
Assignment #4 

Due: Thurs, May 23, 2018 at 2:00pm 

Points: 
Collaboration: None Permitted 
 
This assignment is a guided tour through the remaining features of your codebase and 
a deeper tour of WebGL programs in general, especially shader programming. 

Submission: Follow the instructions carefully to avoid point reductions. Submit on CCLE a 
zipped file (UID.zip — e.g: 398342394.zip) that includes all the template files (not just 
main-scene.js).  Don’t include any .git folders 

Setup Information: Clone the Assignment 4 code linked on Piazza.  Open your project as 
always, by hosting it on localhost, and dragging your new repo’s folder into Chrome DevTools 
to create a workspace. Even if the green dots show up, if you forget to create a new Chrome 
workspace you might accidentally edit where your A1, A2, or A3 files are stored. 

Getting Started: 

Write a program using our JavaScript template that draws the solar system we specify, 
showing us that you know how to match our scene exactly.  Animations showing the 
whole solar system are included below.  The structure of the scene must be as we specify.  
When in doubt, refer to our animated GIFs and match them. 
 
When you open your project, you will see the familiar Transforms_Sandbox, but with 
texture images. Replace this scene with the solar system we specify in detail below. 

Before you work on anything, remember to comment out the “test scene” at the bottom 
of your scene’s display function. Your controls and camera location won’t work until you do. 

Items in your code for you to fill in are marked TODO. You probably won’t need to edit 
outside of those items, or any file besides main-scene.js, the one where you build your 
solution.  The lengthy instructions inside the code comments of our partial Solar_System 
class in that file should be sufficient to start implementing the required features.  



Animations: 

With EC2 sun: 

 

Without EC2 sun, and lights switched off: 

 

With lights switched on: 

 



Close ups of planets, using the Camera_Teleporter control buttons::

 

 

 

 

 

Remember:  Read and understand the document “When your JavaScript code isn’t working” 
from Assignment 1 for important instructions about using a debugger for this assignment and 
all the time! 

Note: Unfortunately Chrome’s debugger cannot step inside shader programs, since GLSL 
code runs on the GPU.  When your shaders don’t compile, you can at least get the compiler 
error message though.  To do so, use your debugger to stop at a breakpoint at when the 
shader compilation fails.  The red exception message it throws upon error contains a verbose 
shader compiler error message that will guide you.  

●​ This message includes line numbers, so it would be helpful to be able to find line 
numbers in your shaders.  Seeing line numbers is possible.  Nearby your 
breakpoint, you should see a call to your this.vertex_glsl_code() or 
this.fragment_glsl_code() responsible for the failed compile.  Whichever 
one it was that didn’t compile, remember it and copy-paste it into the “console” 
tab of DevTools.  Append .split("\n") to it and press enter.  Running this line 
of code should return an array that you can expand out.  This is your shader 
string split up by line number. Now you can see which line number the compiler 
complained about. 

 

https://docs.google.com/document/d/e/2PACX-1vSi14Mb-_6qLN7wVA4-4NxqYR-3qHLy7ndjB2G0Ba6TCYHn_KGmrPbu-fCDtHkv9QcGBNqLUUdT6fu1/pub


Steps: 

1.​ Shapes: 
○​ Fill in the constructor of Solar_System to instantiate the shapes that you 

will need to draw each planet, as follows. 
○​ Shape list:  Declare a Cube object, a Planar_Star object, and variations 

of Subdivision_Sphere objects, one for each of these complexity 
levels: 1,2,3,4,5, and 6. 

(A subdivision sphere takes its complexity as an integer argument.  Each 
additional complexity level splits every triangle into four more triangles.  
We cannot make this number very high, because each increase 
quadruples the work the GPU must do to draw so many triangles - 
eventually causing lag). 

