●​ A CLARIAH service fits a (part of) a scholarly use case and must be directly usable
by scholars. We distinguish the following types of services:

1.​ Shared core services - CLARIAH+ services that provide core functionality for
the CLARIAH infrastructure as a whole. These services serve scholarly use
cases, are generic or pervasive, i.e. the needs or requirements that need to
be fulfilled are often not directly formulated and recognized as such by
scholars. These provide an important pillar for the shared infrastructure. Their
development is typically a cross-WP effort.

2.​ Domain services - These CLARIAH+ services provide important functionality
for scholars, but are not considered central to the shared infrastructure. Such
services may be of a more domain-specific nature. Ideally, it fulfills
functionality that is pervasive in other use-cases (see above definition).
(example: the need for provenance tracking)

3.​ Provisioning Services - These are the exception to the rule in the sense that
they are not scholarly services, but are important facilitating services for the
core infrastructure. They provide low-level pervasive functionality required by
most other services (such as authentication, deployment).

●​ A CLARIAH service may be described in terms of multiple scholarly user stories,
these stories should be as minimal and generic as possible (i.e. not conflated with
other user stories). It’s possible that implementations of the service do not cover all
user stories as some describe extra/optional features (this should be explicitly
indicated).

●​ A CLARIAH service is formulated from the perspective of where we want to go with
CLARIAH and its common infrastructure, rather than from the perspective of what is
the current status-quo.

●​ A CLARIAH service is realized by one or more implementations (there may be
multiple implementations which cover a generic user story). Each implementation
consists of a set of software components and/or data components and/or
interoperability standards that enables a certain workflow.

●​ The notion of a CLARIAH service does not correspond one-on-one with the stricter
technical notion of a service, but is viewed from a scholarly goal-oriented

5

perspective. The implementation of CLARIAH service may consist of multiple
services in the technical sense, which would be software components tied to specific
instances.

We define software components as follows:

●​ Any software product that is reusable as-is (no unextractable component) and fit for a
particular purpose, regardless of interface; so including web services, web
applications, programming libraries, command-line tools and even desktop GUIs.

●​ The software components are described in the following terms:
○​ The name of the actual software component. This should correspond to some

software implementation and is usually
○​ The function(s) of the software component in generic terms.
○​ The instance where the software is deployed, in case it is

software-as-a-service, and the provider (organization) who maintains that
instance.

We define data components as follows:

●​ Any data collection, usually in a specific form and fit for a particular purpose.
●​ Data components are described in the following terms:

○​ The name of the actual data component
○​ The function/role the data performs in a specific implementation
○​ The software instance that provides the data and/or the provider who

maintains it.

We define interoperability standards as follows:

●​ Any agreement/protocol/data model/data format designed to facilitate interoperability
between multiple software components.

●​ Interoperability standards are described in the following terms:
○​ The name of the interoperability standard
○​ The type of the standard or the role it fulfills, with respect to a specific

implementation; e.g. a data format.
○​ The authority that maintains the standard

In section 1.4 we will provide a template with clear instructions for all this.

1.2 Objectives
Objectives of this Shared Development Roadmap:

●​ Formulate (potential) CLARIAH services

6

●​ Identify cross-WP collaboration opportunities (CLARIAH services spanning
components from multiple WPs)

●​ Get an accurate overview of how potential CLARIAH services relate to everything
that has been developed in CLARIAH

●​ We seek to harmonize various solutions developed within CLARIAH; determine
which are mature and have potential, which can be discarded, which to go forward
with in a potential successor project.

●​ Foster interoperability between software/data components
●​ We aim for “minimal viable” services, this means that we also aim for a minimal

viable set of components that makes up a service.

1.3 Evaluation

The status of all software/data components and the CLARIAH services as a whole are
assessed on three axes: a user axis, a technology axis, and compliance axis:

1.​ For the user axis we use the “Stakeholder Readiness Level” (SRL) a measure that
defines the user readiness of a new service to be used by scholars. See Appendix C

2.​ The technology axis we define using the “Technology Readiness Level” (TRL), a
measure that defines the development status of a service. See Appendix A

3.​ Compatibility with the CLARIAH Software requirements (appendix D) , the
CLARIAH Infrastructure requirements (appendix E), the Documentation
Standard (appendix F), and possible other future requirement specifications. The
compliance levels themselves are defined in appendix B

It is suggested that SRL level should be estimated by a user panel. Ideally the other levels
should also be independently estimated, but in this phase a self-assessment is more
realistic.

1.4 Instructions
We ask each WP to:

●​ Consider from the perspective of scholarly use cases what minimum viable CLARIAH
service the scholar needs and describe these. We aim for generic or pervasive
services only that are relevant in a common shared infrastructure.

●​ For each CLARIAH service, enter a title (heading 4, dark cyan) and fill the template that
is outlined below according to the (blue) instructions in there.

●​ Work out the details for each software/data component in the separate stand-off
listing. Multiple CLARIAH services can re-use the same software/data components,
hence the stand-off method.

●​ Estimate a general Technology Readiness level for each component in the separated
component list. Also estimate a TRL for the CLARIAH service as a whole (make sure
to consult the appropriate appendix). It is also possible that the TRL level for a

7

software component differs in the context of a CLARIAH service, because a particular
feature is needed that is not implemented yet, in that case, add an extra TRL level in
the component list with the server.

●​ Make sure to link the software/data component to its source code repository, website
or documentation. The only exception where you can omit links is when the
Technology Readiness Level (TLR) is so low (<2) that there is nothing to link to yet.

●​ Describe in terms of services and components, the cross-WP infrastructure parts you
think are important to develop to showcase the success of CLARIAH (within the
scope of the main CLARIAH workplan). We will gradually fit the
product/component/workflow descriptions into the CLaaS workflow as depicted here.

Special attention will go to CLARIAH services whose software/data components and/or
workflows cross work package boundaries, e.g., pipelines that involve tools from different
work packages, or components that serve needs in more than one work package (such as
authentication).

Template for CLARIAH Services
[Please adhere to the following template, all instructions are in blue (remove them):]

(name of the person who created this service, WPx)
[^- fill the name and person who filed this service (not necessarily the owner) and the work
package where it belongs, remove all blue instructions, like this one, when filling this
template]

User story:

As a scholar, I ……. in order to ……

[^- the user story must adhere to the above format and express a need from a user’s
perspective and the reason/motivation why the scholar might have that need. It is
expressed from a scholarly perspective and describes a minimum viable service]

(2) As a scholar, I …. In order to …..

[^- in addition to the main user story at the core of this service, additional user stories that
provide additional functionality that transcends the minimal viable nature may be specified.
Prefix each with a number (and optionally a short identifier) so they can be referenced]

Software Components & Implementations

Implementation 1: (name)
[^- a user story can be covered by multiple independent/alternative/conflicting pipelines
that implement it, give the implementation a number, a name to identify it and describe the
components of the implementation in a table as follows (so you can have multiple tables,

8

https://github.com/CLARIAH/IG-DevOps/blob/main/docs/CLaaSArchitecture.png

one for each implementation). The components are described by name, function and by
the instance and provider that hosts them (in case it is a service), the order has no
meaning]
Implements: (numbers of additional user stories)
[^- if multiple user stories are given (and numbered), explicitly indicate which are or are
not supported by an implementation. Leave this out if there is only one user story]

Component Function(s) Instance @Provider

[the name of the specific
component, i.e. the
name of the underlying
software that implements
the functions describes
in the next column. This
must recur in the
stand-off component list
in section 3, which
provides further details.
If the function is planned
but there is no
implementation yet, add
the qualifier
“(proposed)”, the actual
name may be empty in
that case]

[the function/role of a software
component in the pipeline,
expressed in generic terms]

[The service instance that
provides this
functionality/integrates
this component, and the
provider (institution) that
provides it. You must
include a link to the
instance at this provider

Leave this empty if there
is no implementation yet

It is possible to specify a
chain of services using
the via keyword, the last
service should be the
most generic one
covering the user story
and the first service the
most specific one for the
component]

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

[Estimate a TRL for the
CLARIAH service per
implementation (make
sure to consult the
appropriate appendix). It
is also possible that the
TRL level for a software
component differs in the
context of a particular
CLARIAH service,
because a particular

[leave SRL empty for now] [The compatibility level
expresses to what degree
the service in general
adheres to the software
requirements and
infrastructure
requirements, leave it
empty for now as they’re
not finished yet]

9

feature is needed that is
not implemented yet, in
that case, add an extra
TRL level alongside the
component name]

Verdict

UNDECIDED
[^-- This should only be filled by the CTO (Roeland Ordelman), in discussion with the
technical advisory committee, and determines whether this implementation of this
service, as described in the template, is either UNDECIDED, ACCEPTED, REJECTED
or NEEDS REVISION for further development/maintenance and inclusion in
CLARIAH+]

Data Components

Implementation 1: (some identifier) [<- see before]

Component (specific) Function Instance @Provider

[Name of the actual
data component, e.g. a
particular data
collection or data
standard]

[generic function/role the data fulfills in
a specific pipeline; e.g. input corpus,
lexicon]

[The service
instance that
provides this data
and the provider
(institution) that
provides it]

Interoperability Standards

Implementation: (some identifier) [<- see before]

Component Function Instance @Provider

[Name of the
actual standard]

[Function/type of the standard, e.g. input
data format, output data format, protocol,
Web-API specification]

[The service instance
that and its provider
(institution) that
makes use of this
standard. In case of
interoperability
between two

10

instances, this may
contain two linked
instances]

Workflow schema

[if an implementation consists of many different components and their flow is not obvious,
please draw a schema to illustrate the implementation(s)]

Wider Context

[here you can sketch how this service, either in general or specific implementations
thereof, relate to a wider context, such as partner projects like CLARIN, NDE]

Use cases

●​ ….

[link to specific use cases for which this user story is relevant, the use cases must reside
in https://github.com/CLARIAH/usecases and there should be at least one use case for
every service]

11

https://github.com/CLARIAH/usecases

Data Model
The following schematic (UML) illustrates the data model we use for describing CLARIAH
services. It was presented on the CLARIAH tech day in October, see the video here.

12

https://download.anaproy.nl/datamodel.mp4

2 CLARIAH Services

2.1 Shared Services
Shared services are CLARIAH+ services that provide core functionality for the
CLARIAH infrastructure as a whole. These services serve scholarly use cases, are
generic or pervasive, i.e. the needs or requirements that need to be fulfilled are often
not directly formulated and recognized as such by scholars. These provide an
important pillar for the shared infrastructure. Their development is typically a
cross-WP effort. For CLARIAH+ we identified the following Shared Services:

Meta view on CLARIAH Shared Services with FAIR datasets as central service
(incorporating structured data organisation, annotation and data processing). INEO is central
access point for data and tools, data stories a central facility for working with data.

2.1.1 FAIR Datasets (Dataset Registry)

Coordinator:

Work packages involved: WP5, WP3, WP4, WP6, WP2

Github projects link: https://github.com/orgs/CLARIAH/projects/2/

Rationale

13

https://drive.google.com/file/d/1UE6_Z3pq7Qe7IHpNUX2qOJRgVjnVOXTu/view?usp=sharing
https://github.com/orgs/CLARIAH/projects/2/

Providing a view on datasets that could be of interest for scholarly research on a
national level at research institutes or heritage institutes, is a core functionality of a
research infrastructure. At least, potential should be “findable” and provide
scholars with information on the contents of the data. In addition to making
datasets findable, within CLARIAH we want to stimulate access to these collections
and increase the levels of interoperability for reuse. The aim is to create a CLARIAH
“dataset registry” (e.g., operated via Ineo) that requires entries to be findable,
accessible, interoperable (formats, schema’s) and reusable (persistent) within the
CLARIAH infrastructure. As such, the FAIR Datasets service also includes work on
making individual datasets accessible/interoperable/reusable via domain services,
e.g., end-points/apis (sparql/search-api) or domain portals (Media Suite, Linguistic
corpus search, Nederlab), but also a shared service such as Data Stories. A
simplified overview (file):

Service description:

Enabling FAIR use of datasets within CLARIAH: a central data set discovery (provided by
DCAT or schema.org formatted metadata on the dataset level, e.g. using CKAN as
dataset registry), searching within data sets via domain services, accessing data sets via
endpoints either on domain level or via a central facility, with persistent identifiers. The
proposal is to migrate the CKAN registry that was implemented in WP5 (Media Suite) as a
domain registry service to a central registry service and make an inventory of additional
central services that are needed to enable FAIR use of the datasets.

 User story:

As a scholar, I want to have an overview of datasets providing me with information from
collection metadata, including the dataset’s distribution (e.g. SPARQL endpoint, full text
search API endpoint, RDF or CSV data dump file) where the dataset is distributed, the
organization that publishes the dataset and the license under which it is published, in
order to select interesting data sets of my research and access them either via domain

14

https://drive.google.com/file/d/1EtSXbp8Yg604wfNBbHZ48gnHZCoghY0h/view?usp=sharing

portals or central services, by downloading the content myself, or by visiting an
organisation.

Software Components & Implementations

Implementation 1: CLARIAH Dataset Registry
Implements: 1

Component Function(s) Instance @Provider

CKAN (Docker
extension)

Webservice and user interface
for registering data and
discovery

Mediasuite.data@NIBG

NDE Dataset
Registry

Webservice and user interface
for registering data and
discovery (NDE alternative) --
(datasets must adhere to
Requirements for Datasets)

demonstrator@NDE

Domain services
(search)

Enable search within individual
data sets. In principle, data sets
are registered centrally,
accessed locally.

●​ Medisuite@NIBG
●​ Nederlab Portal

@KNAW-HuC
●​ AutoSearch @INT
●​ GreTeL4 @UU
●​ ...

Satosa instance For authorisation on dataset
registration activities

HuC

PID service? Mint and resolve persistent
identifiers to use for registering
collections.

@WP2

INEO Portal that brings end-users to
the discovery service

@WP1/2

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

5-6

Verdict

Data Components

15

https://docs.ckan.org/en/2.9/maintaining/linked-data-and-rdf.html
https://docs.ckan.org/en/2.9/maintaining/linked-data-and-rdf.html
https://mediasuitedata.clariah.nl/
https://netwerk-digitaal-erfgoed.github.io/requirements-datasets/
https://datasetregister.netwerkdigitaalerfgoed.nl/
https://mediasuite.clariah.nl/
https://www.nederlab.nl/
https://www.nederlab.nl/
https://portal.clarin.inl.nl/autocorp/
https://gretel.hum.uu.nl/ng/
https://github.com/SUNET/docker-satosa

Implementation 1: (some identifier) [<- see before]

Component (specific) Function Instance @Provider

Varous registered
collections from
CLARIAH partners

Metadata curation
(WP3)

 MPI, DANS, RU

[Name of the actual
data component, e.g. a
particular data
collection or data
standard]

[generic function/role the data fulfills in
a specific pipeline; e.g. input corpus,
lexicon]

[The service
instance that
provides this data
and the provider
(institution) that
provides it]

Interoperability Standards

Implementation: (some identifier) [<- see before]

Component Function Instance @Provider

CMDI Metadata standard *

DCAT

NDE Requirements
for datasets and
Dataset Register.

schema.org

Workflow schema

[if an implementation consists of many different components and their flow is not obvious,
please draw a schema to illustrate the implementation(s)]

Wider Context

16

https://www.clarin.eu/content/component-metadata
https://www.w3.org/TR/vocab-dcat-2/
https://netwerk-digitaal-erfgoed.github.io/requirements-datasets/
https://netwerk-digitaal-erfgoed.github.io/requirements-datasets/
https://datasetregister.netwerkdigitaalerfgoed.nl
https://schema.org/DataCatalog

[here you can sketch how this service, either in general or specific implementations
thereof, relate to a wider context, such as partner projects like CLARIN, NDE]

Use cases

●​ ….

[link to specific use cases for which this user story is relevant, the use cases must reside
in https://github.com/CLARIAH/usecases and there should be at least one use case for
every service]

2.1.2 FAIR Vocabularies

Coordinator:

Work packages involved: WP5, WP3, WP4, WP6, WP2

Github projects link: https://github.com/orgs/CLARIAH/projects/3/views/1

Rationale

The FAIR Vocabularies service concerns FAIR use of vocabularies, the alignment of
entities and schemas across vocabularies, and the validation of alignments.

User story:

As a scholar, I want to have a place to store, safeguard or refer to my vocabularies, share
them with others and tell how well they fit my use case, search through them or get them
recommended based on my data needs, create crosslinks between them and access them
through a common API in order to share the vocabularies I use in a FAIR way.

