Architecture Paper
AURAE

DISTRHIBUTED RUMTIRME

What Is Aurae?
Where did Aurae Come From?

FAQ
Will Kubernetes work with Aurae?
Does Aurae replace Kubernetes?

Does Aurae replace systemd?
Does Aurae use etcd?

Simple Beginnings
Scaling Aurae

Peer Networking Model

Peer to Peer Mesh

Service Di
Control Systems (Control Plane)
Distri Hash Table (DHT

Aurae Daemon Identity and Authentication Tani Aurae

Network Devices are Services
rvice Transi ms (D Plan

Joining a Node to a Mesh

The Aurae Standard Library
Aurae Lanquage

Manifests

Appendix

Cluster vs Mesh
Decision to stay away from BitTorrent infrastructure

What Is Aurae?

Aurae is an opinionated systems kernel designed to be a building block for higher level
distributed systems such as Kubernetes. Aurae intends to simplify and secure the relationship
between a Node and a distributed system, as well as provide powerful networking primitives to
higher order systems in the stack.

A primary goal of Aurae is to replace systemd. We also aim to replace the runtime node
components in a modern distributed system such as Kubernetes.

Aurae calls out a standard library and a Turing complete scripting language on which platform
teams can develop and compose their platforms in an opinionated and scalable way. Our hope is
that distributed systems such as Kubernetes and modern service mesh systems will find value in
building on top of Aurae.

Aurae is the Turing complete platform language designed for platform teams.

Auraed is the core daemon that supports it.

Where did Aurae Come From?

We believe that there is untapped opportunity in how we manage nodes in distributed systems.
Specifically, we believe that better multi-tenant building blocks at the node level will unlock more
effective platform abstractions (such as the Kubernetes control plane) on top.

The project is a result of a simplification of the core needs of a modern platform infrastructure
team. Aurae attempts to replace systemd and the lower level Kubernetes components that bring
a traditional Kubernetes environment to life.

Aurae was originally started by Kris Néva . The project draws inspiration from Plan 9,
Kubernetes, and the COSI project. The primary motivation for the project was to follow the dream
that distributed systems kernels could adopt a broader scope while also undergoing
simplification.

Core engineers to the project in its early stages include Duffie Coolie, and Tani Aura.

Works that influenced and validated the project include

e Sketch of the Biggest |dea in Software Architecture
e A New Kubernetes from the Ground Up

e Kubernetes StatefulSets are Broken

mailto:nova@aurae.io
mailto:nova@aurae.io
https://github.com/aurae-runtime/aurae
https://github.com/aurae-runtime/auraed
https://9p.io/plan9/
https://kubernetes.io/
https://github.com/cosi-project/community
https://www.oilshell.org/blog/2022/03/backlog-arch.html
https://blog.dave.tf/post/new-kubernetes/
https://www.plural.sh/blog/kubernetes-statefulsets-are-broken/

FAQ

Will Kubernetes work with Aurae?

Yes. We intend to simplify a layer of the stack. The Aurae API will solve many of the same
problems as Kubernetes, and there is no reason a translation between Kubernetes objects and
Aurae API calls cannot be maintained. In fact — the project calls out the ability to have a
transparent Kubernetes deployment running on top of Aurae as one of its goals.

Does Aurae replace Kubernetes?

It depends — but mostly no. Think of Aurae as systemd and the kubelet wrapped up into a single
system that takes networking, storage, identity, and runtime into scope. Instead of managing an
entire Linux system, kernel, systemd services, container runtimes, CNI, CSI, and etc underneath
Kubernetes, you can just run Aurae on the node instead. The Aurae APIs will enable the same
functionality that is otherwise available on a traditional Kubernetes node. Aurae aims to allow an
engineer to leverage the Aurae mechanics to support higher level orchestration systems such as
the Kubernetes API and control plane. Aurae goes after the node, not the cluster.

Does Aurae replace systemd?

Aurae intends to replace systemd and the kubelet in a single fell swoop. Will it be successful in its
mission? All we can do now is pray.

Does Aurae use etcd?

No.

Aurae does not have a centralized source of truth like a Kubernetes cluster does. However Aurae
does persist configuration at the node level. Each node in a mesh is responsible for maintaining
its own source of truth. Additionally each node provides functionality that allows a system on one
node to mutate a system on another node.

We use SQLite for our primary data store. The database runs on each Node instead of a
centralized model.

Also for consideration SpiceDB which has authorization and identity baked in at the database
level.

mailto:nova@aurae.io
https://github.com/authzed/spicedb

Simple Beginnings

The simplest model for Aurae is running FTTTTTTsE s e m e m e
multiple tenants on a single system.
o #!/bin/aurae #!/bin/aurae
Each tenant (in this example) leverages the
Aurae language over mTLS gRPC over a Unix
domain socket. Each tenant has unique
certificate material loaded at runtime. Each
tenant executes against the same core
daemon. Each tenant is reasoned about
independently by the daemon based on the
tenant’s identity at runtime. i

gRPC gRPC |

Containers run in pods. Pods run in MicroVM isolation sandboxes. Sandboxes are the new
namespace. They all run on a single piece of hardware.