○​ Additionally, the sphere of complexity 3 should be built for flat-shading.  To 
do so, it should not be declared as a Subdivision_Sphere, but as a 
Subdivision_Sphere_Flat, which is not defined yet.  To define it 
automatically, put this earlier in your Scene’s constructor code: 

const Subdivision_Sphere_Flat = 
Subdivision_Sphere.prototype.make_flat_shaded_version(); 

○​ [5 points] Figure out how to modify how textures display on the 
subdivision sphere of complexity 5 after it is created.  Increase all of its 
texture coordinates on both axes, multiplying by a factor of 5.  See part 4iv 
to see why. 

2.​ Materials: 
○​ Fill in the constructor of Solar_System to instantiate the materials that 

you will need to draw each planet, as follows. 
○​ Refer to the individual planet descriptions as a guide for which materials to 

make. 
○​ Unless otherwise noted, set each material’s “shader” reference to point to 

phong_shader if we don’t specify a texture.  If we do, set it to 
texture_shader or texture_shader_2 (which shows the effects of 
lights better). A shader reference is the first argument when constructing a 
Material. 

○​ Give materials a color by storing a color member in them.  When you 
use a material, don’t say .override() each time like we did in 
assignment 3; the color is already stored inside.  Later on (part 5) we will 
use override() for a different reason (to use materials with a different 
value of ambient), but we won’t need it for color. 

○​ The second argument when constructing the material is a JavaScript 
dictionary/object {} of options (also called “options object”).  These options 
include the coefficients to the Phong Reflection Model formula, weights 



that usually range from 0 to 1.  The default options specify materials as 
follows:  They do not react to ambient light at all (set by the field ambient) 
and fully react to diffuse and specular light components (set by the fields 
diffusivity and specularity).  The default specular exponent called 
smoothness is 40.  The default color is opaque black (0,0,0,1). 

○​ For your extra credit shaders, your option objects will use different fields 
than those, or none at all (in the case of shaders with no customization). 

3.​ Sun: 
○​ [3 points] Draw the sun centered at the origin.  Use a subdivision sphere 

of complexity level 6. 
○​ [2 points] The sun should use a material that has full ambient color 

(ambient: 1) because it produces its own light, and needs no light 
sources.  The sun material’s shader member should be a regular 
Phong_Shader, unless you do extra credit part 2. 

○​ [5 points] A variable is declared for you in display() called sun_size.  
It varies over time.  Use it or something like it to create a scale matrix for 
the sun. Use given variable smoothly_varying_ratio or something 
like it to create a color that turns yellower as sun_size increases, and 
bluer as it decreases.   Assign this color to your sun’s material. 

○​ [5 points] Assign your sun’s same color to a new light source in your 
scene.  This should be the only Light object stored in your 
program_state.lights array.  Lights are stored in homogeneous 
coordinates; the light should be a point-based light, located at the origin 
0,0,0.  To construct a Light() object, pass in its coordinates, then its 
color, then a size.   

Note: For the light size use ten to the power of sun_size.  That 
seems like a large number, but the size is used to attenuate the 
light source’s power over the square of distance, which is itself a 
large number.  In JavaScript, ** is the exponentiation operator.  
Since the light's size is changing and not the brightness, you should 
see the outer planets darken more than the inner ones whenever 
the sun shrinks. 

4.​ Planets: 
○​ For each of the following planets, leave them their original unscaled size.  

They should orbit around the origin point 0,0,0.  The smallest orbit shall be 
5 units away from the origin and each orbit after shall be 3 units farther. 
The rotation speed should be no faster than t radians, with each farther 
planet revolving at a slower rate than the previous. Besides revolving, 
each planet should also slowly rotate (around its own axis).  ​
Note:  These planets are almost uninhabited, so it’s OK if they collide 
together during their movement.​



Note 2: If outer planets swing too fast around the sun, the camera controls 
might jitter when following planets. 

○​ There are 7 total moving bodies:  5 planets and two moons (one moon is 
extra credit). 

