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Background and Motivation 
The shuffle step in Spark is crucial for moving data between executors during a query, but there 
are a few problems with the way it's currently implemented in Spark. 
 
First of all, shuffle file storage is not resilient and there could be various situations in which a 
recomputation of shuffle is necessary. A recomputation is expensive because shuffle usually 
requires high memory utilization and disk IO. For example, if an executor goes down during a 
shuffle stage, all the shuffle files that it wrote will need to be recomputed.  
 
When running Spark on Kubernetes, the assumptions required by the External Shuffle Service 
do not hold. The external shuffle service in YARN provides executors' shuffle files even after the 
executors goes down, thus not requiring all the mapper executors to be online to complete 
shuffle transfers. However, in Kubernetes and other containerized environments, containers 
cannot necessarily access each others' disks, so shuffle files are lost with a lost executor. This 
once again forces shuffle files to be recomputed and wastes work. 
 
To optimize Spark performance, system administrators also wish to reorganize their hardware 
configurations to isolate hosts that are optimized for compute and hosts that are optimized for 
disk storage. There have been endeavors in the software industry to move towards a 
disaggregated deployment structure with separate compute and storage clusters, so each one 
can be optimized for its own respective tasks more cheaply than acquiring a single host with the 
fully optimized compute and storage specs. To make this deployment infrastructure possible, 
Spark would need to write its shuffle files to an external location. 
 
The Spark code currently ships with an interface for shuffle called the ShuffleManager. However, 
the implementation of this API includes the entire logic for partitioning, sorting, and aggregating 
data that we are not concerned with. For resiliency, performance, and containerization, the most 
crucial thing we need is the ability to store shuffle files in locations that are not the executors' 



local disk. Currently, changing the storage behavior by extending this interface would require a 
lot of copy-and-pasted code, and doesn’t provide other hooks that would be necessary to 
support remote storage (i.e. failure handling at the scheduler, location bookkeeping on the 
driver). 
 
The initial proposal was to write an implementation of external shuffle that ships directly with 
Spark. However, after discussion with members of the community interested in this space, we 
discovered that people have different hardware constraints and use cases, and there was no 
clear solution that could easily work for everybody. Furthermore, shuffle often comprises the 
majority of a job's time, so having the option to optimize for a specific cluster deployment is 
useful. In fact, people have already forked Spark to work with other external storage systems, 
so we believe that having a unified way of doing so would benefit the community. 
 
Therefore, in this SPIP, we provide a proposal for pluggable reading and writing of shuffle bytes.  

Goals 
●​ Define an API within the current shuffle implementation for pluggable writing and reading 

of shuffle bytes 
●​ Determine the usefulness and implications of the API, and how it fits in with the ongoing 

and future work in the area of Spark shuffle 

Non-Goals 
●​ Define details of possible implementations of this API 
●​ Discuss other possible solutions to shuffle performance and resiliency, like the feasibility 

of a cluster dedicated to shuffle 

Target Personas 
●​ Developers familiar with the core Spark infrastructure code, especially the code or 

designs behind the current implementation of shuffle 
●​ Developers interested in improving shuffle resiliency in their own clusters by writing an 

external shuffle plugin implementation 

Project Overview 



As mentioned previously, the proposal is to introduce an API for reading and writing shuffle data 
from Spark’s SortShuffleManager. The rest of the document is dedicated to defining the 
API and the progress that was made to reach these proposed changes. 

Exploratory and background work 
We started this project with https://issues.apache.org/jira/browse/SPARK-25299. After two 
months of prototyping a possible solution, we decided to pivot to propose an API first before 
writing a full implementation. The background for the decision and a detailed description of the 
initial API proposal is delineated here: 
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit
#heading=h.y41oeu2l8y5u 

The API In context of current work 
The API proposed here sits behind the existing SortShuffleManager implementation of the 
ShuffleManager interface for writing and reading only the shuffle task's output data. It does not 
yet concern itself with the temporary spill files, which we'll address later in this section. At a high 
level, the interface for writing these files is through OutputStreams or WritableByteChannels, 
while the interface for reading is an InputStream. The writer returns an optional BlockManagerId 
if the location of the shuffle block needs to be stored by the driver (not every implementation will 
need to do this, we discuss this more later). 
 