Implementations & Software Components

Implementation:

Component Function(s) Instance @Provider

Vocabulary registry
(WP2)

Registry to describe, classify and rate
vocabularies

KNAW HuC

Relation Registry
(WP3)

Registry to store relation sets, e.g.,
linksets or alternative overlays, between
vocabularies

Vocab Recommender
(WP4)

Recommend LD vocabularies to model
structured data by inspecting the data

17

https://github.com/CLARIAH/usecases
https://github.com/orgs/CLARIAH/projects/3/views/1

Semantic Gateway
(WP2)

Common access to vocabularies from
Dataverse

DANS

CLARIAH CMDI
Forms (WP3)

Edit CMDI records incl. Interaction with
vocabularies

KNAW HuC

LDProxy (WP4)

Make archived vocabularies accessible
via their original URL

SKOSMOS (3rd party) Vocabulary repository

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

Verdict

UNDECIDED

Data Components

Implementation:

Component Function Instance @Provider

CCR (WP3) CLARIN Concept Registry KNAW HuC

CLAVAS (WP3) CLARIN Vocabulary Registry

YALC (WP4) Collection of (pointers to) LD
vocabularies

Github

Awesome
Humanities (WP4)

Collection of (pointers to) LD
vocabularies

Github

FoLiA Set
Definitions (SKOS)
(WP3)

Vocabularies for text/linguistic
annotation

Github

Entity Registries
(WP4)

Interoperability Standards

18

Implementation:

Component Function Instance @Provider

RDF

SKOS

OWL

SHACL

Wider Context

NDE’s Termennetwerk, SSHOC Vocabularies Commons, Bartoc

Use cases

●​

2.1.3 FAIR Tool Discovery

Coordinator: Maarten van Gompel

Work packages involved: WP3, WP4, WP5, WP6, WP2

19

Github projects link: https://github.com/orgs/CLARIAH/projects/1/views/1

Rationale

One key goal of the CLARIAH infrastructure is to provide scholars with information where
they can find tools that they need for their work. CLARIAH and its predecessor projects
have developed a lot of useful tools already. Some of these can be found in repositories
such as the CLARIN switchboard. Others are distributed and disseminated on an
individual or work package level. However, it would be in the benefit of both scholars and
tool providers to have a central place (INEO) where scholars can go to find and/or
discover tools. At the same time, the tools that they find via the CLARIAH infrastructure
should also be accessible, so that these tools can indeed be used. From a CLARIAH
perspective, we would to some extent also like to guarantee accessibility/usability of tools,
and also, that tools are interoperable with other tools or CLARIAH infrastructure
components. Finally, ideally tools should also be re-usable, even if tools change during
time (related to sustainability of tools). In practice, it will be hard to warrant full FAIRness
of tools provided/disseminated by CLARIAH. We could however at least aim for making
tools findable and accessible. For interoperability and re-usability (sustainability) we could
aim for a system that informs scholars of the status of tools that are disseminated, e.g., by
labeling tools (giving “stars”) for it compatibility level, documentation level, and adherence
to CLARIAH software requirements. One of the key requirements of a tools discovery
service that we propose therefore, is a sound system for aggregating and updating
information on tools that reside in various places, the tool metadata.

It is not the aim of the tool discovery service itself to provide means for execution. We
assume that (if applicable) the service provides links to individual services (e.g.,
LaMachine) for executing code using data. However, as being able to execute code is key
to “accessibility”, making (CLARIAH) tools executable on e.g., web services or local
services is part of the development roadmap for this service.

User story:

As a scholar, I am looking for tools (please see the definition in the next subsection) and
want to browse through and search in a registry of available tools in order to select the
tools I need to further my research. The registry should offer sufficient information for me
to make an informed decision on suitable tools to explore.

(2; data) As a scholar, I want to upload my data and automatically be presented with tools
that can operate on such data in order to more effectively find tools suited for my data. I
want to be automatically redirected to the tool I choose, with my data

20

https://github.com/orgs/CLARIAH/projects/1/views/1

(3; interface) As a scholar, I am looking for tools offering a particular interface in order to
be able to find tools I can communicate with in the fashion I need. For instance, I want
tools I can access through the web using a UI; web services with a web API so I can
programmatically interact with it from my own scripts; tools I can use locally from the
command line; tools that are software libraries which I can use in my own scripts; or even
tools that are apps I can run on a smartphone or GUI tools on a desktop.

(4; harvest) As an infrastructure provider, I want all tool metadata to be automatically
harvested from the source in order to ensure the data is always up to date and facilitate
maintenance.

Service Description

This core service provides infrastructure for finding tools. The term “tool” here is
deliberately ambiguous and can refer to a piece of software in the broadest sense, it may
be a web application, web service, programming library, or any composition thereof. Tools
may live in a wide variety of places. We seek to standardize the way by which their
metadata is described using Codemeta and OpenAPI, which will be posited as software &
infrastructure requirements. Codemeta provides basic software metadata, whilst OpenAPI
provides metadata covering web service specification. We automatically collect this
metadata from as close to the source as possible using a CLARIAH Tool Harvester, the
source being either a source code repository or a webservice endpoint. We aggregate all
metadata into a central backend solution called the CLARIAH Tool Store. Portals like Ineo,
the CLARIN Switchboard or others can either directly query the tool store over an API, or
we offer export facilities over an API.

Implementations & Software Components

Implementation 1: CLARIAH Tool Discovery (proposed)
Implements: 1, 2, 3, 4
Note: This implementation focuses on the backend and leaves room to be used with
multiple frontends (e.g. Ineo, CLARIN Switchboard).

Component Function(s) Instance

Ineo? Simple web front-end Ineo @?

CLARIN Switchboard * Browsable tool inventory
* Basic search through tools
* Tool recommendation based
on analysis of uploaded data
(web UI) (TRL 8)

CLARIN Switchboard
@CLARIN-ERIC

CLARIAH Tool Harvester Harvester for software & service

21

https://switchboard.clarin.eu/
https://switchboard.clarin.eu/

[proposed] metadata. Periodically queries
all endpoints listed in the
CLARIAH Tool Source Registry
and updates the tool store.

Codemetapy
(KNAW HuC)

Conversion from various
metadata schemes to codemeta

CLARIAH Tool Store
[proposed]

●​ Holds all tool metadata
(as Linked Open Data)

●​ API for updating
(invoked by harvester)

●​ API for querying
(invoked by end-user,
portals)

(there may be a role for
dataverse here to serve as the
implementation, but it kind of
feels like overkill to me for this
purpose.

Another option is to use the
baserow database we use for
components and instances, but
here we don’t have actual
Linked Open Data)

CLARIAH Tool Store
@?

CMDI export
[proposed]

Client using the tool store API
and converting output to CMDI
(or added directly as an
extension to the API)

Ineo export
[proposed]

Client using the tool store API
and exporting to a data format
Ineo can ingest. (or added
directly as an extension to the
API)

CLARIN Switchboard
export
[proposed]

Client using the tool store API
and exporting to the CLARIN
Switchboard Registry (or added
directly as an extension to the
API)

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

1

Verdict

22

https://github.com/proycon/codemetapy

UNDECIDED

Implementation 2: CLARIN Switchboard
Implements: 1, 2, 3

Component Function(s) Instance

CLARIN Switchboard * Browsable tool inventory
* Basic search through tools
* Tool recommendation based
on analysis of uploaded data
(web UI)

CLARIN Switchboard
@CLARIN-ERIC

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

8

Verdict

UNDECIDED

Implementation 3: LaMachine Portal
Implements:1,3,4
Component Function(s) Instance

Labirinto * Portal to all tools installed in a
specific LaMachine instance.
* Simple faceted search
(Web UI)

*any LaMachine
installation/deploymen
t*

Language & Speech
portal @RUN LaMachine * Distribution & deployment

solution
* Introspection pipeline that
automatically harvests and
collects metadata for all
installed tools
* Holds the dynamically
harvested tool registry

codemetapy * Tool to convert software
metadata to codemeta
* Aggregate metadata from
different sources

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

8

23

https://switchboard.clarin.eu/
https://switchboard.clarin.eu/
https://webservices.cls.ru.nl/
https://webservices.cls.ru.nl/

Verdict

UNDECIDED

Implementation 4: CLAPOP
Implements: 1,3

Component (specific) Function Instance

CLAPOP ●​ Browsable tool inventory
●​ Faceted search

CLAPOP @UU

Technology Readiness
Level (TRL)

8?

Verdict

UNDECIDED

Implementation 5: CLARIN Resource Families
Implements: 1

Component (specific) Function Instance

CLARIN Resource
Families

●​ Limited but CLARIN-wide list for
a few tool families (NLP
focussed), manually curated

Resource
Families
@CLARIN-ERIC

Technology Readiness
Level (TRL)

8?

Verdict

UNDECIDED

Data Components

Implementation 1: CLARIAH Tool Discovery (proposed)

Component (specific) Function Instance

CLARIAH Tool Source
Registry

Simple registry of software source
repositories and service endpoints.

24

https://dev.clarin.nl/clarin-resource-list-fs
https://www.clarin.eu/resource-families
https://www.clarin.eu/resource-families
https://www.clarin.eu/resource-families

Serves as input for the harvester.

Could be Implemented as a simple plain
text list of URLs in a git repository on
github, new registrations can be added
using pull requests. Or implemented
using the planned baserow database
that holds all software components.

Implementation 2 (+1): CLARIN Switchboard

Component (specific) Function Instance

CLARIN SwitchBoard
Registry

Registry of all available and participating
tools

CLARIN
Switchboard
@CLARIN-ERIC

Implementation 4: CLAPOP

Component (specific) Function Instance

Collection of software
metadata in CMDI

Software metadata descriptions CLAPOP @UU

Interoperability Standards

Implementation 1: CLARIAH Tool Discovery (proposed)

Component (specific) Function Instance

CodeMeta Software metadata schema *

OpenAPI Specification Webservice specification schema

CLARIAH Tool Metadata
[proposed]

Additional tool metadata vocabulary
agreed upon by CLARIAH WPs

(earlier work in the WP3 ‘metadata for
tools project’ can serve as valuable input
here)

Implementation 3: LaMachine Portal
Component (specific) Function Instance

CodeMeta Software metadata schema *

25

https://switchboard.clarin.eu/
https://switchboard.clarin.eu/
https://switchboard.clarin.eu/
https://dev.clarin.nl/clarin-resource-list-fs

Implementation 4: CLAPOP

Component (specific) Function Instance

CMDI Software metadata schema *

Wider Context

●​ Ineo is supposed to become the entry point for CLARIAH tools, however, it
can be considered a thin layer and back-end functionality and automatic
harvesting needs to be resolved separately.

●​ CLAPOP was developed in CLARIN and uses manually crafted software
metadata descriptions in CMDI (no harvesting) with rich information for
scholars. The information may be outdated however.

●​ The LaMachine Portal was developed as a solution to provide a portal page
for any LaMachine installation/deployment, automatically harvesting the
tools available within. It uses CodeMeta which is more generic but less
specific for scholars.

●​ The CLARIN Switchboard is developed by CLARIN-ERIC and gives users
the option to select tools from a wider CLARIN ecosystem, based on the
data they upload. It is largely limited to singular data (single files).

Use cases

2.1.4 FAIR Annotations (Web Annotation clients)

Coordinator: Hennie Brugman

Work packages involved: WP6, WP3, WP5, WP2

Github projects link: https://github.com/orgs/CLARIAH/projects/4/views/1

Rationale

The ability to create, store and reuse annotations is a key requirement for scholars
and in the context of dispersed data sets and annotations that cross domain
boundaries and media types, requires a centralised organisation that is flexible
enough to cope with decentralized workflows. The “vision” represented in this
service, is that scholars have their own “portable, digital rolodex” in which they can
keep and share their personal annotations, generated with a variety of annotations
clients, either on private collections or on “institutional” data sets (at DANS or CH
institutes) without the need to be bothered with issues such as storage,
persistency, provenance, and interoperability. Shared services that need to be
provided include annotation storage, PID service, authentication/authorization

26

https://github.com/orgs/CLARIAH/projects/4/views/1

(2.3.1), dataset registry (2.1.1), etc. The service should be interoperable with data
facilities and existing annotation tools.

User story:

(1)​As a scholar, I want to annotate collection objects and object parts in order to

execute one or more of a wide range of scholarly annotation scenarios. Inventories
of such scenarios are already made available in CLARIAH.

(2)​As a scholar, I want to support my research by autonomously collecting and
annotating parts of a wide range of collections, from large online CH collections to
non-digitized personal collections. I want to be able to store such references and
annotations, and I want to be able to share them with my peers.

(3)​As a tool builder, I want to see working examples of interactive annotation clients,
scripts and Jupyter notebooks in order to learn how to create my own clients or
extend these examples for my own tasks.

Software Components & Implementations

Implementation 1: Annotation Rolodex

As part of their research, scholars regularly collect references to relevant data from
multiple collections, including collections that are not even digitized (the ‘shoebox in the
attic’). This service allows researchers to register such previously anonymous collections
persistently, so that they can be annotated. Furthermore, it supports scholars to fill their
‘research rolodex’ with relevant references to a wide range of collections that are already
online available by means of creation, management and sharing of web annotations.

Implements: 1, 2

Component Function(s) Instance @Provider

Rolodex web application Autonomous web application
that supports collection
registration, annotation and
annotation management.

@HuC

Collection Registration
Service

CLARIAH registration for
existing and new collections.
Minimally provides a persistent
identifier for a collection and a
minimal metadata description.

@WP2?

Annotation repository Store, share, manage, search @HuC

27

with groupware functions web annotations.

PID service Mint and resolve persistent
identifiers to use from web
annotations and for registering
collections.

@WP2

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Implementation 2: Showcase for micro-clients

We already have a number of well described scholarly annotation scenarios available.
Given that building large interactive apps is very expensive and that the lifespan of such
apps is relatively short we aim for a set of ‘micro-clients’: small interactive apps and
(jupyter) notebooks that can be build rapidly and by anybody, can be specialised and are
so cheap that they can be deprecated when not useful anymore. We want to make a
number of such micro-clients available for use by scholars, but also as examples for other
tool builders.

Implements: 1, 3

Component Function(s) Instance @Provider

µAnnotator Small interactive client that
loads and shows a slice of text
plus annotations and enables
adding personal annotations

@HuC

Scripted annotation
scenarios

diverse @HuC

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

28

UNDECIDED

Implementation 3: Web Annotation extensions for existing CLARIAH clients

This section lists a number of existing tools that support manual annotation: FLAT,
COBALT, ELAN, MediaSuite. These tools might benefit from connecting them to one or
more shared CLARIAH Web Annotation Repositories. These tools may need extensions
for that.

Implements: 1

Component Function(s) Instance @Provider

Annotation repo support
for FLAT, COBALT,
ELAN, MediaSuite

Share and exchange web
annotations between different
CLARIAH annotation tools

@HuC, @INT, @MPI,
@NISV

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Implementation 4: extensions for existing external annotation tools

Some external annotation tools are regularly used by several CLARIAH partners:
Inception, BRAT, Recogito(-js), possibly others. To make these tools interoperable with the
CLARIAH Annotation infrastructure we propose to make use of Web Annotations that can
be stored and exchanged via a CLARIAH Annotation Repository. To do this, format
converters or tool extensions are necessary.

Implements: 1

Component Function(s) Instance @Provider

Extension for recogito.js i/o for web annotation format
and storage

@HuC

29

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Implementation 5: TextFabric front-end

Create, load and visualise annotation sets.

Implements: (numbers of additional user stories)

Component Function(s) Instance @Provider

TextFabric @DANS

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Data Components

Implementation 1:

Component (specific) Function Instance @Provider

30

Interoperability Standards

Implementation: all

Component Function Instance @Provider

W3C Web
Annotation data
model, protocol
and format

Protocol, API, Format

Workflow schema

Wider Context

To enable and stimulate manual annotation scenarios we not only have to provide
Annotation Repository services, but also have to implement and/or demonstrate a range of
viable annotation scenarios with client software. These clients can be interactive or
scripted using API’s, they can be existing annotation tools or newly developed
micro-clients, and they can be provided by CLARIAH or be external tools.

Use cases

●​ Micro-frontends for manual scholarly annotations

2.1.5 Scalable Multimedia Processing

Coordinator:

Work packages involved: WP3, WP5, WP6, WP2

Github projects link: https://github.com/orgs/CLARIAH/projects/5/views/1

Rationale

In many scholarly use cases in CLARIAH, multimedia processing tools play a crucial role.
One of the main category of these tools are NLP tools, that in its broadest sense also
includes tools such as OCR/HTR, speech recognition or even sign language recognition.
But also tools such as computer vision can be seen as part of the multimedia processing
suite that CLARIAH scholars would like to use. The development of the individual tools
themselves often occurs outside the CLARIAH scope. In practice, the main concern of

31

https://github.com/orgs/CLARIAH/projects/5/views/1

CLARIAH is to enable the use of such tools in the context of scholarly use cases. The Fair
Tool Registry service provides a mechanism to point scholars to individual tools that can
be accessed locally (e.g., via LaMachine) or via a webservice (e.g., speech recognition
service at RUN). This “individual execution” of (CLARIAH) tools is also part of the work in
FAIR Tool Discovery. However, there are scholarly use cases that require the scalable
execution of tools within the infrastructure, either as a bulk processing job that requires a
High Performance Cluster (e.g., processing a large data set), as part of a complex
workflow for a specific task, or as part of a “tools-to-data” use case (e.g., for Jupyter
Notebook analysis). The service “Scalable Multimedia processing” is about enabling such
use cases.