Scaling Aurae

Aurae is intended to grow organically with the needs of a business. Starting with Aurae is simple
as the recommendation is to always start with a single node. Add a second node when you have
reached a critical size on the first node. And so on.

Aurae nodes build and maintain a peer-to-peer mesh at runtime.

Exec Container

Pod Pod i

mailto:nova@aurae.io

Peer Networking Model

Auraed will listen on a Unix domain socket by

) Aurae Aurae
default. Auraed will manage network devices for Private Public
the system itself, as well as guests. Endpoint Endpoint
Auraed will provide service discovery and a ‘ auraed L« > auraed

‘1 -|

R

‘ auraed ‘

lookup mechanism for other nodes in the mesh.

Each connection from a single node to another
will be a direct point to point connection.

Aurae
Private
Endpoint

Peer to Peer Mesh

Aurae is designed to work in a decentralized way.
Work is scheduled directly where it runs, or work
is not scheduled at all. The networking model is designed to be as flat as possible. Aurae nodes
navigate the mesh via calculating Hamiltonian paths at runtime.

Aurae will also call out a node registry as a supported service in the future.

Service Discovery

Aurae improves DNS and addresses the decentralization problem by calling out a simple routing
syntax for the nodes to follow.

@service@node@domain

For example, if a user wanted to route a packet to a service, they would need to know the service
name, the node name, and the domain name of the intended destination. For example, routing to
my blog running on a node name “alice” would look like this.

@blog@alice@nivenly.com

@blog@*@nivenly.com
@blog@nivenly.com

mailto:nova@aurae.io
https://linux.die.net/man/7/netdevice
https://en.wikipedia.org/wiki/Hamiltonian_path

Control Systems (Control Plane)

Aurae calls mesh management and higher order decision making out of scope. However the
project will likely end up maintaining one or more higher order services that will reason about
where to send various messages and instructions in a mesh. The control system will be “node
aware” and will use the awareness to make scheduling, and routing decisions.

R

_) . Control
L4 Endpoint L4 Endpoint L4 Endpoint System

‘ Auared ‘ ‘ Auared ‘ ‘ Auared ‘

Distributed Hash Table (DHT)

Aurae leverages an internally scoped DHT for service discovery. The paradigm for a DHT
resembles that of public DNS. Each Aurae node must be hydrated with a routable address in
order to begin finding other nodes in the mesh.

The DHT hydration paradigm is no different than defining 8.8.8.8 in resolv.conf.

A small public facing service can be scheduled on an Aurae node to begin serving as the initial
bootstrapping hop.

Aurae Daemon Identity and Authentication 7ani Aurae

Every Aurae daemon will have a cryptographic identity based on a combination of Public Key
Infrastructure (PKI) Certificates and SSH keys. An admin may connect and control an Aurae
Daemon using an ‘SSH Certificate’ that is a combination of SSH keys and a signed time-limited
certificate. The Aurae Daemon itself also receives an SSH Certificate that it uses to authenticate
itself to incoming SSH connections, and to authenticate itself with other Aurae Daemons.

For production environments scaling beyond one one Aurae Daemon, the CA should be
configured before the Aurae Daemon starts. A plugin model will be provided to support various
key management solutions such as Cloud KMS or proprietary solutions.

An Aurae Daemon may also start in detached mode, where it is not federating with other
systems. In detached mode, authorized SSH keys are configured to control who or what is

mailto:taniwha3@aurae.io
mailto:nova@aurae.io
https://en.wikipedia.org/wiki/Distributed_hash_table

allowed to bootstrap the system. The Aurae Daemon will create a private CA, sign SSH keys, and
return the SSH certificate to the user.

This approach should be flexible enough for a developer to get started quickly with safe defaults.
For major enterprises, the PKI may be backed by KMS, HSM, or other devices, providing full
control over the attestation and signing process.

Authentication between systems with different root CAs will require a mechanism to share the CA
across boundaries. This will allow for arbitrary federation of identities between organizations.

There is also an opportunity to federate with cloud infrastructure identities using OIDC Connect
that will be investigated.

Authorization is maintained separately from Authentication and consumes Aurae’s cryptographic
identity.

Network Devices are Services

The endpoints model is what gives Aurae the ability to power large service mesh topologies seen
with projects like Istio, DAPR, and Linkerd. Instead of positioning a sidecar next to application,
Aurae will instead deploy endpoints onto the node. These endpoints provide powerful
networking functionality such as service discovery, NAT translation, Proxy routing, and name
service resolution.