Because the API is only concerned with writing the final shuffle files, the API cannot currently 
support a fully disaggregated cluster where the compute cluster has little to no disk. However, if 
there is a concrete need to support this in the wider community, we can easily add APIs for 
writing the temporary spill files as well. Spill file management is orthogonal to the work we 
propose here. 
 
Since the API is used from within the SortShuffleManager implementation, other 
implementations of the ShuffleManager will likely not benefit from this design. For example, 
Facebook's Cosco work that relies on a completely external shuffle cluster (where the mapper 
only partitions and streams its data to the appropriate shuffle cluster node and the shuffle cluster 
nodes take care of the sorting and aggregation work originally done by the mapper) uses a 
custom implementation of the ShuffleManager and thus will not hit the codepath that uses the 
API we plan to introduce. Similarly, Uber's shuffle manager work also extends the 
ShuffleManager interface to store data on remote servers instead of local disk. It is noteworthy 
that our work does not conflict with this previous work. Rather, the projects can be done in 
parallel: our work allows for flexible storage options with the existing SortShuffleManager 
without modifying the shuffle algorithm, while they are writing new implementations of the 
ShuffleManager interface to implement their own shuffle algorithm. 
 

https://issues.apache.org/jira/browse/SPARK-25299
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit#heading=h.y41oeu2l8y5u
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit#heading=h.y41oeu2l8y5u
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit#heading=h.y41oeu2l8y5u
https://databricks.com/sparkaisummit/sessions-single-2019/?id=68


Our work shares many similarities to the Splash Shuffle Manager proposed by MemVerge. Both 
implementations aim to allow for pluggable implementations of storing temporary data. There 
are several significant differences between our API and the Splash shuffle manager: 

1.​ Code structure: Embedding in existing code vs. creating separate code paths. Our 
code hooks into the existing shuffle manager, without creating a separate 
implementation of ShuffleManager . By contrast, the Splash shuffle manager extends the 
ShuffleManager API, but rewrites the sort-based shuffle algorithm, in a sense thus 
cloning the existing shuffle code. The risk of cloning work this way is that the upstream 
SortShuffleManager could diverge from the implementation of Splash's equivalent code. 

2.​ Shuffle index files as part of the API vs. an implementation detail. The Splash 
shuffle manager has APIs for explicitly writing index files to look up partition blocks from 
map output files. We make the API more generic to make the implementation decide 
how to look up partitions after they have been written. We will discuss this further below. 

3.​ Splash considers map outputs to be written as files, while we consider partitions 
to be stored as arbitrary byte streams. This is perhaps more so a naming convention, 
but Splash's APIs consider partition data to be stored in files, and as such have named 
the APIs using file system-based concepts. Our APIs are more generic, and as such we 
open the possibility for shuffle data to be stored in other kinds of data storage systems, 
such as NoSQL databases and distributed key-value stores. 

4.​ Splash handles spill files, but this is considered future work in this proposal. 
Splash has an additional API for writing shuffle spill files to remote storage. We do not 
include this in our first incarnation of this work, but we think that it would be possible to 
either port over Splash's spill file API, or propose our own spill file APIs, into the Spark 
codebase. 

We observe, then, that the APIs proposed here are strictly more generic than the file APIs given 
in the Splash shuffle manager. Or to put it another way, all implementations of the Splash APIs 
can be reworked to be put behind the proposed APIs here, and the resulting performance 
should be equivalent. 
 