Description:

This service provides the ability to run processing tools on text/multimedia in a scalable
fashion. It provides means of execution over multiple computing nodes in a computing
cluster and execution on a large data collection.

User story:

(1a) As a scholar, I want to apply a processing tool on a large data set in the CLARIAH
infrastructure, either using computational resources provided by the CLARIAH
infrastructure in order to be able to do quick and efficient processing on large data sets
without needing my own infrastructure.

(1b) As a scholar, I want to apply a processing tool on a large data set within my own
infrastructure in order to take the tools to my (restricted) data and work in my own secure
environment.

(2) As a scholar, I want to have access to information about the tool (provenance) in
order to facilitate reproducibility.

(3) As a scholar, I want to run tools distributed over multiple machines in order to be
able to efficiently process big data collections.

Implementations & Software Components

Implementation: Proposed implementation
Implements: 1a,1b,2,3
(not done yet)

Component Function(s) Instance @Provider

DANE-server (B&G) Workflow manager (API, task scheduler
and UI)

32

https://github.com/CLARIAH/DANE-server

Nextflow (3rd party) Workflow manager (API, task
scheduler, workers)

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

2

Verdict

UNDECIDED

2.1.6 Data Stories

Coordinator: Menzo Windhouwer

Work packages involved: WP4, WP2

Github projects link: https://github.com/orgs/CLARIAH/projects/6/views/1

Rationale

The Data Stories service facilitates the creation of stories (scientific output) based
on the analysis and often visualisation of events (data points) in data sets. Scholars
that create data stories, typically use low-level access methods such as APIs via
Jupyter notebooks to do their analysis, sometimes referred to as “programming
with data”. The Data Stories can be published as notebooks that an end-user can
run (requiring a run-time environment) or in written form (e.g. blog) that summarizes
results from a notebook (and provides the notebook as a reference). The Data
Stories service obviously has a strong relation with the FAIR datasets service, in
particular the shared linked open data “stack”. Simplified overview of the Data
Stories (file):

33

https://github.com/orgs/CLARIAH/projects/6/views/1
https://drive.google.com/file/d/1uap8RuV6obvI2dk4O2JqRh7XnrtJTBfJ/view?usp=sharing

User story:

As a scholar, I want to tell a story illustrated by live queries on data sources and attractive
visualisations of the answers in order to present the results/value of my data work to the
wider public.

Implementations & Software Components

Implementation:

Component Function(s) Instance @Provider

Data Stories(WP2) Create data stories on top of a
datastore

Data Stories Exchange format to make data stories

34

interoperability (WP2) interoperable

Data Stories
Visualisations (WP2)

Various visualisations of query results,
e.g. maps, timelines, barcharts, pies

Data Stories in Ineo
(WP1)

Allow the embedding of a data story in
Ineo as a dataset publication
mechanism

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

2

Verdict

UNDECIDED

Data Components

Implementation:

Component Function Instance @Provider

Notebooks (WP5) Data stories already available in WP5

Notebooks in
LaMachine (WP3)

Data stories already available in WP3

Data Stories in
Druid (WP4)

Data stories already available in WP4

Interoperability Standards

Implementation:

Component Function Instance @Provider

To be developed Exchange format to make data stories
interoperable

Wider Context

Use cases

35

●​

2.1.7 Ineo

Coordinator: Sebastiaan Fluitsma, Thomas Vermaut, Roeland Ordelman

Work packages involved: WP1, WP2

Github projects link: https://github.com/orgs/CLARIAH/

Rationale

User story:

As a scholar, I want to have a central place where I can go to, to find out about the
possibilities of the CLARIAH infrastructure for my research in order to point me to data,
tools, examples, best-practices and standards.

Implementations & Software Components

Implementation:

Service Function(s) Instance @Provider

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

Verdict

36

https://github.com/orgs/CLARIAH/projects/1/views/1

UNDECIDED

Data Components

Implementation:

Component Function Instance @Provider

Interoperability Standards

Implementation:

Component Function Instance @Provider

Wider Context

Use cases

●​

2.2 Domain Services
Domain services are CLARIAH+ services that provide important functionality for
scholars, but are not considered central to the shared infrastructure. Such services
may be of a more domain-specific nature. Ideally, it fulfills functionality that is
pervasive in other use-cases (see above definition).

2.2.1 OCR & HTR service

Coordinator:

Work packages involved: WP4, WP2

37

Github projects link: https://github.com/orgs/CLARIAH/

Rationale

User story:

As a scholar, I have scans (e.g. PDFs or images) which I want to upload and digitise
using optical character recognition or handwritten text recognition (OCR/HTR) in order to
make the data available for further research, whatever that may be, such as further
enrichment, annotation, search, etc.

(2) As a scholar, I want to process some images of written documents in order to extract
data such as text and layout information for further actions later, such as NER, document
classification, searching and textual analysis.

Implementations & Software Components

Implementation 1: PICCL (limited to OCR rather than HTR)

Component Function(s) Instance @Provider

Tesseract OCR engine PICCL @RUN

or

PICCL @INT
(outdated)

PICCL/ocr.nf Workflow around the OCR engine

Nextflow Workflow engine

●​ FoLiAutils
●​ foliatools

Data conversion

PICCL webservice
(powered by CLAM)

●​ Web API (REST)
●​ Upload, processing web app

FLAT Front-end for visualisation of results
(optional, document-based)

FLAT @RUN via
PICCL @RUN

LaMachine Distribution & Deployment solution
(optional)

*

clamopener Basic authentication provider
(non-federated, to be replaced)

PICCL @RUN only

Shibboleth Federated auth solution via PICCL @INT
only

Technology
Readiness Level

Stakeholder Readiness Level (SRL) Compatibility Level

38

https://github.com/orgs/CLARIAH/projects/1/views/1
https://webservices.cls.ru.nl/piccl/
https://portal.clarin.inl.nl/piccl/
https://webservices.cls.ru.nl/flat/
https://webservices.cls.ru.nl/piccl/
https://webservices.cls.ru.nl/piccl/
https://portal.clarin.inl.nl/piccl

(TRL)

7

Verdict

[RO]:
●​ Not on SDR because TRL7
●​ make discoverable in INEO (given TRL7 level)
●​ possibly some small efforts for fine-tuning
●​ Requirement: solve dependency on developer

Note: OCR post-correction is listed as a separate service, but both are implemented in
PICCL and provided by the same instance

Implementation 2: OCR workflow builder (agnostic wrt OCR/HTR distinction)

Component Function(s) Instance @Provider

OCR workflow builder OCR workflow construction tool,
generating a workflow to be executed
by the OCR-D container

@INT (not online
yet)

OCR-D Docker container implementing a variety
of recent tools for layout analysis, image
processing and text recognition

Execution bridge Server side component; validates and
sends constructed workflow to instance
for processing

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

3

Verdict

[RO]:
●​ Not on SDR because TRL3 and already existing (redundancy argument)
●​ Possibly on WP workplan but requires argumentation[RO]:
●​
●​ Not on SDR because TRL3 and already existing (redundancy argument)
●​
●​ Possibly on WP workplan but requires argumentation

Implementation 3: Pergamon IMages - PIM
Implements: (2)

39

Component Function(s) Instance @Provider

Transkribus
connection/interfacing

HTR knaw-huc

Tesseract OCR + training knaw-huc

Kraken OCR/HTR+ training

PyLaia HTR + training

P2PaLA Layout analysis + training knaw-huc

Document classification
(visual)(noname)

Document classification +
training

knaw-huc/NA

Epub
Generation(noname)

Epub Generation using tooling
above

National Library

Baseline
detector(noname)

Baseline detector + training knaw-huc

HTR (noname) HTR + training

Layout Analysis
(noname)

Structure labeling + training knaw-huc

Connectivity to INT
CLARIAH interface

Expose software above via INT
OCR workflow builder

Image repo +
connectivity for
harvesting
web/IIIF/manual
uploading

Storing links to images and
their transcriptions. Optionally
upload images.

knaw-huc

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

3/5/6/7

Verdict

[RO]:
●​ Not on SDR because of redundancy, involvement of industry
●​ Possibly WP workplan but requires argumentation

Data Components

Implementation: PICCL

40

Component Function Instance @Provider

Tesseract OCR
Models

OCR Models *

Implementation: OCR workflow builder

Component Function Instance @Provider

OCR/HTR and
layout analysis
models

Models necessary to run the tools *

Ground truth data Data necessary to train the tools

Implementation: PIM
Component (specific) Function Instance @Provider

Trained models for Kraken

Trained models for Tesseract

Trained models for PyLaia

Interoperability Standards

Implementation: PICCL

Component Function Instance @Provider

FoLiA Output data format *

CLAM RESTful web-API specification *

Oauth2 & OpenID
Connect

Authentication/Authorization Protocol

PICCL @INT

(not enabled for
PICCL @RUN)

Implementation: OCR workflow builder & PIM

Component Function Instance @Provider

Page XML1 Output data format *

Implementation: PIM

1 https://www.primaresearch.org/schema/PAGE/gts/pagecontent/

41

https://portal.clarin.inl.nl/piccl/
https://www.primaresearch.org/schema/PAGE/gts/pagecontent/

Component Function Instance @Provider

Google login

Wider Context

Implementation PICCL: PICCL was developed in CLARIAH-CORE and CLARIAH-PLUS
WP2 & WP3, successor of the earlier TICCLops in CLARIN-NL. However, current funding
for PICCL has ended and a main developer has retired. Continuation of this
implementation depends heavily on Martin Reynaert (UvT)

Platforms like Transkribus outperform the OCR of Tesseract, the downside is that these
are proprietary solutions.

Deep-learning based models implemented in recent tools (calamari, kraken, ocropy, ..) will
be deployed in the workflows generated by the OCR workflow builder; a systematic
comparison of the performance of these tools to Transkribus is not yet available.

Use cases

●​ Seventeenth century newspaper collection (WP6 use case 2)
●​ Republic (WP2)
●​ Globalise (WP2)
●​ National Library (WP2)
●​ National Archive (WP2)
●​ Individual Scholars (WP2)

2.2.2 Speech Acquisition

Coordinator: Menzo Windhouwer

Work packages involved: WP3

Github projects link: https://github.com/orgs/CLARIAH/

Rationale

User story:

As a scholar, I want to send a questionnaire to the public to ask all kinds of questions
including the recording of utterances in order to collect a balanced sample of (audio)
responses.

42

https://github.com/CLARIAH/usecases/blob/master/cases/ocr-historical-newspapers.md
https://republic.huygens.knaw.nl/
https://github.com/orgs/CLARIAH/projects/1/views/1

Implementations & Software Components

Implementation: SPAQ

Component Function(s) Instance @Provider

JIT Lime Survey
(WP3)

Spin up a dedicated LimeSurvey upon
request

KNAW HuC

SPAQ (WP3) Create and ask questions involving
audio recording

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

5

Verdict

[RO]:
●​ Not on SDR as it is too specific for a single user community although link

with surveys in ODISSEI context could be interesting but could be
interesting for CLARIAH-3

●​ I can imagine CLARIAH+ will bring this to TRL-7 on a WP-level
●​ With TRL-7 make discoverable in INEO

Data Components

Implementation:

Component Function Instance @Provider

Interoperability Standards

Implementation:

Component Function Instance @Provider

Wider Context

43

Use cases

●​

2.2.3 Geodata entry & management

Coordinator: Thomas Vermaut

Work packages involved: WP2

Github projects link: https://github.com/orgs/CLARIAH/

Rationale

User story:

As a scholar, I want to process some geographical data (p.e. a scanned historical map)
in order to represent them in a single repository for scientific curation and potential further
actions later, such as displaying the data on a map.

(2) As a scholar, I want to process geographical data with the help of the crowd /
collaborative editing in order to represent them in a single repository for scientific curation
and potential further actions later, such as displaying the data on a map.

Software Components & Implementations

Implementation 1: HisGIS
Implements: (2)

Component Function(s) Instance @Provider

OSMAPI Provide collaborative editing on
geographical data; GUI + DB +
API

OSM @ HisGIS

MAPNIK Map rendering

overpass Geographical data-query

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

44

https://github.com/orgs/CLARIAH/projects/1/views/1
https://github.com/openstreetmap/openstreetmap-website

8/9

Verdict

[RO]:
●​ Not on SDR as TRL > 7
●​ Make discoverable in INEO
●​ Work on data components (or fine tuning software for enabling use of data

components) may be part of workplan but requires argumentation

Data Components

Implementation 1: HisGIS

Component (specific) Function Instance @Provider

HisGIS Provide geographic historical
cadastral reference data.

OSM @ HisGIS

Implementation 2: Gemeentegeschiedenis

Component (specific) Function Instance @Provider

Gemeentegeschiedenis​
(in progress)

Provide geographical reference data
for Dutch municipalities and their
boundaries.

Implementation 1: atlas

Component (specific) Function Instance @Provider

Historical atlas of the low
countries (idea)

Provide reference-data for
heterogeneous administrative
entities through time.

Interoperability Standards

Implementation: (some identifier)

Component Function Instance @Provider

OSM-XML

OSM-changeset Specifying specific changes

45

https://www.gemeentegeschiedenis.nl/
https://rombertstapel.com/2017/01/historical-atlas-of-the-low-countries/
https://rombertstapel.com/2017/01/historical-atlas-of-the-low-countries/

between two versions of a dataset.

overpass-query-format A standard way of querying
complex multi-tiered geographical
datasets.

Use cases

●​ HisGIS
●​ Gemeentegeschiedenis (in process)
●​ Historical atlas of the low countries (Rombert Stapel; idea)

2.2.4 FAIR Lexicons

Coordinator: Jesse de Does, Henk van den Heuvel

Work packages involved: WP3

Github projects link: https://github.com/orgs/CLARIAH/

Rationale

Description:

This is a service that allows look-up of words or phrases in one or more dictionaries.

User story:

As a scholar, I want to look up words in dictionaries in order to (1) obtain senses and
definitions, (2) find word forms, synonyms/antonyms/hypernyms/hyponyms etc (3) find
usages example (not all need apply)

(4) As a scholar, I am interested in looking up words for Dutch dialects and doing lookups
for specific locations/dialects

(5) As a scholar, I am interested in browsing entire dictionaries

Implementations & Software Components

Implementation 1: Dialect Dictionaries
Implements: 1, 3, 4, 5

46

https://hisgis.nl
https://www.gemeentegeschiedenis.nl/
https://rombertstapel.com/2017/01/historical-atlas-of-the-low-countries/
https://github.com/orgs/CLARIAH/projects/1/views/1

Component Function Instance @Provider

RU-wnd Web application for dictionary lookups
(no Web API)mathieu_concepts

e-WLD @RUN
(Limburgs),
e-WBD @RUN
(Brabants),
e-WGD @RUN
(Gelders),
e-WALD @RUN,
(Achterhoeks)

Implementation 2: dictionaries and lexica available at INT (actually, different
implementations)

Component Function Instance @Provider

Historical
dictionaries

Web application (no public API) Historical dictionary
portal (ONW, VMNW,
MNW, WNT, WFT)

Dictionary of
contemporary
Dutch

Web application (no public API) Algemeen
Nederlands
Woordenboek

Dialect dictionaries Web applications (no public API):
-​ elektronische Woordenbank van

de Nederlandse dialecten
(eWND)

-​ Integrated dictionary portal
Database of the Southern Dutch
Dialects

eWND @ INT
DSDD @ INT

DiaMaNT Historical semantic lexicon, user interface DiaMaNT @INT

Webcelex Select data from the well-known CELEX
lexica

https://portal.clarin.inl.
nl/webcelex/

Lexicon service Web service for lexicon lookup in modern
and historical morphosyntactic lexica

Available on request
(contact INT)

Implementation 3: dictionaries and lexica available at Fryske Akademy (actually,
different implementations)
Note: developed independently of CLARIAH

Component Function Instance @Provider

Frisian lexicon
service

Web service for lookup in modern frisian
data

Lexicon Service
@Fryske Akademy

47

http://e-wld.nl
http://e-wbd.nl
http://e-wgd.nl
http://e-wald.nl
https://gtb.ivdnt.org
https://gtb.ivdnt.org
https://anw.ivdnt.org/search
https://anw.ivdnt.org/search
https://anw.ivdnt.org/search
https://ewnd.ivdnt.org/
http://dsdd.ivdnt.org
https://diamant.ivdnt.org/diamant-ui/
https://portal.clarin.inl.nl/webcelex/
https://portal.clarin.inl.nl/webcelex/
https://taalmaterialen.ivdnt.org/download/tstc-gigant-molex/
https://ivdnt.org/corpora-lexica/gigant/?highlight=hilex
https://frisian.eu/foarkarswurdlist-ws/
https://frisian.eu/foarkarswurdlist-ws/

Frisian dictionary
services

Web services and applications for lookup
in frisian dictionaries

Dictionary Service
@Fryske Akademy

Frisian language
API

Graphql service for intelligent lookup of
word information, text search and
translation

LanguageAPI
@Fryske Akademy

Data Components

Implementation 1: Dialect Dictionaries
Implements: 1, 4

Component Function Instance @Provider

Woordenboek van
de Limburgse
Dialecten

Lexicon e-WLD @RUN

Woordenboek van
de Brabantse
Dialecten

Lexicon e-WBD @RUN

Woordenboek van
de Gelderse
Dialecten

Lexicon e-WGD @RUN

Woordenboek van
de Achterhoekse
en Liemerse
Dialecten

Lexicon e-WALD @RUN,

VERDICT

[RO]:
●​ Not part of SDR but discoverable in INEO could be part of WP workplan

2.2.5 Linguistic Corpus Search: Text & Annotation Search
(Maarten, WP3)

User story:

As a scholar, I want to perform complex searches in text collections/corpora and in the
annotations on these collections in order to find patterns of specific (often linguistic)
constructs for my research purpose.