○​ Leave the ambient lighting of each planet as the default value of zero. 
○​ Planets list: 

i.​ [5 points] Planet 1 is made of jagged rock.  To get the jaggedness, 
it should be flat shaded (use the flat shaded sphere of complexity 3 
you made in the constructor).  The rock material uses Phong 
shading, a medium gray color with high diffusivity (close to 1) and 
low specularity (close to 0).  Assign those values in the material.  To 
see how Phong shading works, observe the Phong_Shader class 
definition in your resources file.  Search for function named 
phong_model_lights() and notice the definitions of variables 
diffuse and specular inside it.  These are the terms of the 
Phong reflection model’s formula. 

ii.​ [2 points] Planet 2 is totally silver, shiny almost like a black mirror.  
It should reflect 100% of specular light sources but have 0% 
diffusivity.  Use a slightly darker medium gray base color and a 
sphere with low complexity (2).  Despite the low triangle count you 
should still see a mostly round specular highlight reflected in it. 

iii.​ [3 points] Planet 3 is just the earth, of course.  Use a fairly 
complex sphere (4).  Texture it with the earth’s image by assigning 
to the material a texture of new Texture( 
"assets/earth.gif" ).  The earth isn’t very shiny so use 
mostly diffuse light reflection.  Assign a medium gray base color - 
the texture image will take care of the rest.  To see how texturing 
works, observe the Textured_Phong class in your resources file, 
and how its fragment shader program differs from the 
Phong_Shader by passing a Sampler2D variable to the fragment 
process.  A Sampler2D provides an interface for careful sorts of 
sampling operations into your image file. 

iv.​ [5 points] Planet 4 is made of bricks (our “bricks.png” image).  Use 
texture_shader_2 for this one, which includes a 
bump-mapping-like effect to make the light seem to shine off 
individual bricks.  The material should use full diffusivity and 
specularity (1).  Since Planet 4 is very far away from the light, the 
reflection of our point light source would normally be tiny (not 
showing our bricks well), but fortunately, our brick planet is rougher 
than the other planets and this creates a larger shiny spot than 
normal.  To accomplish that, set the smoothness exponent 
argument of the material to 10 (the default was 40). 



Our included bricks image doesn’t show very many bricks in the 
picture; that doesn’t look good up close to anyone walking on the 
planet.  To give it a higher brick count, use the subdivision sphere 
of complexity 5 that we already modified in part (1d) to have higher 
texture coordinate numbers (multiplying each U and V coord by 5).   

Note: The texture coordinates of this sphere should now 
range from 0 to 5 on both axes, instead of from 0 to 1.  By 
default this causes the texture to repeat itself, since texture 
coords always get modulo’d into the final 0...1 range so that 
they can still sample somewhere in the picture’s bounds 
even if the provided coordinates go out of this range. 

Additionally for Planet 4, let’s experiment with texture sampling 
methods.  You must choose an alternate algorithm (nearest 
neighbor) for looking up texture pixel values.  By default, our 
textures use a good sampling method.  For this part, we'll override 
that to use a bad method. 

●​ Note: The default (good) method is tri-linear filtering using 
mip maps.  Tri-linear filtering samples your image smoothly 
by doing linear blending along three different axes: X, Y, and 
scale.  Blending scale is accomplished by blending samples 
from different mip maps, which are progressively smaller 
(representing bigger pieces of the original image, instead of 
more locally-relevant pixel details).  The worst sampling 
method, however, is called nearest neighbor - it simply 
samples one pixel of the texture image for every screen 
pixel, capturing only extremely local data.   

Let’s use that - pass the WebGL setting name in when declaring the 
texture, like new Texture( "assets/bricks.png", 
"NEAREST" ).   Note that nearest neighbor sampling still has its 
uses - it is the only way to always still show the image’s original full 
color or brightness level, without any blending or smearing. 

v.​ [5 points] Planet 5 is identical to Planet 4, except we’ll create a 
duplicate bricks material for it that does not pass in "NEAREST".  
Both planets should look identical up close under the same light. 
But from far away, the differing WebGL “MIN_FILTER” settings of 
each texture will cause a wildly different appearance.  Whereas 
Planet 4 will show extreme moiré patterns due to aliasing, Planet 5 
will look smooth and not suffer from this (even far away), although 
the colors and brightnesses will no longer be as sharp. 