Some people are also using an implementation of ShuffleManager that performs the same logic 
as the current SortShuffleManager but also asynchronously uploads a backup copy of the 
shuffle files to the distributed cache Alluxio, and has logic to retrieve from that backup location 
when the initial fetch request from the executor fails. The new API is designed to support such 
an async backup implementation, where the shuffle writers could return a BlockManagerId 
indicating the local executor location, but still have the shuffle reader read from a DFS backup 
location if a read from the local executor fails. 
 
Palantir has also been working on an implementation of external shuffle using Apache Ignite, a 
distributed in-memory cache. The idea combines the fault tolerance of a distributed file system 
with MemVerge's idea of using an in-memory store to avoid the time it takes to write bytes to 
disk. (link) 

https://github.com/MemVerge/splash
https://github.com/MemVerge/splash/blob/master/src/main/java/com/memverge/splash/shared/SharedFSFactory.java
https://github.com/apache/spark/pull/22005
https://github.com/apache/spark/pull/22005
https://github.com/mccheah/ignite-shuffle-service/pull/2/files


 
Finally, Palantir has also explored a default external shuffle service implementation that could 
ship with Spark that does not mandate the use of any external libraries, making it easy to 
deploy. The implementation involves individual servers that do not communicate or know about 
each other. In such situations, the metadata about the primary and backup locations of each 
shuffle block is assigned by the executor and stored within the driver. (link) 

Success Criteria: Target Shuffle Storage Implementations 
The objective of this API is to enable users to write shuffle storage implementations that can 
have all of the following properties: 

1.​ The temporary output from map tasks can be stored resiliently. The failure of any single 
process in the system does not necessarily require the map output to be recomputed. 

2.​ The temporary output from map tasks does not have to be stored on the executor nodes. 
3.​ The implementation can be used in Kubernetes, thus enabling the user to turn on 

dynamic allocation in this environment. 

Note that any given implementation does not need to satisfy all three of these properties. 
Rather, the goal is that the API would enable any implementation to have all three of these 
properties. 
 
We will introduce the API into the Spark code base by moving the existing local file shuffle 
storage behind this API. We have already done some work to prove that this existing 
implementation can live behind the API (linked in PRs below). 
 
Concretely, we considered four possible shuffle storage strategies that should be possible with 
this API. The criteria for success, then, is that one can reason about how the proposed API 
would be extended to support all of the following four strategies. These four strategies are as 
follows: 

●​ The writing of shuffle files to local disk. This is the current implementation of Spark's 
shuffle. As mentioned previously, we will place Spark's current shuffle storage code 
behind the API so it can be easily replaced with a plugin implementation without the 
need to fork many codepaths in the Spark codebase. 

●​ Asynchronous backup to a distributed file system. The Alluxio implementation of shuffle 
is an example of this. In these implementations, the shuffle files are still being stored to 
the executor disk. A thread asynchronous from the task worker thread will back up the 
files to an external storage system. The reader can later retrieve the file contents from 
either the original executor that wrote the files or the external storage system. 

●​ Storing files in a distributed cache or file system. The Splash Shuffle Manager, HDFS 
implementation, or using a distributed cache like Ignite are all examples of external 
storage systems in this category. Here, the final shuffle files are written directly to a 
distributed file system or cache that manages its own replication. 

https://github.com/mccheah/spark/pull/6


●​ Individual file servers without backup or replication. In such implementations, a cluster of 
individual file servers store the shuffle files. The servers don't gossip, so there is no 
replication and no server knows about the others. Here, the driver must store the 
location host and port location of each shuffle block. More work, especially that related to 
FetchFailure integration with the scheduler, is necessary to support file system servers 
that handle replication. 

In the next sections, we will describe some API decisions that we made in order to support all 4 
types of implementations above. 

Risks 

●​ The API changes require changes to the core shuffle code itself, which could pose as a 
risk since it will likely affect almost every Spark query. We have attempted to mitigate 
these risks by running existing tests, writing microbenchmark tests, and cluster 
performance tests 

●​ There is the risk that, once we start writing implementations of the plugin, there might 
need to be changes to the initial API. Discussing how the API could handle anticipated 
implementations will decrease the number and severity of changes we'd need to make 
later. Also, we are placing the current implementation of local shuffle file storage under 
this API as an initial proof of concept for both the usability and versatility of the API. 