48

https://frisian.eu/dictionary-services/
https://frisian.eu/dictionary-services/
https://frisian.eu/languageapidocs/
https://frisian.eu/languageapidocs/
http://e-wld.nl
http://e-wbd.nl
http://e-wgd.nl
http://e-wald.nl

(2) As a scholar, I want to view aggregated results over my results sets, such as
distributions, grouped results and statistics in order to be able to analyse my data and
identify common trends

(3) As a scholar, I want to provide my own text collections in order to have a platform
that enables me to search in them.

(4) As a scholar, I want to search in syntactically annotated corpora (treebanks) in order
to find linguistic patterns for my research purpose. [this is a more specific instance of the
main user story]

(5) As a scholar, I want to automatically enrich my corpus with specific linguistic
annotations in order to find linguistic patterns for my research purpose.

(6) As a scholar, I want uniform and rich access to a large and diverse set of corpora
(possibly within a certain domain) in order to have a big enough data set to do searches
on for my research.

Implementations & Software Components

Implementation 1: INT (implements all three stories, will implement level 4 functionality to
a certain degree in the project (T83). Does not really implement 6)

Component Function(s) Instance
@Provider

Blacklab
(using Apache
Lucene)

●​ Storage engine for text and annotations
●​ Query & search engine
●​ Indexer to process text corpora with

annotations (in specific formats)

AutoSearch
@INT

OpenSoNaR
@INT

Blacklab
Server

●​ Web API

Corpus-fronte
nd

●​ A search front-end to formulate and execute
queries

●​ A results front-end to show matches in the
corpus, complete with annotations

●​ An upload front-end for users to add their
own data

Technology
Readiness
Level (TRL)

Stakeholder Readiness Level (SRL) Compatibility
Level

49

https://github.com/CLARIAH/clariah-plus-tasks/blob/master/wp3/int/T83_Search_engine_upgrades_extension_to_treebanks.md
https://portal.clarin.inl.nl/autocorp/
https://portal.clarin.inl.nl/autocorp/
https://opensonar.inl.nl
https://opensonar.inl.nl

8?

Implementation 2: Nederlab (implements 6 (for historical dutch texts) and 2, does not
implement: 3, 4, 5)

Component Function(s) Instance
@Provider

MTAS ●​ Storage engine for text and annotations
●​ Query & search engine
●​ Web API
●​ Indexer to process text corpora with

annotations (in specific formats)
●​ A search front-end to formulate and execute

queries
●​ A results front-end to show matches in the

corpus, complete with annotations
●​

Nederlab Portal
@KNAW-HuC

Technology
Readiness
Level (TRL)

Stakeholder Readiness Level (SRL) Compatibility
Level

?

Implementation 3: GreTeL (implements the more specific story 4 (treebanks) rather than
the more generic story, also implements 2 & 3 & 5. Does not implement 6). This differs
from implementation 4 (PaQu) in having more advanced query facilities.

Component Function(s) Instance
@Provider

GreTeL ●​ Storage engine for treebanks
●​ Query & search engine for treebanks
●​ Indexer to process treebanks with

annotations (in specific formats)
●​ A search front-end to formulate and execute

queries
●​ A results front-end to show matches in the

corpus, complete with annotations
●​ An upload front-end for users to add their

own data

GreTeL4 @UU

Alpino ●​ Automatic dependency parsing

Technology Stakeholder Readiness Level (SRL) Compatibility

50

https://www.nederlab.nl/
https://www.nederlab.nl/
https://gretel.hum.uu.nl/ng/

Readiness
Level (TRL)

Level

8?

Implementation 4: PaQu (implements the more specific story 4 (treebanks) rather than the
more generic story, also implements 2 & 3 & 5. Does not implement 6)

Component Function(s) Instance
@Provider

PaQu ●​ Storage engine for treebanks
●​ Query & search engine for treebanks (using

simply XPath)
●​ A search front-end to formulate and execute

(XPath) queries
●​ A results front-end to show matches in the

corpus, complete with annotations
●​ An upload front-end for users to add their

own data

PaQu @RUG

Alpino ●​ Automatic dependency parsing
(see also 2.5.1)

Technology
Readiness
Level (TRL)

Stakeholder Readiness Level (SRL) Compatibility
Level

8?

Data Components

Implementation 1: INT

Component
(specific)

Function Instance @Provider

SoNaR corpus Indexed & searchable collection (with
various linguistic annotations)

OpenSoNaR @INT

CGN corpus Indexed & searchable collection (with
various linguistic annotations)

OpenSoNaR @INT

Corpus hedendaags
Nederlands

Regularly updated monitor corpus of
modern Dutch, cf corpus composition

CHN @INT

Corpus Gysseling
(13e eeuw); Corpus
Middelnederlands
(14e-16e eeuw);

Indexed & searchable collections;
historical dutch corpora

51

https://paqu.let.rug.nl:8068/
https://opensonar.inl.nl
https://opensonar.inl.nl
https://portal.clarin.inl.nl/corpus-frontend-chn/chn-extern/static/stats/index.html
https://portal.clarin.inl.nl/corpus-frontend-chn/chn-extern/about
https://www.ivdnt.org/corpora-lexica/corpus-gysseling/
https://www.ivdnt.org/corpora-lexica/corpus-gysseling/
https://www.ivdnt.org/corpora-lexica/corpus-middelnederlands/
https://www.ivdnt.org/corpora-lexica/corpus-middelnederlands/
https://www.ivdnt.org/corpora-lexica/corpus-middelnederlands/

Brieven als Buit.
Corpus of old Dutch
forthcoming.

Implementation 2: Nederlab

Component
(specific)

Function Instance @Provider

Approx 20 large and
small text
collections, in
uniform format
(FoLiA XML),
spanning 8 centuries
(18.5 billion words,
approx 80 billion
annotations)

Indexed & searchable collections (with
various linguistic annotations)

Nederlab Portal
@KNAW-HuC

Implementation 3: GreTeL

Component
(specific)

Function Instance @Provider

AnnCor CHILDES
treebank for dutch

Indexed & searchable treebank

Interoperability Standards

Implementations 1 & 2 (INT & Nederlab):

Component Function Provider

TEI XML Data format supported for indexing
(limited)

TEI Consortium

FoLiA XML Data format supported for indexing
(limited)

KNAW-HuC

Implementations 3 & 4 (GreTeL & PaQu):

Component Function Provider

CHAT Data format for
ingestionmathieu_concepts

CHILDES corpus
project

Alpino XML Data format for ingestion RUG

52

https://www.ivdnt.org/corpora-lexica/brieven-als-buit/
https://nederlab.nl
https://nederlab.nl

FoLiA XML Data format for ingestion (limited) KNAW-HuC

Wider Context

Nederlab was an independent NWO project that has finished, it has strong relations with
CLARIAH due to the partners involved being in both projects. The MTAS maintainer/lead
developer has left KNAW-HuC so current MTAS maintenance/development &
sustainability is an issue.

Use cases

●​

VERDICT

[RO]:
●​ NOT in SDR, part of FAIR datasets and responsibility of domains/WPs
●​ Possibly part of WP workplan but requires argumentation

2.2.6 Media Suite

User story:

As a media scholar, I want to access data and tools in order to analyse large media
archives and Oral History data.

Implementations & Software Components

Implementation:

Service Function(s) Instance @Provider

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

53

Verdict

UNDECIDED

Data Components

Implementation:

Component Function Instance @Provider

Interoperability Standards

Implementation:

Component Function Instance @Provider

Wider Context

Use cases

●​

2.3 Provisioning Services
These are the exception to the rule in the sense that they are not scholarly services,
but are important facilitating services for the core infrastructure. They provide
low-level pervasive functionality required by most other services (such as
authentication, deployment)

54

2.3.1 Authentication & Authorization

2.4 Unclassified Services
These services have yet to be processed into one of the above categories, or are left
here if we don’t consider them part of the Shared Development Roadmap.

2.4.1 Metadata management
(Henk, WP3)

User story:

(1) As a scholar, I want to edit a metadata file for my deposited language
resource/dataset/corpus via a web form in order to have rich metadata file description

(2) As a scholar, I would like to have my metadata file harvested in the VLO In order to
have it published in the CLARIN infrastructure

Software Components & Implementations

Implementation 1: Collection Bank
Implements: 1, 2

Component Function(s) Instance @Provider

Collbank Webservice and user interface Collbank @RUN

 Login registration facility

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

3

Verdict

[RO]:
●​ Not part of SDR
●​ Possibly on WP workplan but requires argumentation

Implementation 2: TLA-FLAT
Implements: 1, 2

Component Function(s) Instance @Provider

55

https://applejack.science.ru.nl/collbank/

CLARIAH CMDI Forms
(WP3)

Edit CMDI records incl.
Interaction with vocabularies

KNAW HuC

TLA-FLAT Store CMDI records and
resources, provide OAI access
to the metadata

KNAW HuC/MI, MPI/TLA

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

3

Verdict

[RO]:
●​ Not part of SDR
●​ Possibly on WP workplan but requires argumentation

Data Components

Implementation 1: (some identifier) [<- see before]

Component (specific) Function Instance @Provider

[Name of the actual
data component, e.g. a
particular data
collection or data
standard]

[generic function/role the data fulfills in
a specific pipeline; e.g. input corpus,
lexicon]

[The service
instance that
provides this data
and the provider
(institution) that
provides it]

Interoperability Standards

Implementation: (some identifier) [<- see before]

Component Function Instance @Provider

CMDI Metadata standard *

Workflow schema

56

https://www.clarin.eu/content/component-metadata

[if an implementation consists of many different components and their flow is not obvious,
please draw a schema to illustrate the implementation(s)]

Wider Context

[here you can sketch how this service, either in general or specific implementations
thereof, relate to a wider context, such as partner projects like CLARIN, NDE]

Use cases

●​ ….

[link to specific use cases for which this user story is relevant, the use cases must reside
in https://github.com/CLARIAH/usecases and there should be at least one use case for
every service]

57

https://github.com/CLARIAH/usecases

2.4.2 Federated linguistic corpus search: Text & Annotations

Description:

Enabling searching within collections over different institutes that maintain a search API.

User story:

As a scholar, I want to search within collections over different institutes of my choosing,
to be used for further analysis and comparison

e.g.

(1)​Federated search in token-based corpora
(2)​Federated search in treebanks
(3)​Federated search in lexica​

Implementations & Software Components

Implementation : CLARIN federated content search for corpora
(https://www.clarin.eu/blog/clarin-federated-content-search-version-2)

Component Function(s) Instance @Provider

Dutch corpora made
available via FCS (by
means of wrappers
for blacklab and
Nederlab)

 (multiple instances)
via FCS @CLARIN

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

?

Verdict

[RO]:
●​ Not on SDR as federated search is outside the scope of CLARIAH+

workplan

Implementation : Federated search for treebanks
(https://www.clarin.eu/blog/clarin-federated-content-search-version-2)

Component Function(s) Instance @Provider

58

https://www.clarin.eu/blog/clarin-federated-content-search-version-2
https://github.com/INL/clariah-fcs-endpoints
https://www.clarin.eu/blog/clarin-federated-content-search-version-2
https://www.clarin.eu/blog/clarin-federated-content-search-version-2

GreTeL Treebank search supporting CLARIAH
FCS

Gretel @INT via
FCS @CLARIN

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

?

Verdict

[RO]:
●​ Not on SDR as federated search is outside the scope of CLARIAH+
workplan

Interoperability Standards

Component Function Instance @Provider

CLARIN FCS
Specification

API Specification *

Lemon-Ontolex Linked data model for lexica https://www.w3.org/2
016/05/ontolex/

2.4.3 Alignment services
(Willem, WP5)

User story:

As a scholar I need to be able to align different models or ontologies, in order to be able
to connect data from different (historical or research) sources, even if these datasets have
different underlying data models or ontologies, in order to do cross collection research in
structured data.

(2) As a scholar I need to be able to load a data model and map the classes and
properties to classes and properties from other data models, in order to produce an
alignment file or linkset that allows me to normalize the data access.

Software Components & Implementations

59

http://chn.gretel.ivdnt.org
https://www.clarin.eu/blog/clarin-federated-content-search-version-2
https://office.clarin.eu/v/CE-2017-1046-FCS-Specification.pdf
https://office.clarin.eu/v/CE-2017-1046-FCS-Specification.pdf
https://www.w3.org/2016/05/ontolex/
https://www.w3.org/2016/05/ontolex/

●​ Cultuurlink (WP5)
●​ Amalgame (WP5)
●​ Lenticular Lens (WP2)
●​ BurgerLinker (WP4)
●​ Relation Registry (WP3)

Data Components

2.4.4 Reconciliation services
(Willem, WP5)

User story:

As a scholar, I want to be able to link named entities extracted from my (multimedia or
text) source documents to identifiers from (terminology) sources like authority files or
reference databases, in order to connect the enriched (multimedia) sources to other
(historical) sources that are also linked to the same entities and identifiers.

(2) As a scholar I want to be able to determine that named entities within a single source
or within several different sources are identical, even if the lexical spelling of a name might
be slightly different, in order to avoid mistakes with homonyms, e.g. persons having the
same name, but representing completely different persons.

(3) As a scholar I want to be able to assess the representation of some named entity in
alternative sources, in order to get additional information that helps me in answering my
research questions.

(4) As a scholar, I want to be able to rethink my data and choose appropriate existing
identifiers from some other sources, like authority files, thesauri or geocoding using a well
known geographical database, in order to be able to do cross collection research.

(5) As a scholar I need to be able to post-process transcriptions (either generated by
manual transcription or AI) of multimedia sources, including text, images, audio and video,
using reconciliation in order to facilitate search or filtering of my data for people, places or
other named entities without having to tweak free text search queries.

Software components & Implementations

●​ OpenRefine
●​ Network of terms
●​ MixnMatch
●​ OpenReconcile

Data Components

●​ Network of terms catalog

60

https://cultuurlink.beeldengeluid.nl/app/#/
https://github.com/jrvosse/amalgame
https://lenticularlens.org/
https://github.com/CLARIAH/burgerLinker
https://openrefine.org/
https://github.com/netwerk-digitaal-erfgoed/network-of-terms-api
https://mix-n-match.toolforge.org/#/
https://wikidata.reconci.link/
https://github.com/netwerk-digitaal-erfgoed/network-of-terms-catalog

●​ Wikidata

2.4.5 Text & linguistic annotation
(Maarten WP3 & Jesse WP3)

User story:

As a scholar, I want to add (linguistic) annotations to text documents (either my own data
or a data collection stored elsewhere), for instance part-of-speech tags, named entities,
dependency relations, semantic roles, etc..

(2) As a scholar, I want to manually correct output from an automatic annotation system
(or do manual spelling correction in general) in order to develop a ground truth set, for
example.

(3) As a scholar, I want to do bulk assignment in a complete corpus (keyword in context)
in order to quickly and efficiently tag larger collections

(4) As a scholar, I want to use a collaborative annotation environment in order to have
multiple annotators edit the same data (or split data between multiple annotators), allowing
me to compute things like inter-annotator agreement at a later stage

Implementations & Software Components

Implementation 1: FLAT
Implements, 1,2,4 (does not implement 3)

Component Function(s) Instance @Provider

FLAT Web-based annotation environment for
advanced linguistic annotation,
document-based (frontend)

FLAT @RUN

foliadocserve Document + annotation server, backend

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

8

61

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://webservices.cls.ru.nl/flat

Verdict

UNDECIDED

Implementation 2: COBALT corpus-based annotation tool - new version
Implements: 1,2,3,4

Component Function(s) Instance @Provider

COBALT annotation
tool

Annotation environment for basic
linguistic annotation, oriented towards
bulk processing

@INT (not deployed
yet)

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

6?