5.​ Stars: 



○​ [5 points] The Planar_Star class definition we already gave you in your 
file uses a for loop to build a very simple five-pointed star shape.  The 
normal vectors for this planar star shape are trivial (all pointing along Z), 
but what should its texture coordinates be?  You must fill them in yourself.  
Add code to the shape’s constructor.  You can use code similar to how the 
normals were built -- it’s easiest to calculate texture coordinates directly 
from the positions using a mapping rather than trying to work them out 
point by point.  Image coordinates must span from 0 to 1, but your star has 
an outer radius of 7 and therefore spans the range -7 to 7 on both axes.  
That should be enough for you to find the mapping and finish the texture 
coordinates. 

Note: Don’t try to turn a position vector into a texture_coord 
vector using nothing but vector operations, because a position is 
3D whereas a texture_coord is 2D.  There is no function that 
drops to 2D.  You must create a new Vector manually with the two 
values in it that you need. 

Your constructor already stores 30 good random locations to draw this star 
shape in the variable star_matrices.  Your display() function should 
loop through this array and draw one star at each matrix.  This code must 
only run when the this.lights_on variable is true (we’ll set that 
variable in the next part).   Draw each star with a material that uses full 
ambient, no diffusivity or specularity (no interaction with light sources), and 
fully black color (but color opacity still should be 1).  Assign a texture value 
of new Texture( "assets/star_face.png" ) to the material so 
that it uses that image from your folder. 

○​ [5 points] Create an interactive button on your Scene’s visible control 
panel. Find the method make_control_panel() of your Scene (located 
in your own scene’s class definition, not the one anywhere else).  Within 
that, call the function this.key_triggered_button() to append a 
button to our panel.  When you call it, pass in three arguments:  A label (a 
string like “Lights on/off”), an array of keyboard keys that activate 
the button if pressed simultaneously (just use [‘l’], so that the 
lowercase L key controls it), and thirdly a callback function for the button 
to execute.  Pass in a callback function that flips the boolean value of 
this.lights_on.  Use an arrow function so that JavaScript doesn’t lose 
track of this.   The button on your page should now toggle the stars on 
and off when clicked.   

○​ [5 points] We want the stars to light up the rest of the scene, especially so 
that we can see the texture images on planets 3, 4, and 5 better.  This 
requires some amount of ambient light in the scene.  What we really want 
is for each of these planets’ materials to individually have a higher ambient 



term when this.lights_on is true.  Fortunately, rather than defining 
twice as many materials (another, higher ambient version of each one) we 
can instead create temporary materials with overridden values.  Use the 
override function of a Material and pass in an object with the new 
setting.  We have already created such a variable for you in your 
display, called modifier.  Throughout your program whenever 
drawing any planet or moon (passing a material into draw), pass in a 
modified material instead.  Call .override( modifier ) on the 
material to generate a temporary new one that uses the setting in 
modifier, replacing the ambient term with a new value, thereby giving 
our scene its own working “light switch” the user can press.  The 
override function works on colors and other settings too for coding 
convenient one-liners. 

6.​ Moons: 
○​ Each moon should orbit at a distance of 2 units away from its planet, and 

be revolving (around its planet) and rotating (around its own axis). 
○​ Moons list: 

i.​ Moon 1 is for extra credit part 1.  You can omit Moon 1 if you don’t 
do that part.  Otherwise, look farther down for Moon 1’s instructions. 

ii.​ [10 points] Moon 2 uses a very jagged sphere (complexity 1) to 
give it the appearance of a meteor.  For low-poly spheres like this, 
smooth Phong shading does not look quite right - the reflection of 
light off of it rounds out the edges, which looks unnaturally 
sphere-like for our jagged shape.  To fix this, Moon 2 uses Gouraud 
shading.  You must write the Gouraud shader below your Scene 
class.  A skeleton for a Gouraud_Shader class is filled in for you 
in your file.   