Aurae will ship with a set of opinionated flat networking endpoints by default, however more
advanced networking topology will be possible simply by implementing the endpoint interface on
the system.

Service Transit Systems (Data Planes)

Aurae will need to identify a way for services to communicate within the mesh. There are two
networking layers that will need to be discussed.

Host Mesh Network Service Mesh Network

Composed of node-aware network endpoints | Pod level networking managed by injecting

that are connected together. interfaces directly into pods and sandboxes.
The network endpoints that form the host The possibility to leverage existing CNI
mesh run directly on a node and network networking toolchains here is in scope.

proxy traffic to/from the local Aurae daemon.

The host mesh network will be end-to-end

mailto:nova@aurae.io

encrypted by default.

Joining a Node to a Mesh

The minimal requirements to join one Aurae instance to another is a communication bridge and
node awareness. In other words a public DHT, public DNS, or hard coded network addresses will
need to be identified for a specific mesh. The more known routable nodes in a mesh, the more
resilient the joining process will be.

It will be possible to join a node through a control system as the control system will be aware of
every node in the mesh. Thus the only awareness a node will need, is the root control system.

mailto:nova@aurae.io

The Aurae Standard Library

Aurae is built on the concept of subsystems, similar to Linux subsystems or Kubernetes resource

groups.
Subsystem | Description Examples
Runtime Stateless executive subsystem for direct interaction with | runtime.Run(myPod)

a system’s runtime resources such as Linux processes,
container runtimes, microVM hypervisors, process
management, etc

runtime.Run(myDaemon)
runtime.Stop(myPod.name)

Schedule Higher level stateful wrapper system for Runtime. Here is | schedule.Cron(myPod, “* * *”)
where systemd unit files, and Kubernetes manifests will schedule.Now(myPod)
become relevant. This subsystem is responsible for schedule.Pin(myPod, node)
scheduling runtime events under various criteria. schedule.Lax(myPod)

Secrets Secrets should never enter a codebase. The goal is easy | myPod.Env(“user”, “nova”)
to do the right thing with secrets. myPod.Env(“pass”, secrets.Get(“nova”))

Identity Identity is a wrapper subsystem that brings certificate nova = identity.User(“nova)
management, authorization (authz) and IAM identity as nova.Allow(runtime)
low as possible in the stack. Auditing and identity should | nova.Allow(runtime.run)
be easy to set up and manage by default. nova.Allow(runtime.Stop)

nova.Deny(schedule.Cron)

Observe Aurae will capture all stdout and stderr on a system and observe.Stdout(myPod)
manage it for the daemon. Observe is how this data, and | observe.Stderr(myPod)
other data is accessed. observe.Stdevent(myPod)

observe.Metrics(myPod)
observe.Stdout(myPod).withContext(ct
X)

Route Routing is a network abstraction that abstracts most of a | route.Open(myPod, “@foo@nivenly”)
networking stack away from the daemon. Here is where | route.Open(myPod, “@baz@nivenly”)
endpoints take over with service to service routing.

The default routing module will enable transparent
end-to-end encryption using the same X509 certificates
the client connects to the daemon with.
Batch The batch system is a way of mutating large groups of myPod1.Name = “nova”
Aurae objects at runtime. This feature is a core primitive myPod2.Name = “alice”
of Aurae and will replace systems such as Helm for myPod3.Name = “emma”
managing YAML. batch.Name(“overwrite”,
[“myPod?1”, “myPod2”, “myPod3”)
Mount Mount will attach POSIX compliant storage to a pod. mount.Device(myPod, s3, “/data”)

mailto:nova@aurae.io

Aurae Language

The Aurae language is a turing complete alternative to YAML that ships with the memory safety
and runtime guarantees as the Rust programming language.

#!/usr/bin/env aurae

"value");

helloPod.add(helloContainer);

let runtim : untime();
runtime.run(helloPod);

Manifests

Application owners and platform engineers will use the same language to represent static
applications that can be used to mutate a system. In other words aurae files can reference each
other. Application teams will be able to define their components without taking action with them
just by providing a static file with their application needs.

Cluster specific configuration will be managed using the bath subsystem. Application owners can
build their applications however they like. The infrastructure specific changes will come later in a
build pipeline.

mailto:nova@aurae.io

Appendix

The Architecture tries to define and reference resources whenever possible. We do most of that
here in the Appendix.

Cluster vs Mesh

We do our best not to refer to a group of Aurae nodes as a cluster but rather as a mesh. We do
this in order to outline the difference in the peer to peer relationship between nodes, and the
organic growth paradigm of Aurae.

Decision to stay away from BitTorrent infrastructure

The Aurae project does not use any public bittorrent or libp2p infrastructure in any way.

While the core DHT paradigms might be similar, an Aurae mesh will be responsible for hosting or
identifying its own public service discovery infrastructure such as public DNS or a DHT.

mailto:nova@aurae.io