Verdict

UNDECIDED

Implementation 3: Annotation of corpus search results (WP3 T085)

Component Function(s) Instance @Provider

Annotation of corpus
results

Remote annotation functionality on
corpus search results; annotations are
also made searchable in the corpus
exploitation environment

@INT (not deployed
yet)

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

2

Verdict

UNDECIDED

Implementation 4: TextFabric

Data Components

62

Interoperability Standards

Implementations 1: FLAT
Component Function Instance @Provider

FoLiA Input and output data format *

Implementations 2 & 3: COBALT

Component Function Instance @Provider

TEI Input and output data format *

Wider context

●​ In addition to the tools developed in CLARIAH, there is a wide range of 3rd party
annotation tools for text and annotations. A few notable examples are brat,
webanno, doccano, recogito.

2.4.6 High resolution annotation of audiovisual data
(Roeland, WP5)

User story:

As a scholar, I want to do high-resolution (accurate frame selection) annotations in
audiovisual content on a local machine on data in the CLARIAH infrastructure

Implementations & Software Components

Implementation 1: ELAN
Implements:

Component Function Instance @Provider

ELAN Annotation tool for audio and video
recordings (desktop GUI)

n/a

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

9?

Verdict

UNDECIDED

63

https://archive.mpi.nl/tla/elan

Data Components

Implementation 1:
Implements:

Component Function Instance @Provider

Interoperability Standards

Implementation:

Component Function Instance @Provider

Wider Context

Use cases

●​

2.4.7 FAIR IIIF-style publication of collections

User story:

As a scholar, I ……. in order to ……

(1)​As a collection provider, I want to publish my collections in such a way that
anybody can persistently refer to the data and segments of the data, in order to
enable users to annotate those with web annotations or to retrieve those data
segments for further processing or analysis.

(2)​As a scholar, I want to be able to select (parts of) collection objects in order to

annotate these selections or to further process these selections.

(3)​As a scholar, I want to be able to refer to these selections persistently in order to
be sure that my annotations stay valid and resolvable for a long time.

64

Software Components & Implementations

Implementation 1: W3C IIIF Image service
W3C compliant externally developed open source implementations of the IIIF image API

Implements: 1, 2

Component Function(s) Instance @Provider

Externally developed
open source IIIF image
server

Retrieve or refer to images and
image parts, complying to the
W3C IIIF protocol

@HuC instance at
https://images.diginfra.net
/iiif/

Probably other partner
host IIIF image servers

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Implementation 2: W3C IIIF Presentation service
W3C compliant externally developed open source implementations of the IIIF Presentation
API. This service publishes IIIF Canvases organised in Manifests.

Implements: 1, 2

Component Function(s) Instance @Provider

IISG implementation of
IIIF Presentation API

Publish image collections using
Canvases and Manifests

HuC-DI implementation
of IIIF Presentation API

Publish image collections using
Canvases and Manifests

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

65

https://images.diginfra.net/iiif/
https://images.diginfra.net/iiif/

Verdict

UNDECIDED

Implementation 3: W3C IIIF audiovisual extension

Extensions of the IIIF Image protocol for audiovisual data, to be able to also address time
intervals.

Implements: 1, 2

Component Function(s) Instance @Provider

Beeld en Geluid IIIF
extensions

Retrieve and point at parts of
audiovisual streams

@Beeld en Geluid?

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Implementation 4: W3C IIIF geo extensions

Extension of the IIIF Image protocol for geographical maps.

@Thomas Vermaut: can you fill in the details?

Implements: 1, 2

Component Function(s) Instance @Provider

?

66

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Implementation 5: IIIF-style text service

This service represents annotated or enriched text documents as a UTF-8 text stream that
is segmented using (persistent) anchors between the text segments, plus stand-off
annotations. These anchors can be used to attach web annotations.
Text segments can be retrieved or referred to using IIIF style urls, that are resolved by the
text service.

Implements: 1, 2

Component Function(s) Instance @Provider

TextRepository Store different serialisations
and versions of text documents
and provide IIIF-style API
access to text segments.

@HuC

un-t-ann-gle Extract a ‘text stream plus
stand-off annotation’
representation of annotated text
collections and documents

@HuC

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Implementation 6: TextFabric

Similar to implementation 5, TextFabric also represents annotated text as raw text plus

67

standoff annotations. It does not use Web Annotations but its’ own simple and compact
format. It also takes the approach to publish a text coordinate system that can be used to
add independent sets of standoff annotations.

Implements: 2

Component Function(s) Instance @Provider

TextFabric Convert text collections to text
plus standoff annotations and
add annotation sets.

@DANS

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Data Components

Implementation 1:

Component (specific) Function Instance @Provider

Interoperability Standards

Implementation: 1, 2, 3, 4

Component Function Instance @Provider

W3C IIIF Image
Protocol

Protocol, API

W3C IIIF
Presentation

Protocol, API

68

Protocol

W3C Web
Annotations

Format, Protocol

Workflow schema

Wider Context

IIIF for image collections is used more and more by collection providers and provides a
standard and solid basis for manual annotation of online collections of the CLARIAH
partners and other collection providers. A clear omission that is highly relevant for scholars
is the ability to include annotation of text collections. This service addresses this omission.

Use cases

●​ Annotatable collections

2.4.8 FAIR Annotation Repository

User story:

(1)​As a scholar, I want to store, search, update, share, persistently publish, manage

and exchange sets of web annotations.
(2)​As a collection manager, I want to store, search, update, share, persistently

publish, manage and exchange sets of web annotations.
(3)​As a builder of annotation tools, I want to store, search, update, share,

persistently publish, manage and exchange sets of web annotations.

Software Components & Implementations

Implementation 1: Extended version of eLucidate Web Annotation Server

Implements: 1, 2, 3

Component Function(s) Instance @Provider

69

Extended eLucidate Web
Annotation Server

Implements W3C web
annotation protocol and
annotation search

@HuC

Python client for
eLucidate

Provide easy access to
elucidate API for Python
developers

@HuC

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Implementation 2: CLARIAH WP2 Web Annotation Server: annotation.clariah.nl

Implements: 1, 2, 3

Component Function(s) Instance @Provider

Python server for
scholarly web
annotations

Store and search web
annotations

@HuC

Demos with front-end Proof of concepts @HuC

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

Verdict

UNDECIDED

Data Components

Implementation 1:

70

Component (specific) Function Instance @Provider

Interoperability Standards

Implementation: 1, 2

Component Function Instance @Provider

W3C Web
Annotation Data
Model and
Protocol standards

API, format

Workflow schema

Wider Context

Use cases

●​ Store, share and search web annotations

2.4.9 Natural Language Processing (automatic annotation)
(Maarten, WP3)

User story:

As a scholar, I want to automatically enrich my texts with linguistic annotation in order to
facilitate further processing/analysis/visualisation steps for my research.

(2; tok) As a scholar, I want to automatically tokenize my text
(3; pos) As a scholar, I want to automatically enrich my text with part-of-speech tags
(4; lem) As a scholar, I want to automatically lemmatise my text

71

(5; dep) As a scholar, I want to automatically extract dependency relations on my text
(6; syn) As a scholar, I want to automatically extract syntactic constituents in my text, e.g.
syntax trees.
(7; mor) As a scholar, I want to automatically decompose tokens into morphemes
(8, ner) As a scholar, I want to automatically recognize named entities in my text
(9, nl) As a scholar, I want to automatically enrich dutch texts
(10, hist) As a scholar, I want to automatically enrich historical dutch texts
(11, en) As a scholar, I want to automatically enrich english texts
(12, fy) As a scholar, I want to automatically enrich frisian texts
(13, loc) As a scholar, I want to be able to run the enrichment tools myself on my own
system, and not as a service in order to enable more efficient execution or integrate it in
my own pipeline.
(14, id) As a scholar, I want to automatically identify the language of (parts of) a text

Note: Visualisation of the results is not included in this service, but is covered by a
separate service: Corpus Search: Text & Annotation service. Further manual
annotation/correction is also not covered by this service but by others.

Implementations & Software Components

Implementation 1: Frog
Implements: 2 (tok), 3 (pos), 4 (lem), 5 (dep), 7 (mor), 8 (ner), 9 (nl), 10 (hist, but only for 2
and 3), 13 (loc)
Note: Interoperability is provided with FLAT (see 2.4.5) for visualisation of results and
further manual annotation

Component Function(s) Instance

Frog Tagger for Automatic Linguistic
Enrichment

Frog @RUN

Frog python binding Use of frog from Python
(optional)

Frog webservice
(powered by CLAM)

* Web API
* Upload, processing web app
(optional)

Ucto Tokenization library

LaMachine Distribution & Deployment
solution
(optional)

clamopener Basic authentication provider
(non-federated, to be replaced)

Technology Readiness Stakeholder Readiness Level Compatibility Level

72

https://webservices.cls.ru.nl/frog

Level (TRL) (SRL)

9

Verdict

UNDECIDED

Implementation 2a: Alpino @RUN
Implements: 2 (tok), 3 (pos), 5 (dep), 9 (nl), 12 (vis), 13 (loc)
Note: Interoperability is provided with FLAT (see 2.4.5) for visualisation of results and
further manual annotation

Component Function(s) Instance

Alpino Dependency Parser for Dutch Alpino @RUN

Alpino webservice
(powered by CLAM)

* Web API
* Upload, processing web app
* Conversion from/to FoLiA
(optional)

LaMachine Distribution & Deployment
solution
(optional)

clamopener Basic authentication provider
(non-federated, to be replaced)

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

9

Verdict

UNDECIDED

Implementation 2b: Alpino via PaQu @RUG
Implements: 2 (tok), 3 (pos), 5 (dep), 9 (nl), 13 (loc)

Component Function(s) Instance

Alpino Dependency Parser for Dutch PaQu @RUG

PaQu Upload, processing web app
(no web API)
(other functions are beyond the

73

https://webservices.cls.ru.nl/alpino
https://paqu.let.rug.nl:8068/

scope of this user story, see
corpus search)

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

9

Verdict

UNDECIDED

Implementation 3: ucto
Implements: 2 (tok), 9 (nl), 11 (en) , 10 (hist), 13 (loc), 14 (id)
Note: Interoperability is provided with FLAT (see 2.4.5) for visualisation of results and
further manual annotation

Component Function(s) Instance

Ucto Tokenizer Ucto @RUN

Ucto python binding Use of ucto from Python
(optional)

Ucto webservice
(powered by CLAM)

* Web API
* Upload, processing web app
(optional)

libexttextcat Language identification

LaMachine Distribution & Deployment
solution
(optional)

clamopener Basic authentication provider
(non-federated, to be replaced)

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

9

Verdict

UNDECIDED

Implementation 4: UDPipe-Frysk
Implements: 2 (tok), 4 (lem), 5 (dep), 12 (fy), 13 (loc)

Component Function(s) Instance

74

https://webservices.cls.ru.nl/ucto/

Frisian UDPipe
(powered by UDPipe)

Tagger

?

UdPipeService Web API for UDPipe-Frysk
(optional)

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

?

Verdict

UNDECIDED

Implementation 5: DeepFrog
Implements: 2 (tok), 3 (pos), 4 (lem), 9 (nl), 13 (loc)
Note: Interoperability will be provided with FLAT (see 2.4.5) for visualisation of results and
further manual annotation

Component Function(s) Instance

DeepFrog Tagger for Automatic Linguistic
Enrichment

Not available yet

LaMachine Distribution & Deployment
solution
(optional)

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

6

Verdict

UNDECIDED

Implementation 6: VU Named Entity Detection
Implements: 8 (ner), 10 (hist)

Component Function(s) Instance

?

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

?

75

Verdict

UNDECIDED

Data Components

Implementation 1: Frog
Component (specific) Function Instance

@Provider

frogdata Models for Frog Frog @RUN

uctodata Tokenization rules for ucto Frog @RUN

Implementation 3: Ucto
Component (specific) Function Instance

@Provider

uctodata Tokenization rules for ucto Ucto @RUN

Implementation 4: UDPipe-Frysk

Component Function Instance @Provider

Frisian UDPipe
Model

Tagging Model ?

Implementation 5: DeepFrog

Component Function Instance @Provider

RobBERT v2
Part-of-Speech
(CGN tagset) for
Dutch

Fine-tuned Transformer Model (Roberta)
(compatible with huggingface
transformers)

Not available yet

BERT
Part-of-Speech
(CGN tagset) for
Dutch
(uses BERTje)

Fine-tuned Transformer Model (BERT)
(compatible with huggingface
transformers)

Not available yet

RobBERT v2
SoNaR Named
Entities for Dutch

Fine-tuned Transformer Model (Roberta)
(compatible with huggingface
transformers)

Not available yet

76

https://webservices.cls.ru.nl/frog/
https://webservices.cls.ru.nl/frog/
https://webservices.cls.ru.nl/ucto/

BERT SoNaR
Named Entities for
Dutch
(uses BERTje)

Fine-tuned Transformer Model (Roberta)
(compatible with huggingface
transformers)

Not available yet

Interoperability Standards

Implementation 1, 2a & 3:

Component Function Instance @Provider

FoLiA Output data format *

CLAM RESTful web-API specification *

Oauth2 & OpenID
Connect

Authentication/Authorization Protocol

Implemented but not
used yet

Implementation 2a & 2b: Alpino

Component Function Instance @Provider

Alpino XML Output data format *

Implementation 5: Deepfrog

Component Function Instance @Provider

FoLiA Output data format *

Huggingface
Transformers /
Pytorch

Neural model format *

Wider Context

●​ There is a vast amount of 3rd party NLP tools available, the implementations in this
CLARIAH service concern only tools that were either built in CLARIAH (or
predecessors) or are hosted in a CLARIAH context.

Use cases

●​ Automatic linguistic enrichment for Dutch texts using Frog

77

https://github.com/CLARIAH/usecases/blob/master/cases/frog.md

2.4.9.1 NLP Suite
Definition: We define a natural language processing suite as a high-level application
(usually a web-based platform) geared towards scholarly end-users (with limited technical
skills) that gives the user the ability to select and possibly compose one or more NLP
processing components integrated within the suite; additionally the integration offers
additional facilities such as a built-in visualisation/analysis component for the NLP output.

Note: This has a certain overlap with tool discovery (2.7.1), but focus here is on the NLP
aspect and the integration rather than on tool discovery as such. There may also be overlap
with CLARIAH services on annotation and search.

(Jesse, WP3, edited by Maarten)

User story:

As a scholar, I am looking for an integrated application that allows me to apply various
automatic linguistic enrichments on data I provide and allows me to visualize the results

(2; eval) As a scholar, I am looking for a platform that allows me to compare tagged data
with a gold standard, and present an analysis in order to help me evaluate a tagging
model.

(3; pos) As a scholar, I want to automatically enrich my text with part-of-speech tags
(4; lem) As a scholar, I want to automatically lemmatise my text

(5, hist) As a scholar, I want to automatically enrich historical dutch texts

Implementations & Software Components

Implementation 1: Galahad platform
Implements: 2,3,4,5
Note: This platform is specifically focused on historical dutch

Component Function(s) Instance @Provider

Galahad ●​ Management platform
for enrichment and
evaluation.

●​ Provides a non-expert
user interface for
annotation and
evaluation

Galahad @INT (not
yet deployed)

Frog (cf previous, both
modern and historical)

Tagging and lemmatization
(option)

PIE Tagging and lemmatization

78

(option)

?Helmut Schmid tagger Tagging and lemmatization
(option)

INT historical tagger Tagging and lemmatization
(option)

?Huggingface basic
transformer-based tagger
using historical BERT
models2 (proposed)

Tagging and lemmatization
(option)

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

4?

Verdict

UNDECIDED

Data Components

Implementation: Galahad

Component Function Instance @Provider

PIE, frogdata and
other models

Models necessary to run the tools *

Ground truth data Data necessary to train the tools

Wider Context

●​ There are also various 3rd party NLP suites that would fit this definition and
integrate multiple tools. Within CLARIN-D, Weblicht comes to mind as a notable
example. GATE may also be a contender in a broader context.

●​ (Failed) attempts towards a WP3 Virtual Research Environment would also
partially fall in this category.

●​ The NLP tools offered in LaMachine, most notably Frog in combination with FLAT
for visualisation and/or further annotation, but also PICCL, could also be
considered a kind of NLP suite, but they have not been separately listed here as
another more minimally described CLARIAH service felt more fitting for htose.

2 (to be developed when historical Dutch BERT model is available)

79

2.4.9.2 Spelling correction/normalisation (OCR/HTR post-correction)
(Maarten, WP3)

User story:

As a scholar, I want to correct or normalize text in order to make it more suitable (less
errors/noise) for further-processing, whatever that may be; e.g. indexing for search, NLP
processing, etc..