Remember that with Gouraud shading, the fragment shader 
interpolates colors; with smooth shading, the fragment shader 
interpolates normals.  For Gouraud, we can therefore compute our 
final Phong color before the vertex shader even finishes, moving 
the call to the phong_model_lights function to the vertex 
shader.  The final color will be passed on to the fragment shader, 
which will do almost nothing now.  Follow these steps to correctly 
move the Phong calculation: 

1.​ In the shared_glsl_code() function (for code that is 
included in both shaders), simply copy the Phong_Shader 
class's implementation of shared_glsl_code(), with one 
modification: change the two "varying" vec3s declared in it 
to just one vec4, called color.  Color is all that we’ll 
interpolate between vertices. 



2.​ Copy the Phong_Shader class's implementation of 
vertex_glsl_code(), but change the declarations of N 
and vertex_worldspace.  Those need to be moved into 
function main().  Declare them as vec3s, not varying, 
that are local to main().  By eliminating two varying 
variables, there will now be two fewer outputs to the 
fragment shader.  Finally, copy over the entire fragment 
shader code from Phong_Shader to the end of the vertex 
shader's main() as well, since the Phong calculation should 
happen there now. 

As you do that, modify any lines that assign to 
gl_FragColor, to assign them to "color", the varying you 
made, instead.  You cannot assign to gl_FragColor from 
within the vertex shader (because it is a special variable for 
outputting final fragment shader color), but you can assign to 
varyings that will be sent as outputs to the fragment shader. 

3.​ Leave the fragment shader’s main() function almost blank, 
except assign gl_FragColor to just equal "color", the 
varying you made earlier. 

4.​ The moon is made of ice.  It is fully white, with very high 
diffuse reflectivity and medium specular reflectivity. 

7.​ Camera: 
○​ Use our provided initial camera matrix that looks diagonally down at the 

scene, far back enough to see the entire scene. 
○​ [5 points] At the end of your scene’s whole display() function, store 

the matrix for each moving body and the sun inside the array called 
this.camera_teleporter.cameras.  Since camera matrices work 
oppositely from the matrices of shapes that we draw, wrap each matrix in 
a call to Mat4.inverse() that you add into 
this.camera_teleporter.cameras.  ​
Performing that step for each planet/body allows our child/helper scene 
(called Camera Teleporter) to work, necessary for you and our graders to 
see your planets up close.  It provides additional buttons on the page that 
smoothly move the camera between places.  Any matrices externally 
added to its cameras member can be selected with these buttons. Upon 
selection, the program_state's camera matrix slowly (smoothly) linearly 
interpolates itself until it matches the selected matrix.   

i.​ Tip: You don’t want to warp the camera to the dead center of a 
planet, because then you’ll only see its inside.  Rather than storing 
the exact (inverse!) matrix of each planet, tweak each matrix a bit 



before the inversion so you can see the planet, or maybe appear to 
be standing on it.   

Remember to add the moons to this list when you make them too. 

At our blending speed of .01, you will still have some leeway to control the 
camera while attached (especially mouse steering), although it will tend to 
pull you back to viewing the selected planet.  

○​ As you teleport the camera, see if you can notice any undesired effects of 
blending matrices linearly this way to generate intermediate camera 
matrices.   A subtle problem can be seen because our code snippet above 
uses linear blending instead of quaternion blending.  Notice how the scene 
collapses sometimes. 

 

Extra Credit 

1.​ Extra Credit Part 1:  

[10 points] Make moon 1 be an animated black hole.  Implement a particular 
custom shader and draw moon 1 with it.  Don’t add any properties to the 
material, and draw it with a subdivision sphere of complexity at least 4.  This 
simple shader will not use any kind of lighting model; it will choose colors as a 
pure sinusoidal function of the ball’s UV coordinates as they vary from 0 to 1 
along the ball’s parametric space (UV here is the typical spherical coordinate 
system).   Besides assigning colors, let’s use our vertex shader for something.  
We’ll make a displacement shader, which disturbs the final vertex positions from 
their usual locations.  We’ll use a sinusoid for this as well, creating wave effects 
traveling up the latitude lines.  The moving waves should vary from black to red, 
creating a black hole appearance. 

