16

KEY

67. Air bags are activated when a severe impact causes a steel ball to compress a spring and electrically ignite a detonator cap. This causes sodium azide (NaN₃) to decompose explosively according to the following reaction:

$$2NaN_3(s) \longrightarrow 2Na(s) + 3N_2(g)$$

What mass of $NaN_3(s)$ must be reacted to inflate an air bag to 70.0 L at STP?

$$\frac{70L}{22.4\frac{l}{mol}}$$
 = 3.125 mol N₂

$$3.125 \text{ mol } (\frac{2}{3}) = 2.083 \text{ mol NaN}_3$$

2.083 mol NaN₃ x 65.0
$$\frac{g}{mol}$$
 = 135 g NaN₃

17

10.55 The metabolic oxidation of glucose, $C_6H_{12}O_6$, in our bodies produces CO_2 , which is expelled from our lungs as a gas:

$$C_6H_{12}O_6(aq) + 6 O_2(g) \longrightarrow 6 CO_2(g) + 6 H_2O(l)$$

- a) Calculate the volume of dry CO_2 produced at body temperature (37 °C) and 0.970 atm when 24.5 g of glucose is consumed in this reaction.
- b) Calcaulte the volume of oxygen at 1 atm and 298 K gas needed to completely oxidize 50.0 g of glucose.

a)
$$\frac{24.5g}{180\frac{g}{mol}}$$
 = 0.136 mol C₆H₁₂O₆

$$0.136 \text{ mol } C_6H_{12}O_6\left(\frac{6}{1}\right) = 0.817 \text{ mol } CO_2$$

$$V = \frac{nRT}{P} = \frac{(0.817mol)(0.0821 \frac{Latm}{molK})(310K)}{0.970atm} = \frac{21.4 \text{ L}}{1.000}$$

 CO_2

b)
$$\frac{50.0g}{180\frac{g}{mol}}$$
 = 0.278 mol C₆H₁₂O₆

$$0.278 \text{ mol } C_6H_{12}O_6\left(\frac{6}{1}\right) = 1.67 \text{ mol } O_2$$

$$V = \frac{nRT}{P} = \frac{(1.67mol)(0.0821 \frac{Latm}{molK})(298K)}{1.00atm} = \frac{40.8 \text{ L}}{1.00atm}$$

 CO_2

1 Ω

Ethanol (C₂H₅OH) burns in air:

$$_{C_{2}H_{5}OH (l) + _{O_{2}(g)} \rightarrow _{CO_{2}(g) + _{H_{2}O (g)}}$$

Balance the equation and determine the volume of air in Liters at 35.0°C and 790. mm Hg required to burn 227 grams of ethanol. Assume that air is 21.0 percent O_2 by volume.

$$C_2H_5OH(1) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(g)$$

$$\frac{227g}{46.0\frac{g}{mol}}$$
 = 4.93 mol C₂H₅OH

$$4.93 \text{ mol } C_2H_5OH(\frac{3}{1})=14.8 \text{ mol } O_2$$

$$V = \frac{nRT}{P} = \frac{(14.8mol)(62.4\frac{LmmHg}{molK})(308K)}{790. mmHg} = 360. \text{ L O}_2$$

360. L
$$O_2 = 0.21x$$
 where x = volume of air

$$x = \frac{360L}{0.21} = 1714 L \sim 1710 L air$$

19	
In alcoholic fermentation, yeast converts glucose to ethanol and carbon dioxide:	$\frac{5.97g}{180\frac{g}{mol}} = 0.0332 \text{ mol } C_6 H_{12} O_6$
$C_6H_{12}O_6(s) \rightarrow 2 C_2H_5OH(l) + 2 CO_2(g)$	$0.0332 \text{ mol } C_6H_{12}O_6\left(\frac{2}{1}\right) = 0.0664 \text{ mol } CO_2$
If 5.97 g of glucose are reacted and 1.44 L of CO ₂ gas are collected at 293 K and 0.984 atm, what is the percent yield of the reaction?	$V = \frac{nRT}{P} = \frac{(0.0664mol)(0.0821\frac{Latm}{molK})(293K)}{0.984atm} = 1.62 \text{ L}$ CO_2
	$\frac{1.44L}{1.62L} \times 100 = 88.9\%$
20	
10.113 Consider the combustion reaction between 25.0 mL of liquid methanol (density = 0.850 g/mL) and 12.5 L of oxygen gas measured at STP. The products of the reac-	$2CH_3OH + 3O_2 \Rightarrow 2CO_2 + 4H_2O$
tion are $CO_2(g)$ and $H_2O(g)$. Calculate the number of moles of H_2O formed if the reaction goes to completion.	$25.0mL(0.850\frac{g}{mL}) = 21.25gCH_3OH$
2 3 1	$\frac{21.25g}{32\frac{g}{mol}} = 0.664 \text{ mol CH}_3\text{OH}$

$$\frac{\frac{12.5 L}{22.4 \frac{L}{mol}}}{22.4 \frac{L}{mol}} = 0.558 \text{ mol } O_2 \frac{LR}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} = \frac{0.744 \text{ mol } H_2O}{0.558 \text{ mol } O_2 \left(\frac{4}{3}\right)} =$$