(2) As a scholar, I want to automatically clean up errors in OCR/HTR output

(3) As a scholar, I want to normalize diachronic variation in spelling

Implementations & Software Components

Implementation 1: PICCL
Implements: 1,2,3

Component Function(s) Instance @Provider

TICCL (part of PICCL) OCR post-correction (workflow
script)

PICCL @RUN

or

PICCL @INT
(outdated)

TICCL-tools OCR post-correction (set of
tools)

Nextflow Workflow engine

●​ FoLiAutils (hOCR
to folia)

●​ foliatools

Data conversion

PICCL service, powered
by CLAM

* RESTful webservice layer
* Upload, processing front-end

clamopener Basic authentication provider
(non-federated, to be replaced)

PICCL @RUN

FLAT (document-based) Result visualisation front-end
(optional)

FLAT @RUN via
PICCL @RUN

LaMachine Distribution & Deployment

80

https://webservices.cls.ru.nl/piccl/
https://portal.clarin.inl.nl/piccl
https://webservices.cls.ru.nl/piccl/
https://webservices.cls.ru.nl/flat
https://webservices.cls.ru.nl/piccl/

solution
(optional)

Shibboleth Federated auth solution Via PICCL @INT

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

7

Verdict

UNDECIDED

Note: OCR is listed as a separate service, but both are implemented as part of PICCL

Implementation 2: Analiticcl
Implements: 1,2,3
Note: This is a reimplementation of the core ideas of ticcl

Component Function(s) Instance @Provider

Analiticcl OCR-post-correction (matching
spelling variants against
preferably validated lexica)

None yet

Analiticcl service,
powered by CLAM

Webservice and user interface

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

5

Verdict

UNDECIDED

Data Components

Implementation: PICCL

Component (specific) Function Instance @Provider

Aspell lexicons Lexicons *

Interoperability Standards

Implementation: PICCL

81

https://portal.clarin.inl.nl/piccl

Component Function Instance @Provider

FoLiA Output data format *

CLAM RESTful web-API specification *

Oauth2 & OpenID
Connect

Authentication/Authorization Protocol

(Available but not
used)

Wider Context

●​ Implementation PICCL: This was developed in CLARIAH-CORE and
CLARIAH-PLUS WP2 & WP3, successor of the earlier TICCLops in CLARIN-NL.
However, current funding for PICCL has ended and a main developer has retired.
Continuation of this implementation depends on Martin Reynaert (UvT)

Use cases

2.4.9.3 Grapheme to Phoneme Conversion
(Maarten, WP3)

User story:

As a scholar, I want to get a phonetic representation of a text in order to use it for further
analysis or speech synthesis

(2) As a scholar, I want dutch phoneme conversion
(3) As a scholar, I want english phoneme conversion

Implementations & Software Components

Implementation 1: g2p
Implements: 1,2,3

Component Function(s) Instance @Provider

Phonetisaurus G2P Backend system G2P @RUN

g2p service, powered by
CLAM

* RESTful webservice layer
* Upload, processing front-end

clamopener Basic authentication provider
(non-federated, to be replaced)

LaMachine Distribution & Deployment

82

https://webservices.cls.ru.nl/g2pservice

solution
(optional)

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

7

Verdict

UNDECIDED

Data Components

Interoperability Standards

Implementation: PICCL

Component Function Instance @Provider

CLAM RESTful web-API specification *

Oauth2 & OpenID
Connect

Authentication/Authorization Protocol

(Available but not
used)

Wider Context

●​

Use cases

2.4.10 (Annotated) Text Conversion
(Maarten, WP3)

Description:

83

Convert (annotated) text documents between various formats.

User story:

As a scholar, I want to convert my (annotated) text document from one format to another.
In order to use my data with a tool that requires a different format, or because I want to
store and archive it in a different format.

Implementations & Software Components

Implementation 1: Piereling

Component Function(s) Instance

Foliatools
●​ tei2folia (TEI to

FoLiA conversion,
limited) (TRL 7)

●​ Conllu2folia
●​ folia2columns -

Simple conll-like
output

●​ Folia2txt
●​ Folia2html
●​ folia2rst - FoLiA to

ReStructuredText
●​ folia2salt - FoLiA

to Salt (TRL 3)
●​ rst2folia

-ReStructuredText
to FoLiA XML

Conversion tools around FoLiA
(cli)

Piereling @RUN

FoLiAutils
●​ FoLiA-page - Page

XML to FoLiA XML
●​ FoLiA-alto - ALTO

XML to FoLiA XML
●​ FoLiA-hocr -

Tesseract hOCR to
FoLiA XML

●​ FoLiA-abby - Abby
to FoLiA XML

●​ FoLiA-2text

Conversion tools around FoLiA
(cli)

●​ Folia2naf (TRL 5)
●​ Naf2folia (TRL 3)

Conversion tools for
FoLiA<>NAF

Pandoc (3rd party)​ Conversion tool/library for
various common document
formats. Used for
OpenDocument, Word,

84

https://webservices.cls.ru.nl/piereling/

Markdown, ReStructuredText

Piereling
(powered by CLAM)

* Web API
* Upload facilities (web app)
* Conversion pipeline/workflow

clamopener Basic authentication provider
(non-federated, to be replaced)

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

8

Verdict

UNDECIDED

Implementation 2: OpenConvert

Component Function(s) Instance

OpenConvert Conversion library, web API and
web app

Supports:

●​ FoLiA (TRL 3)
●​ TEI (TRL 5?)
●​ Alto
●​ Word

OpenConvert @INT

Technology Readiness
Level (TRL)

Stakeholder Readiness Level
(SRL)

Compatibility Level

5

Interoperability Standards

Implementations 1 & 2:

Component Function Instance @Provider

FoLiA XML I/O Data format for annotated text *

TEI P5 I/O Data format for annotated text
(input only for implementation 1)

*

85

https://openconvert.clarin.inl.nl/

Word I/O Document format *

OpenDocument I/O Document format

*

ALTO XML Input data format for layout and text
objects

*

Plain text I/O Most elemental text format *

Implementation 1 only: Piereling

Component Function Instance @provider

ReStructuredText I/O Text markup format *

Markdown I/O Text markup format *

Abbyy XML OCR-engine data format (ABBYY
Finereader) (input only)

*

hOCR OCR-engine data format (Tesseract)
(input only)

*

Salt Meta-model for linguistic annotation
(output only for now)

*

CONLL-U Column-based format for linguistic
annotation (I/O)

*

HTML Hypertext markup format (output only) *

OAuth2 & OpenID
Connect

Auth protocol (implemented but not
used yet)

Wider Context

●​ OpenConvert is significantly outdated when it comes to FoLiA support, the work in
tei2folia, as included in Piereling, is a continuation of the conversion efforts that
started at INT.

2.4.11 Linguistic Diagnostics Database (LIDIA)
(JO, WP3 LIDIA)

86

Service description:

Easily find arguments for or against a certain linguistic property

User story:

As a scholar, I want to quickly find all arguments from the literature for or against a
linguistic property of a word or construction

Evaluation

●​ Technology Readiness Level (TLR): 2, working towards 3
●​ Compatibility Level (CL): ?
●​ Stakeholder Readiness Level (SRL) ?

Software Components

●​ PICCL (to extract text from PDFs)
●​ Annotation: annotate regions (in scans or PDFs) and associated text as a linguistic

argument, with appropriate metadata
●​ Database with arguments and associated metadata (to be developed)
●​ User interface (to be developed)
●​ Software to automate finding pieces of text that forms a linguistic argument (to be

developed in a different/ successor project

Data Components

●​ Linguistic articles and books in PDF, Word etc.

2.4.12 Glossing Service
(JO, WP3: EXCALIBUR)

Service description:

Generate a gloss and a translation (into English) for an example sentence

User story:

As a scholar, I want to use Dutch examples in an English article and the gloss and
translation should be added automatically

Evaluation

●​ Technology Readiness Level (TLR): 2, working towards 3
●​ Compatibility Level (CL): ?
●​ Stakeholder Readiness Level (SRL) ?

Software Components

●​ PICCL (to extract example sentences from PDFs)

87

●​ Example sentence identifier (to be developed)
●​ Translation Memory- like techniques (to be developed in CP)
●​ Database with glossed examples and associated metadata (to be developed)
●​ User interface (to be developed)
●​ Language identification

Data Components

●​ Linguistic articles and books in PDF, Word etc.

2.4.13 Speech Recognition Services
(Roeland, WP5; Henk WP3)

Description:

There are several speech recognition related services requested by scholars, either
directly (e.g., processing personal collections) or indirectly (e.g., enhance searchability of
AV collections or browsing AV content).

User story:

As a scholar, I want to create a speech transcripts for an audiofile so that I have a textual
representation of it for browsing/close reading

(2) As a scholar, I want to create speech transcripts for the audiovisual collection I’m
interested in using automatic speech recognition (ASR) so that I can better search data
that typically have limited descriptive metadata. The data I want to apply ASR on, could be
a personal collection or (be part of) an institutional collection.

(3) As a scholar, I want to align my audio with its transcription, i.e. find what segments of
the audio correspond with which text in the transcription.

(4;nl) As a scholar, I want to do Dutch speech recognition
(5;en) As a scholar, I want to do English speech recognition
(6;fy) As a scholar, I want to do Frisian speech recognition
(7;dl) As a scholar, I want to do Dutch dialect speech recognition

Implementations & Software Components

Implementation 1: Bulk processing
Implements: 2,4

Component Function Instance @Provider

DANE Workflow manager NIBG

88

Kaldi_NL worker Kaldi implementation in DANE
compatible worker format

NIBG

Elastic Search
index

Needed for DANE to select data, retrieve
audio and store transcripts

NIBG

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

8

Verdict

UNDECIDED

Implementation 2: Dutch ASR aka Oral History, Stand-alone webservice/webapp for
personal collections
Implements: 1,4

Component Function Instance @Provider

Kaldi-NL
(powered by Kaldi)

ASR backend Oral history @RUN

LaMachine Deployment solution

Oral History
webservice
(powered by
CLAM)

Webservice front-end & web application

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

8

Verdict

UNDECIDED

Implementation 3: Forced alignment service
Implements: 3

Component Function Instance @Provider

Forced Alignment Webservice front-end & web application Forced alignment

89

https://webservices.cls.ru.nl/oralhistory
https://webservices.cls.ru.nl/forcedalignment2

webservice
(powered by
CLAM)

@RUN

LaMachine Deployment solution

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

7?

Verdict

UNDECIDED

Implementation 5: English ASR for personal collections
Implements: 1,5

Component Function Instance @Provider

Kaldi ASR backend English ASR @RUN

LaMachine Deployment solution

English ASR
webservice
(powered by
CLAM)

Webservice front-end & web application

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

8?

Verdict

UNDECIDED

Implementation 6: Frisian-Dutch ASR for personal collections
Implements: 1,4,6
Note: multilingual implementation, supports code switching

Component Function Instance @Provider

Kaldi ASR backend Frisian-Dutch ASR
@RUN

LaMachine Deployment solution

Frisian-Dutch ASR Webservice front-end & web application

90

https://webservices.cls.ru.nl/forcedalignment2
https://webservices.cls.ru.nl/eng_ASR
https://webservices.cls.ru.nl/eng_ASR
https://webservices.cls.ru.nl/eng_ASR

webservice
(powered by
CLAM)

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

7?

Verdict

UNDECIDED

Implementation 7: Dutch dialect ASR for personal collections
Implements: 1,7

Component Function Instance @Provider

Kaldi ASR backend ●​ To be created

LaMachine Deployment solution

Dialect-Dutch ASR
webservice
(powered by
CLAM)

Webservice front-end & web application

Technology
Readiness Level
(TRL)

Stakeholder Readiness Level (SRL) Compatibility Level

1 -> 7

Verdict

UNDECIDED

Data Components

Implementation 1 & 2

Component Function Instance @Provider

Kaldi-NL ASR models (AM, LM, DCT) for dutch
and generic

Oral history @RUN

91

https://webservices.cls.ru.nl/oralhistory

Implementation 5

Component Function Instance @Provider

eng_ASR models ASR models (AM, LM, DCT) for english

*

Implementation 6

Component Function Instance @Provider

Fy-nl-asr models ASR models (AM, LM, DCT) for dutch
and frisian

*

Implementation 7

Component Function Instance @Provider

dl-nl-asr models ASR models (AM, LM, DCT) for dutch
dialects (not yet available)

*

92

Interoperability Standards

Implementation 2,5,7:

Component Function Instance @Provider

CLAM RESTful web-API specification *

Oauth2 & OpenID
Connect

Authentication/Authorization Protocol

Implemented but not
used yet

Wider Context

Use cases

●​

2.4.14 Computer Vision
(Roeland, WP5)

Description:

Using computer vision to automatically label video or images with images features such as
objects, colour, shots, etc.

User story:

As a scholar, I want to use computer vision to explore data collections based on image
features such as objects that are visible, shots or colours. The data I want to apply
computer vision on, could be a personal collection or (be part of) an institutional collection.

Implementations & Software Components

Implementation 1: Bulk processing
Implements:

Component Function Instance @Provider

DANE (task
assignment and
file storage for the
automatic
annotation of
content)

Workflow manager

93

DANE workers
(see list of
available computer
vision DANE
workers)

Computer Vision algorithm
implementation in DANE compatible
worker format

Elastic Search
index

Needed for DANE to select data, retrieve
files and store transcripts

Implementation 2:
Implements:

Component Function Instance @Provider

Data Components

Implementation 1:
Implements:

Component Function Instance @Provider

Interoperability Standards

Implementation:

94

Component Function Instance @Provider

Wider Context

Use cases

●​

3 Software Components
This is a list of software components that are used by one or more CLARIAH services.
Instructions:

●​ Link the name of the software component to he software/service source repository,
documentation, link instances to the service itself. The only exception where you can
omit links is when the Technology Readiness Level (TLR) is so low (<2) that there is
nothing to link to yet.

●​ Separate back-end components from front-end components wherever possible
●​ Separate specific instances of the software (services in the technical senses, hosted

at a specific place) from the underlying software
●​ Components are categorized per work package (WP), either the WP where they are

effectively developed, or the WP where a suggested new component should be
housed.

●​ All existing components should already be listed in the CLARIAH Work Plan. The
only components here which are not in the work plan should be a) components that
are proposed for the future (mark them with the label “proposed”) and b) partner/3rd
party components that are not developed in CLARIAH. The latter are in a separate
subsection.

●​ The components are listed in no particular order (we will alphabetize it probably)

95

https://docs.google.com/spreadsheets/d/1WTbtA20vpKz5Oo_EnDYe1xNhRpR24mr0eESPa49jALg/edit

3.1 WP1

Name & Link Description TRL C
L

Partner

Ineo
Ineo Instance

CLARIAH Portal KNAW-Huc?

3.2 WP2

Name & Link Description TRL CL Partner

treafik External proxy-layer K8s 3 KNAW-HuC

Rancher instance Kubernetes orchestration platform 3 KNAW-HuC

K3s instance Light-weight Kubernetes 3 KNAW-HuC

Satosa instance OpenId/SAML Gateway 3 KNAW-HuC

GoHarbor A docker registry and HELM registry
for CLARIAH, including vulnerability
scanning.

4
KNAW-HuC

Open annotation
environment &
offline annotation
store (src)

Annotation FE and BE for creating
and storing web annotations. (Koolen
et al.) 4

KNAW-HuC

Kibana instance A monitoring service for CLARIAH 4 KNAW-HuC

Lenticular Lens Tool that allows users to construct
linksets between entities from
different Timbuctoo datasets (so
called data-alignment or
reconciliation).

7 / 8

KNAW-HuC

Datastories 2 KNAW-HuC

Datastories
visualisation

 2 KNAW-HuC

96

https://github.com/traefik/traefik/releases
https://github.com/rancher/rancher
https://github.com/k3s-io/k3s
https://github.com/SUNET/docker-satosa
https://github.com/goharbor
https://annotation.clariah.nl/
https://annotation.clariah.nl/
https://annotation.clariah.nl/
https://annotation.clariah.nl/
https://github.com/CLARIAH/scholarly-web-annotation-server
https://github.com/elastic/kibana
https://github.com/knaw-huc/lenticular-lens

Datastories
interoperability

 2 KNAW-HuC

Datarepository Describe or demonstrate how Small
institutes/research groups are able to
build a clariah compatible repository
for storing objects (datasets, media,
etc). This means that data is
shareable within the Clariah
community.

2

KNAW-HuC

3.3 WP3

Name & Link Description TRL C
L

Partner

CLAM Webservice framework 9 KNAW-Huc

Ucto Tokenizer and sentence splitter for text 9 KNAW-HuC

Ucto service
instance

Webservice and Web UI for ucto
(powered by CLAM)

8 KNAW-HuC
& CLST
RUN (current
hoster)

Python-ucto Python binding for ucto 9 KNAW-Huc

Frog NLP Suite for dutch: (tokenization (via
ucto),PoS,lemmatization, named-entity
recognition, dependency parsing,
constituent parsing,いややはり持って帰
ることにすると言っ shallow parsing
(chunking), morphological analysis)

9 KNAW-HuC

Frog service
instance

Webservice and Web-UI for Frog
(powered by CLAM)

8 KNAW-HuC
& CLST
RUN (current
hoster)

Python-frog Python binding for Frog 9 KNAW-Huc

Foliapy Python library for working with FoLiA.
Dependency for various other tools.