a.​ In your resources file, observe the class definition of Funny_Shader for 
an example of a simple shader that acts upon UV coordinates to generate 
colors arbitrarily.  You can try drawing something with that shader to test it. 

b.​ Begin with the small code skeleton we have defined in your file called 
Black_Hole_Shader. For this shader we’ll need to decide which uniform 
variables the shader program should receive from our JavaScript code.  In 
your shader’s update_GPU() function, pass JavaScript values into 
shader uniform variables: 

Send the GPU the only matrix it will need for this shader:  The product of 
the projection, camera, and model matrices.  Finally, pass in the 
animation_time, found inside program_state.  Use the 
update_GPU() function from class Funny_Shader for reference. You 

https://en.wikipedia.org/wiki/Spherical_coordinate_system


don't need to allow custom materials for this part so you don't need to 
forward any values from the material object. 

Note: When you're editing update_GPU() now or in future 
assignments, sometimes you need to tell JavaScript to send a 
value to some new shader variable that you made.  How do you get 
the pointer to a brand new GPU variable from JavaScript?  It turns 
out that the graphics_addresses object already present in our 
library already knows.  By the time we run, it will have already 
retrieved pointers to all variables declared in your shader.  Let's say 
you made a shader variable called my_uniform; you can just say 
graphics_addresses.my_uniform to denote the pointer you 
want to send a value to. 

c.​ Now onto the actual shader program definitions.  Specifically, the void 
main() is blank for both the vertex and fragment shader programs; fill 
these in to cause the GPU to store within the special GPU address called 
gl_Position the correct final resting place of the vertex, and store into 
gl_FragColor the correct final pixel color.  For testing, you can try 
storing simple placeholder values into those special variables -- such as 
the original model space position value, converted from a vec3 to a vec4 
like this: vec4( object_space_pos, 1).  You might find this page 
helpful for dealing with GLSL data types. 

For both shaders (or the shared glsl section), declare a varying vec2 to 
pass a texture coordinate between your shaders (from the vertex program 
to the fragment program).  Also make sure both shaders have an 
animation_time input (a uniform). 

d.​ In the vertex shader, calculate the matrices times the position attribute 
as the existing shaders do.  Store that in a new variable instead of using it 
for the final gl_Position value of the vertex, which we will base on a 
displacement function instead.  The displacement should scale the point to 
change its distance from the origin (and thus from the sphere’s surface).  
Vary this factor sinusoidally by a small amount as a function of V (from 
UV) and animation_time.​
​
When doing displacements, remember that your position is stored in 
homogeneous coordinates, and the w term (w=1) must be protected!  If 
you scale the whole position value you'll mess up w.  Scale the xyz 
components only.​
​
The input to your call to GLSL’s sin function should not grow out of 
bounds or the math quickly loses precision; cap it using mod( rate, 

https://www.khronos.org/opengl/wiki/Data_Type_(GLSL)#Swizzling


radians( 360. ) );.  Your rate can be based on linear factors of both 
the V texture coordinate (measuring latitude) and animation time. 

Remember your vertex shader inputs:  The current vertex's stored position 
and texture coord (UV), animation_time, and the final product of the 
projection, camera, and model matrices. 

e.​ Lastly in the vertex shader, pass your texture coordinate to the next 
shader. 

Note: When editing the shaders, understand the difference between 
texture_coord and f_tex_coord.   The first is an attribute (the 
value stored onto a vertex from your JavaScript).  The second is a 
varying - an output your vertex shader must send to your 
fragment shader.  Since it's an output, do not read from it!  If you try 
to use f_tex_coord in any of your formulas from within the vertex 
shader, it will be undefined, and you will probably get a blank result. 

f.​ In the fragment shader, using a similar function of the input UV texture 
coordinates and animation_time, generate RGB components of a 
color.  It's probably best to use the GLSL max function to ensure no color 
component goes below zero.  Store the result in gl_FragColor.  You should 
see waves of color/brightness that move vertically along the sphere. 