9 KNAW-Huc

97

https://github.com/IISH/workflow-controller
https://github.com/proycon/clam
https://github.com/LanguageMachines/ucto
https://webservices.cls.ru.nl/ucto
https://webservices.cls.ru.nl/ucto
https://github.com/proycon/python-ucto
https://github.com/LanguageMachines/frog
https://webservices.cls.ru.nl/frog
https://webservices.cls.ru.nl/frog
https://github.com/proycon/python-frog
https://github.com/proycon/foliapy

libfolia C++ library for working with FoLiA.
Dependency for Frog and other tools.

9 KNAW-Huc

Folia-rust Rust library for working with FoLiA.
Dependency for DeepFrog.

5 KNAW-Huc

DeepFrog NLP-suite for Dutch based on
deep-learning: part-of-speech tagging,
named entity recognition, lemmatization

5 KNAW-HuC

DeepFrog service Webservice and web UI for DeepFrog
(powered by CLAM)

2 KNAW-HuC

foliatools Commanverdictd-line/python tools for
working with FoLiA documents.
(Python-based)

9 KNAW-Huc

foliautils Command-line tools for working with
FoLiA (C++), largely complementary
and only partially overlapping with
foliatools.

8 KNAW-Huc

Alpino Dutch Dependency parser (including
Part-of-Speech tagging, lemmatization)

9 RUG

Alpino service
instance

Webservice and web UI for Alpino, with
FoLiA support
(powered by CLAM)

8 RUN

Frisian UDPipe Part-of-Speech tagger for Frisian, R
script and RESTful webservice

8 FA

udpipeService Language independent rest service
around UDpipe

8 FA

PICCL OCR and post-OCR normalisation
workflow using tesseract and TICCL.

6 UvT, RUN
(hoster), INT
(out of date
hoster)

TICCL-tools Low-level post-OCR normalisation tools
that make up the TICCL workflow.

6 UvT

Blacklab Backend for search over large text
collections, including annotations

9 INT

Corpus frontend Generic search frontend for blacklab 8? INT

AutoSearch Specific deployment of Corpus frontend
for CLARIAH.

8? INT

GrETEL Search in syntactically annotated 8? UU

98

https://github.com/LanguageMachines/libfolia
https://github.com/proycon/folia-rust
https://github.com/proycon/deepfrog
https://github.com/proycon/foliatools
https://github.com/LanguageMachines/foliautils
https://www.let.rug.nl/vannoord/alp/Alpino/
https://webservices.cls.ru.nl/alpino
https://webservices.cls.ru.nl/alpino
https://bitbucket.org/fryske-akademy/udpipe/src/master/
https://bitbucket.org/fryske-akademy/udpipe/src/master/udpipeService/
https://webservices.cls.ru.nl/piccl
https://github.com/LanguageMachines/ticcltools
https://github.com/INL/blacklab
https://github.com/INL/corpus-frontend
http://portal.clarin.inl.nl/autocorp/
https://gretel.hum.uu.nl/ng/home

corpora (treebanks)

PaQu Search in syntactically annotated
corpora (treebanks),

8? RUG

FLAT Collaborative web-based linguistic
annotation tool (document-based, using
FoLiA)

8 KNAW-Huc
& CLST
RUN (hoster)

foliadocserve FoLiA Document Server, back-end for
FLAT

9 KNAW-Huc
& CLST
RUN (hoster)

LaMachine Meta-distribution / deployment-solution
for a large amount of WP3 software.
Both for end-users and hosters.

8 KNAW-Huc

e-WLD.nl Web-based dictionary lookup of
limburgish dialects

8 CLST RUN

e-WBD.nl Web-based dictionary lookup of
brabantish dialects

8 CLST RUN

e-WGD.nl Web-based dictionary lookup of geldre
dialects

8 CLST RUN

SPAQ Speech acquisition using Surveys ? KNAW-Huc

clam2switchboard Tool for conversion of CLAM
webservice specification to format
expected by the switchboard registry.
Enables semi-automatic harvesting.

7 KNAW-Huc /
CLST RUN

Piereling service
instance

Conversion between annotated text
documents (focus on FoLiA)

7 KNAW-Huc /
CLST RUN

PICCL Web app, webservice and set of
workflows for OCR and OCR
post-correction (spelling correction)

7 UvT

Ticcltools Set of command-line tools that make up
the post-OCR correction system TICCL,
used by PICCL.

6 UvT

spacy2folia Thin wrapper around spaCy for FoLiA
input/output support

6 KNAW Huc

RU-wnd Web application for various dialect
dictionaries

8? CLST RUN

 Vocabulary overlays and alignments ? KNAW HuC

99

https://paqu.let.rug.nl:8068/
https://github.com/proycon/flat
https://github.com/proycon/foliadocserve
https://github.com/proycon/LaMachine
https://e-wld.nl
https://e-wbd.nl
https://e-wgd.nl
https://github.com/knaw-huc/SPAQ
https://github.com/proycon/clam2switchboard
https://webservices.cls.ru.nl/piereling
https://webservices.cls.ru.nl/piereling
https://github.com/LanguageMachines/PICCL/
https://github.com/LanguageMachines/ticcltools
https://github.com/proycon/spacy2folia
https://github.com/ErwinKomen/RU-wnd

Fluentd Monitoring WP3 services KNAW HuC

Clamopener
+​ instance

Basic (legacy) authentication provider
(non-federated, to be replaced)

8 D CLST RUN

Dataverse DANS

Collection Bank Web application for metadata
creation/curation

 RUN

3.4 WP4

Name & Link Description TRL C
L

Partner

CSV On the Web (COW) Command-line tool to convert
CSV to RDF.

8 IISG

CATTLE The server-based version of
COW, which comes with a basic
web UI to facilitate remote use.

8 D

GRLC A self-hosted web service to store
and share SPARQL queries,
facilitating easy reuse, and which
offers a simple API. Actively used
within and outside of CLARIAH.
Still in active development.

9 KCL/eScienc
e/IISG

Druid A triple store with an intuitive
frontend which provides tools for
end-users to browse, query, and
visualize RDF datasets, and
which set the seed for what would
later become TriplyDB. Still in
active development.

9 Triply

LDWizard Web-based alternative to COW
with minimal user interaction and
an intuitive interface. Still in active
development.

8 Kadaster/ND
E/Triply/IISG

burgerLinker Tool to link records from different 7 IISG/HuC-DI

100

https://github.com/proycon/clamopener
https://github.com/ErwinKomen/RU-collbank
https://github.com/CLARIAH/COW/wiki
https://cattle.datalegend.net/
http://www.grlc.io
https://druid.datalegend.net
https://github.com/netwerk-digitaal-erfgoed/LDWizard
https://github.com/CLARIAH/burgerLinker

civilian registries using the
Levenshtein distance between
names from birth, death, and
marriage certificates, as well as a
set of domain-specific heuristic
rules. This tool expects linked
data as input, and offers utility
functions to convert CSV to that
format.

Vocab Recommender Tool to suggest which
vocabularies might be interesting
to use when transforming CSV
datasets to linked data.
Suggestions are formed based on
existing linked datasets, by
querying the server using
SPARQL or a REST API. Other
sources of recommendations are
community-maintained lists, such
as the 'vocabulary registry'.

1 IISG/HuC-DI

Hypothesis Generator A tool to identify interesting
patterns in linked datasets that
scholars and domain experts can
use as starting points to form new
research hypotheses, or as
support for existing ones.

0 VU/IISG/Hu
C-DI

LDProxy Proxy to access archived LD via
there original URI, while this URI
haa become dead on the WWW

 KNAW HuC

data stories A tool to make blog like texts with
images, tables and graphs (incl.
geographic representations),
where such visual output is the
result of a query, that can be
edited on the fly.

 Triply/IISG

3.5 WP5

Name & Link Description TR
L

C
L

Partn
er

DANE Task assignment and file storage for the 7 NISV

101

https://stories.datalegend.net
https://dane.readthedocs.io/en/latest/index.html

automatic annotation of content; includes
these two repos:

●​ DANE-server (API, task scheduler
and UI)

●​ DANE (Python library for the
server and the workers)

dane-download-worker Downloads DANE input data (audio,
video, text, etc) via HTTP URLs

7 NISV

dane-delete-worker Deletes downloaded input data after
processing is done

5 NISV

dane-asr-worker Calls dane-kaldi-nl-api to process
audiovisual content with Automatic
Speech Recognition

6 NISV

dane-kaldi-nl-api KaldiNL instance with API access; used
by dane-asr-worker

5 NISV

dane-asr-to-folia-worker Converts ASR output text into FoLiA
format

5 NISV

dane-folia-to-ner-worker Runs different NER tools on FoLiA input 4 NISV

dane-shot-detection-work
er

Detects shots and keyframes (using
Hecate)

6 NISV

dane-keypoint-worker Detects keypoints (coordinates of joints in
a body) as well as bounding boxes
around persons

6 NISV

dane-object-classification-
worker

Classifies images using the ResNet50
model as well as apply over a 1000
ImageNet classes

6 NISV

dane-pose-embedding-w
orker

Extracts embeddings (obtained via the
dane-keypoint-worker) for pose retrieval

6 NISV

dane-colour-histogram-w
orker

Generates colour histograms from images 6 NISV

dane-image-embedding-
worker

Detects features in images using the
CLIP model

6 NISV

dane-optical-flow-worker Detects optical flow in images 5 NISV

dane-dominant-colour-wo
rker

Detects a ranking of the most dominant
colours in an image

5 NISV

dane-text-detection-worke
r

Detects text in images (e.g. for frames
from a video clip)

6 NISV

102

https://github.com/CLARIAH/DANE-server
https://github.com/CLARIAH/DANE
https://github.com/beeldengeluid/dane-download-worker
https://github.com/beeldengeluid/dane-delete-worker
https://github.com/beeldengeluid/dane-asr-worker
https://github.com/beeldengeluid/dane-kaldi-nl-api
https://github.com/beeldengeluid/dane-asr-to-folia-worker
https://github.com/beeldengeluid/dane-folia-to-ner-worker
https://github.com/beeldengeluid/dane-shot-detection-worker
https://github.com/beeldengeluid/dane-shot-detection-worker
https://github.com/yahoo/hecate
https://github.com/beeldengeluid/dane-keypoint-worker
https://github.com/beeldengeluid/dane-object-classification-worker
https://github.com/beeldengeluid/dane-object-classification-worker
https://github.com/beeldengeluid/dane-pose-embedding-worker
https://github.com/beeldengeluid/dane-pose-embedding-worker
https://github.com/beeldengeluid/dane-colour-histogram-worker
https://github.com/beeldengeluid/dane-colour-histogram-worker
https://github.com/beeldengeluid/dane-image-embedding-worker
https://github.com/beeldengeluid/dane-image-embedding-worker
https://github.com/openai/CLIP
https://github.com/beeldengeluid/dane-optical-flow-worker
https://learnopencv.com/optical-flow-in-opencv/
https://github.com/beeldengeluid/dane-dominant-colour-worker
https://github.com/beeldengeluid/dane-dominant-colour-worker
https://github.com/beeldengeluid/dane-text-detection-worker
https://github.com/beeldengeluid/dane-text-detection-worker

dane-cinemanet-worker Detects cinematic features in images 5 NISV

DANE environments Kubernetes configurations for setting up
DANE processing environments
(CLARIAH service candidates) involving
one or more DANE workers:

●​ AV → ASR
●​ AV → ASR → FoLiA → NER ​

Suitable for the CLAAS Helm repository

7 NISV

Search-API This API supports authentication with
SATOSA for the following endpoints:

●​ Collection registry access
●​ Elasticsearch query access
●​ Front-end dev friendly query

access (to ES)
●​ Read ES documents
●​ SPARQL query access
●​ Grlc query access

9 NISV

Annotation API This API supports authentication with
SATOSA and is loosely based on the
Web Annotation Protocol and Model. It
offers:

●​ CRUD on annotations
●​ Simple search on annotations
●​ Bookmark groups
●​ Annotations can be grouped by

project (see Workspace API)

9 NISV

Workspace API This API supports authentication with
SATOSA and provides a user workspace
to:

●​ Store personal projects
●​ Store named queries (supported

by the Search API)

9 NISV

Playout proxy This proxy supports authentication with
SATOSA and enables authorization for
different content servers (e.g. B&G
collection, EYE film collection, any other
external media server):

●​ Secure play-out of AV streams
●​ Supports proxying IIIF image

servers

9 NISV

Media Suite Running CLARIAH service for the WP5
domain (and several generic use-cases

9 NISV

103

https://github.com/beeldengeluid/dane-cinemanet-worker
https://github.com/beeldengeluid/labs-search-api
https://github.com/beeldengeluid/labs-annotation-api
https://github.com/beeldengeluid/labs-user-space-api
https://github.com/beeldengeluid/labs-playout-proxy
https://mediasuite.clariah.nl

therein).

Built on top of the search, annotation &
workspace APIs and playout proxy.

Media Suite end-user tools implemented
in React component library, which
consists of:

●​ Resource viewer with manual
annotation tool for AV and images

●​ Query compare tool
●​ Collection search tool
●​ Collection inspection tool

MediaSuite-Collection
Registry

CKAN instance mostly listing collections
that are available in the Media Suite

9 NISV

BenG-LOD-server Hosts B&G catalogue as Linked Open
Data; includes the following:

●​ Dereferencing resources from
DAAN catalogue

●​ SPARQL endpoint
●​ YASGUI/Comunica query editor

with example sparql queries

7 NISV

Jupyter Hub connecting
to Media Suite APIs

Python notebooks for (media)
researchers that like to look beyond the
Media Suite’s capabilities.

Accessible for a limited number of users
on the B&G premises.

4 NISV

Media Suite data-stories Stories from Dutch multimedia archives
created using the Media Suite
infrastructure (data and APIs)

9 NISV

ELAN Annotation tool for audio and video
recordings (desktop GUI)

9 MPI

104

https://github.com/beeldengeluid/labo-components
https://mediasuitedata.clariah.nl/
https://mediasuitedata.clariah.nl/
http://data.rdlabs.beeldengeluid.nl/
https://mediasuitedatastories.clariah.nl/
https://archive.mpi.nl/tla/elan

3.6 WP6

Name & Link Description TRL C
L

Partner

Nederlab portal Search & analysis environment for large
set of diachronic text corpora

 knaw-huc

MTAS (Nederlab
search backend)

Advanced & scalable search engine for
annotated text, implemented as plugin
for SOLR

 knaw-huc

un-t-ann-gle Split annotated text documents in utf-8
text stream, stand-off annotations and
metadata.

 knaw-huc

Text Repository Repository for (versions and
serializations) of text documents. API
extension to refer to/retrieve text
segments (analogous to IIIF for images)

 knaw-huc

PID services Essential service for persistence of
annotations.

 wp2?

Showcase for
Interactive
micro-clients

Small/inexpensive clients for annotation
scenarios, using text and web
annotation services.

 knaw-huc, all

Jupyter notebook
micro-client

Small/inexpensive clients for annotation
scenarios, using text and web
annotation services.

 knaw-huc, all

Rolodex web app Web application that allows humanities
scholars to collect collection references
and annotate those. Supports
registration of (not digitized, not online)
collections, supports sharing of
annotations.

 knaw-huc

Collection
registration service
(proposed)

Simple service that allows registration
of any collection (even if non-digital), to
make a reference to it ‘resolvable’, and
to support reference from annotations.

 wp2?

Web annotation
server

Elucidate web annotation server, with
some improvements and extensions.

 3rd party,
knaw-huc

Python client for
elucidate ann
server

Python client library to support access
to eLucidate server from a Python
context.

 knaw-huc

105

http://www.nederlab.nl
https://github.com/textexploration/mtas
https://github.com/textexploration/mtas
https://github.com/knaw-huc/un-t-ann-gle
https://github.com/knaw-huc/textrepo
https://github.com/knaw-huc/micro-annotator
https://github.com/knaw-huc/micro-annotator
https://github.com/knaw-huc/un-t-ann-gle/blob/master/notebooks/experiment-notebooks/13.%20rest_client-annotate-text-scenario-TEI.ipynb
https://github.com/knaw-huc/un-t-ann-gle/blob/master/notebooks/experiment-notebooks/13.%20rest_client-annotate-text-scenario-TEI.ipynb
https://github.com/dlcs/elucidate-server
https://github.com/dlcs/elucidate-server
https://github.com/knaw-huc/elucidate-python-client
https://github.com/knaw-huc/elucidate-python-client
https://github.com/knaw-huc/elucidate-python-client

TextFabric Collection annotation environment
supporting independent standoff
annotation layers for any user.