2.​ Extra Credit Part 2:  
[20 points] Use everything you’ve learned so far to adapt a particular shader 
from online into your code.  We will use the fireball shader from here: 

https://www.clicktorelease.com/blog/vertex-displacement-noise-3d-webgl-glsl-three-js/ 

a.​ Read the nicely-made tutorial at that link.  It describes how they use their 
fireball shader code as an input to the popular three.js JavaScript library.  
We will instead use the same shader code to fill in one of our subclasses 
of our familiar Shader object in our simpler library. The process is a little 
different, so you can ignore what the tutorial says about three.js and 
simply focus on the GLSL code.  Fill in the empty Sun_Shader class 
definition in your file. 

b.​ For adapting the code, their version of the shader code itself is not the 
most convenient version available posted online.  Instead take the code 
from this live coding website linked by somebody in the comments 
instead: 

https://shaderfrog.com/app/view/30?view=fragment 

There you can see the fragment and vertex shaders, and can also run the 
shader and see output, with adjustable sliders for the uniforms.  This might 

https://www.clicktorelease.com/blog/vertex-displacement-noise-3d-webgl-glsl-three-js/
https://shaderfrog.com/app/view/30?view=fragment


be very informative to see, and their code is better.  ​
​
Rather than passing in that many uniforms from JavaScript, it’s fine for you 
to hard-code them in as constants in your vertex shader.  Type in 
whatever values seemed to work best using the adjustable sliders.  Then 
set them as constant values in global scope.  Leave off the “uniform” 
keyword.​
​
Make sure you're actually setting all the uniform constant values expected 
by the vertex program! 

 

c.​ Additionally, the most convenient version of the fragment shader came 
from somewhere else:  The comment section of the tutorial.  There I found 
a version that does not depend on looking up a texture image just to get a 
collection of possible colors (which is excessive anyway; we can use 
simple math to make colors).  Here is their suggestion for the entire 
main() function: 

vec3 color = vec3((1.-disp), (0.1-disp*0.2)+0.1, 
(0.1-disp*0.1)+0.1*abs(sin(disp))); 

gl_FragColor = vec4( color.rgb, 1.0 ); 

gl_FragColor *= sun_color; 

Where disp is the displacement distance from the origin, which needs to 
be figured out in the vertex shader and passed from there as a varying, 
and where sun_color is a uniform equalling the sun’s material color we 
used previously in our JavaScript.  I added in the last line, for applying it 
(the material color) to the fireball effect. 

Those two variables plus another uniform we must provide for 
animation_time will be enough to cover all our shader inputs.  Make 
sure they are declared in whichever shaders need them. 

d.​ For the vertex shader, directly paste in all of the Perlin Noise code linked 
by the tutorial at the beginning of the program.  Next, in main(), after any 
necessary declarations, use the vertex shader from the above shaderfrog 
link. This calculates a displacement float value.  Pass displacement 
(scaled if necessary) on to the fragment shader as our disp varying so it 
can be used to affect color. 

Also, use displacement to create an offset vec3 based on our 
position attribute.  Remember that this attribute is stored in object 
coordinates (the sphere’s own system) which is perfect for our plan to 

https://github.com/ashima/webgl-noise
https://shaderfrog.com/app/view/30?view=vertex


displace it from the center.  Simply add the normal vector to it times 
displacement to generate our new value.  You don’t need any additional 
shader inputs to get the normal vector; just derive the normal from position 
using the fact that we start with a perfect sphere.  Finally, use the new 
point.  Apply the product of your projection, camera, and model matrices 
on the new point instead of on the original position attribute.   

Note: For some reason the tutorial’s line of code for multiplying 
position by all the matrices also sets “2” for the w coordinate of 
position.  Don’t do that; it will mess up your sun size. 

Your sphere’s positions should now be moving around over time according 
to the smooth noise function described in the tutorial.  Your fireball effect is 
complete. 

​
​
Each required part must successfully draw and show up onscreen in order to count.  There 
is no partial credit on any individual requirement.  Implement the assignment in clean 
and understandable code.  

If any parts are unclear, ask on Piazza. 

Good luck, have fun! 
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