 DANS

NER pipeline for
historical text
collections (per,
loc, org, ships,
commodities,
values, amounts)

Derived from and applied to Generale
Missieven

 VU

Entity
identification,
context
identification,
co-occurrance for
historical text

On Generale Missieven VU

Surf Data
Exchange

Platform for ‘trusted data sharing’ 3rd party, KB

Manual annotation
tool (COBALT)

… for annotation of text corpora INT

Docere Generic framework for visualising text
editions

 HuC-DI

Text complexity
module

Remark @hennie : add this to text
processing services

 VU

3.7 Partner Projects
Software from partner projects that have a relation with CLARIAH

Name & Link Description T
R
L

C
L

Partner

Kaldi-NL ASR Backend scripts, powered by Kaldi 7 SoS

Oral History
Webservice

Dutch ASR system (webservice+webapp) 7 CLST RUN /
SoS

Forced alignment Forced alignment of audio and
transcriptions (webservice+webapp)

7 CLST RUN

Grapheme-to-phon
eme webservice

Phonetisaurus G2P (webservice+webapp) 7 CLST RUN

106

https://github.com/annotation/text-fabric
https://www.surf.nl/en/data-exchange-trusted-data-sharing
https://www.surf.nl/en/data-exchange-trusted-data-sharing
https://github.com/opensource-spraakherkenning-nl/Kaldi_NL
https://webservices.cls.ru.nl/oralhistory/
https://webservices.cls.ru.nl/oralhistory/
https://webservices.cls.ru.nl/forcedalignment2
https://webservices.cls.ru.nl/g2pservice
https://webservices.cls.ru.nl/g2pservice

CLARIN
Switchboard

Find and access suitable webservices/web
applications (CLARIN-wide), usually given
some user-uploaded input data.

8 CLARIN
ERIC

Digital Methods
Initiative

Consortium of new media researchers
loosely affiliated with WP5. DMI also lists a
great number of tools

8 UvA

3.8 3rd Party
Software from notable third-party projects that have no relation with CLARIAH and are being
used as-is

Name & Link Description TR
L

C
L

3rd Party

TriplyDB Triply

Tesseract OCR system (used by PICCL) 9

pandoc Text conversion (used by Piereling) 9

Jupyter Notebooks
/ Hub / Lab

Live coding in documents (notebooks) 9

Kaldi ASR system 9

spaCy NLP library for Python 9

CKAN Open source data management system 9

Nextflow Workflow engine for data-driven
computational pipelines

9

SKOSMOS Web-based frontend for searching and
browsing SKOS vocabularies

9

Fluentd Data collector for unified logging 9

Harbor OpenSource Registry for Kubernetes &
Docker

Kubernetes Automated container deployment,
scaling, and management

9

Satosa Proxy translating between different
authentication protocols (SAML2, OpenID

8?

107

https://github.com/clarin-eric/switchboard
https://github.com/clarin-eric/switchboard
https://wiki.digitalmethods.net/
https://wiki.digitalmethods.net/
https://wiki.digitalmethods.net/Dmi/ToolDatabase
https://triplydb.com/
https://tesseract-ocr.github.io/
https://pandoc.org/
https://jupyter.org/
https://jupyter.org/
https://github.com/kaldi-asr/kaldi/
https://spacy.io/
https://ckan.org/
https://nextflow.io
http://www.skosmos.org/
https://www.fluentd.org/
https://goharbor.io/
https://kubernetes.io
https://github.com/IdentityPython/SATOSA

Connect and OAuth2)

Kibana 9

LimeSurvey 9

ElasticSearch 9

postgresql 9

Matlab
PyViz
OpenStreetMap
NetworkX
GraphViz
D3

OpenRefine
Network of terms
MixnMatch
OpenReconcile

Cultuurlink
Amalgame

Clarin tools list

Named entity recognition software

108

https://openrefine.org/
https://github.com/netwerk-digitaal-erfgoed/network-of-terms-api
https://mix-n-match.toolforge.org/#/
https://wikidata.reconci.link/
https://cultuurlink.beeldengeluid.nl/app/#/
https://github.com/jrvosse/amalgame
https://www.clarin.eu/resource-families/tools-named-entity-recognition

4 Data Components

4.2 WP2

Name & Link Description DRL Partner

4.3 WP3

Name & Link Description DRL Partner

Frog Data Various trained models for dutch NLP
tasks

 KNAW-Huc

FoLiA Schemas/model and XML-based Format
for Linguistic Annotation.

 KNAW-Huc

Ucto Data Tokenization rules for various languages KNAW-Huc

UDPipe-Frysk Frisian part-of-speech model for UDpipe FA

RobBERT v2
Part-of-Speech
(CGN tagset) for
Dutch

Fine-tuned Transformer Model (Roberta)
(compatible with huggingface
transformers; developed for DeepFrog)

 RUN

BERT
Part-of-Speech
(CGN tagset) for
Dutch
(uses BERTje)

Fine-tuned Transformer Model (BERT)
(compatible with huggingface
transformers; developed for DeepFrog)

 RUN

RobBERT v2
SoNaR Named
Entities for Dutch

Fine-tuned Transformer Model (Roberta)
(compatible with huggingface
transformers; developed for DeepFrog)

 RUN

109

https://github.com/LanguageMachines/frogdata
https://github.com/proycon/folia
https://github.com/LanguageMachines/uctodata
https://bitbucket.org/fryske-akademy/udpipe/
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog

BERT SoNaR
Named Entities for
Dutch
(uses BERTje)

Fine-tuned Transformer Model (Roberta)
(compatible with huggingface
transformers; developed for DeepFrog)

 RUN

CMDI Software
metadata
descriptions

Manually composed software metadata
descriptions
(may be out of date!)

 UU

4.4 WP4

Name & Link Description D
R
L

Partner

Civil Registries schema A linked data ontology to encode
civil registry records with.

?

Dutch Municipalities
through Time

A linked geodataset about the
history of municipalities from 1812
to present day.

? DANS

CShapes A linked geodataset that provides
historical maps of state boundaries
and capitals in the post-World War
II period.

?

hkh-maids-burgerLinker

A linked dataset of civil registry
records. Used as tutorial dataset
for BurgerLinker.

? Historisch
Kenniscentrum
Harderwijk

Amsterdam Time
Machine

A datastory to time travel through
Amsterdam with linguistic,
entertainment and social-economic
data

?

Growth and inequality A datastory that asks questions
about why some countries are rich
and others are poor.

?

Strikes A datastory that looks into
collective action in times of
economic progress.

?

The value of
Occupations

A datastory that analyses ‘high’
and ‘low’ occupations in the past.

?

110

https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/proycon/deepfrog
https://github.com/CLARIAH/software-metadata/tree/master/cmdi
https://github.com/CLARIAH/software-metadata/tree/master/cmdi
https://github.com/CLARIAH/software-metadata/tree/master/cmdi
https://github.com/CLARIAH/burgerLinker/blob/main/assets/CIV.ttl
https://druid.datalegend.net/nlgis/gemeentegeschiedenis
https://druid.datalegend.net/nlgis/gemeentegeschiedenis
https://druid.datalegend.net/nlgis/cshapes
https://druid.datalegend.net/LINKS/hkh-maids-burgerLinker
https://stories.datalegend.net/clariah-atm/
https://stories.datalegend.net/clariah-atm/
https://stories.datalegend.net/growthAndInequalty/
https://stories.datalegend.net/strikes/
https://stories.datalegend.net/codingHistoricalOccupations/
https://stories.datalegend.net/codingHistoricalOccupations/

The 'Spanish' Flu in The
Netherlands

Discover the spatial, temporal, and
social distribution of the 1918-19
flu epidemic in this datastory.

?

The wealth of the
Renaissance

A datastory about the wealth of
the inhabitants of the Republic of
Florence.

?

Roman Catholics per
municipality

A datastory that looks into the
spatial distribution of Roman
Catholics.

?

4.5 WP5

Name & Link Description DRL Partner

GTAA
GTAA data

Dutch thesaurus for audiovisual archives ? NISV

Open Data Lab Open datasets from NISV:
●​ Open Beelden (Open Images)
●​ NISV metadata as LOD and

SPARQL endpoint

 NISV

Media Suite data Metadata & AV content accessible via
the Media Suite (requires login via
CLARIAH/CLARIN federation/IdP):

●​ NISV catalogue (Dutch radio &
television

●​ NISV photo archive
●​ NISV 2e kamer debates
●​ NISV Radio & TV ratings
●​ KB Delpher
●​ Dutch Television program guides

(Metamorfoze)
●​ EYE Desmet film
●​ EYE Desmet posters
●​ EYE Desmet paper archive
●​ DANS oral history
●​ Open data sets from the Open

Data Lab

 NISV / KB /
EYE /
DANS

111

https://stories.datalegend.net/spanishFluNetherlands/
https://stories.datalegend.net/spanishFluNetherlands/
https://stories.datalegend.net/catasto/
https://stories.datalegend.net/catasto/
https://stories.datalegend.net/replication_map/
https://stories.datalegend.net/replication_map/
https://www.beeldengeluid.nl/kennis/kennisthemas/metadata/gemeenschappelijke-thesaurus-audiovisuele-archieven
http://openskos.beeldengeluid.nl/oai-pmh/?verb=ListRecords&metadataPrefix=oai_rdf&set=beng:gtaa
https://labs.beeldengeluid.nl/datasets#index
https://mediasuitedata.clariah.nl

4.6 WP6

Name & Link Description DRL Partner

 ?

4.7 Partner Projects
Data from partner projects that have a relation with CLARIAH

Name & Link Description DRL Partner

Kaldi-NL Dutch ASR models SoS

hisgis.nl Oorspronkelijk kadaster NL 1832 KNAW-HuC
-DI + Fryske
Akademy

CLARIN
Switchboard Tool
Registry

Tool registry for the CLARIN
switchboard

 CLARIN
ERIC

4.8 3rd Party
Data from third-party projects have no relation with CLARIAH and are being used as-is

112

https://github.com/opensource-spraakherkenning-nl/Kaldi_NL
https://hisgis.nl/
https://github.com/clarin-eric/switchboard-tool-registry
https://github.com/clarin-eric/switchboard-tool-registry
https://github.com/clarin-eric/switchboard-tool-registry

Name & Link Description DRL 3rd party

spaCy models Various NLP models for various
languages

Wikidata
Wikidata query
service

Wikidata is a free and open knowledge
base that can be read and edited by
both humans and machines.

The content of Wikidata is available
under a free license, exported using
standard formats, and can be interlinked
to other open data sets on the linked
data web.

 Wikimedia
Foundation

113

https://spacy.io/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://query.wikidata.org/
https://query.wikidata.org/

Appendix A: Technology Readiness Levels

The technology axis we define using the “Technology Readiness Level” (TRL), a measure
that defines the development status of a service. See the various levels in the table below.
The colours and stages in the right column correspond to the vocabulary already used in the
CLARIAH-PLUS workplan. We generally aim for at least TRL7.

TRL Description Stage

0 Idea - Unproven, untested and largely unformulated concept Planning
(pre-alpha)

1 Initial Research - Basic (scholarly) needs observed and reported

2 Concept Formulated - Initial technology/application has been
concept formulated

3 Proof of Concept - Initial Proof-of-concept of key functionality .
Concept presented for initial feedback from scholarly users. Not
yet validated and not suitable for end-users yet.

PoC
(alpha)

4 Validated PoC - Validated Proof-of-concept of key functionality.
Technology validated in its own experimental setting (e.g. the lab).
Not mature enough for end-users yet.

5 Early Prototype - Technology validated in target setting (e.g. with
potential end-users)

Experimental
(beta)

6 Late Prototype - Technology demonstrated in target setting,
end-users adopt it for testing purposes.

7 Release Candidate - Technology ready enough and in initial use
by end-users in intended scholarly environments. Further
validation in progress.

8 Complete - Technology complete and qualified, released for all
end-users in scholarly environments.

Production
(stable)

9 Proven - Technology complete and proven in practice by real
users.

114

Appendix B: Compatibility Levels

CL Description

A Excellent - Technology adheres to as-good-as all posited
infrastructure and software requirements.

B Good - Technology adheres well to the requirements, there only some
minor lapses

C Adequate - Technology adheres to a sufficient amount of
requirements, but some major ones are lacking.

D Lacking - There are too many major requirements that are not met

E Bad - Many requirements are not met.

F Unacceptable - Technology violates or is completely dismissive of
most requirements. It can not possibly be accepted without drastic
changes.

Appendix C: Stakeholder Readiness Level

We use the “Stakeholder Readiness Level” (SRL), a measure that defines the user
readiness of a new service to be used by scholars. This measure can be used for example
to prioritize development using criteria such as:

Value: the added value of the service for scholars (1-10) EST=10
Support/Commitment: the enthusiasm in the community to adopt the service (1-10)
Cost: costs for development but also cost involved for using (1-10)
Adaptability: the level of adaptability in existing work processes (1-10)
Risks: an assessment of the risks and their manageability that are involved in using the
service (1-10)

Appendix D: Infrastructure Requirements
(See https://github.com/CLARIAH/IG-DevOps/issues/4 &
https://github.com/CLARIAH/IG-DevOps/pull/5 , work in progress)

115

https://github.com/CLARIAH/IG-DevOps/issues/4
https://github.com/CLARIAH/IG-DevOps/pull/5

Appendix E: Software Requirements
(See https://github.com/CLARIAH/IG-DevOps/issues/4 &
https://github.com/CLARIAH/IG-DevOps/pull/5 , work in progress)

Appendix F: Documentation Standard

(work in progress?)

Appendix G: Data Readiness Levels
(to be done)

Appendix H: Mission

[data] - [services] - [interfaces] - [community] - [stakeholders]

[data]

●​ ckan.clariah.nl

[services]

●​ See above

[interfaces]

●​ INEO
●​ CLARIAH Data Registry
●​ CLARIAH Digital Rolodex - CLARIAH VRE
●​ CLARIAH Media Suite
●​ CLARIAH Data Stories

[community]

●​ Mastodon.clariah.nl
●​ github/clariah

[stakeholders]

●​ clariah.nl

116

https://github.com/CLARIAH/IG-DevOps/issues/4
https://github.com/CLARIAH/IG-DevOps/pull/5

117

	CLARIAH
	Shared Development Roadmap 2021-2023
	Timetable
	
	Table of Contents
	
	1. Introduction
	1.1 Definitions
	1.2 Objectives
	1.3 Evaluation
	1.4 Instructions
	Template for CLARIAH Services
	Data Model

	
	2 CLARIAH Services
	2.1 Shared Services
	2.1.1 FAIR Datasets (Dataset Registry)
	2.1.2 FAIR Vocabularies
	

	2.1.3 FAIR Tool Discovery

	
	2.1.4 FAIR Annotations (Web Annotation clients)
	

	2.1.5 Scalable Multimedia Processing
	2.1.6 Data Stories
	

	2.1.7 Ineo
	
	
	

	2.2 Domain Services
	2.2.1 OCR & HTR service
	2.2.2 Speech Acquisition
	2.2.3 Geodata entry & management
	2.2.4 FAIR Lexicons
	2.2.5 Linguistic Corpus Search: Text & Annotation Search
	2.2.6 Media Suite

	2.3 Provisioning Services
	2.3.1 Authentication & Authorization

	2.4 Unclassified Services
	2.4.1 Metadata management
	2.4.2 Federated linguistic corpus search: Text & Annotations
	2.4.3 Alignment services
	2.4.4 Reconciliation services
	

	
	2.4.5 Text & linguistic annotation
	2.4.6 High resolution annotation of audiovisual data
	2.4.7 FAIR IIIF-style publication of collections
	

	2.4.8 FAIR Annotation Repository
	2.4.9 Natural Language Processing (automatic annotation)
	2.4.9.1 NLP Suite
	2.4.9.2 Spelling correction/normalisation (OCR/HTR post-correction)
	2.4.9.3 Grapheme to Phoneme Conversion
	

	2.4.10 (Annotated) Text Conversion
	2.4.11 Linguistic Diagnostics Database (LIDIA)
	2.4.12 Glossing Service
	2.4.13 Speech Recognition Services
	2.4.14 Computer Vision

	
	3 Software Components
	3.1 WP1
	
	
	3.2 WP2
	
	3.3 WP3
	
	3.4 WP4
	
	
	3.5 WP5
	
	3.6 WP6
	
	3.7 Partner Projects
	
	3.8 3rd Party
	

	
	4 Data Components
	4.2 WP2
	
	4.3 WP3
	
	4.4 WP4
	
	4.5 WP5
	
	4.6 WP6
	
	4.7 Partner Projects
	4.8 3rd Party

	
	

	
	Appendix A: Technology Readiness Levels
	
	Appendix B: Compatibility Levels
	Appendix C: Stakeholder Readiness Level
	Appendix D: Infrastructure Requirements
	Appendix E: Software Requirements
	Appendix F: Documentation Standard
	Appendix G: Data Readiness Levels
	Appendix H: Mission