●​ The current design only deals with writing the final shuffle files to external locations. 
Temporary spills will still require disk, so fully disaggregated cluster deployments are not 
possible with this design alone. We would need further APIs to put spill files on remote 
storage. 

Timeline 
We have the majority of the code already written or in pull requests to this branch: 
https://github.com/palantir/spark/tree/spark-25299. It will likely take a couple of months to 
propose and merge these changes to Apache/spark, and write integration tests for the API. 

We are also working on implementations of this API that involve remote storage, specifically 
allowing more fault-tolerant behavior and isolation when running Spark on Kubernetes. Those 
implementations, along with the default implementation, should be performance tested.  

API Deep Dive 
The API we propose comes in 5 parts: the driver lifecycle, executor lifecycle, the shuffle writer, 
shuffle locations metadata, and the shuffle reader. 
 
Our initial plan is to refactor the existing shuffle logic of writing shuffle files locally behind this 
API. This allows us to both define all shuffle logic behind this API without having to fork the 

https://github.com/palantir/spark/commit/11a37edda09aa980f807acbd83816e24ade7f03f
https://github.com/palantir/spark-tpcds-benchmark
https://github.com/palantir/spark-tpcds-benchmark
https://github.com/palantir/spark/tree/spark-25299
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit#heading=h.y41oeu2l8y5u


shuffle logic, while also providing a way to test plugin implementations without being concerned 
about negatively impacting the current shuffle storage implementation. 
 
We've already started writing the code for introducing the API and refactoring the current shuffle 
code on this branch: https://github.com/palantir/spark/tree/spark-25299. Ongoing work is also in 
pull requests in this fork tagged with [SPARK-25299]. 
 
We wanted to provide an API that was both flexible enough for most feasible implementations, 
but had a minimal surface area that obviated the need to understand how sort-based shuffle and 
the scheduler behave internally. Some more advanced features can be hidden by default 
implementations. 

Driver lifecycle 
interface ShuffleDataIO { 
   ShuffleDriverComponents driver(); 
   ShuffleExecutorComponents executor(); 
} 
 
interface ShuffleDriverComponents { 
   Map<String, String> initializeApplication(); 
   void cleanupApplication(); 
   void removeShuffleData(int shuffleId); 
   default boolean shouldUnregisterOutputOnHostOnFetchFailure() { 
       return false; 
   } 
} 
 
Ongoing PR: https://github.com/palantir/spark/pull/533 
 
ShuffleDataIO is the entry point to the entire shuffle plugin system, and it will be reflectively 
instantiated from the class indicated by the configuration 
spark.shuffle.io.plugin.class (see code here). From there, 
ShuffleDataIO#driver() would be called to initialize the driver-specific parts of the plugin 
tree. 
 
The driver side of the plugin allows for the following operations: 

●​ initializeApplication() is a generic method for the plugin system to initialize 
application-wide state. For example, this can register the application with an external 
shuffle service process. It returns a map of additional spark configurations that will be 
sent to all of the application's executors. 

https://github.com/palantir/spark/tree/spark-25299
https://github.com/palantir/spark/pull/533
https://github.com/palantir/spark/pull/533/files#diff-364713d7776956cb8b0a771e9b62f82dR496


●​ cleanupApplication() will be called upon the exit of the application, and can clean 
up any ephemeral state created by the shuffle plugin system. For example, this method 
can make calls to an external shuffle service to delete any files associated with the 
application. 

●​ removeShuffleData(int shuffleId) is used by the ContextCleaner to delete 
map output data from shuffle steps that are no longer referenced. 

●​ shouldUnregisterOutputOnHostOnFetchFailure() determines whether other 
shuffle blocks on the same host as a block that resulted in a 
FetchFailureException should be removed. For example, in the case where blocks 
are backed up asynchronously (i.e. executors store the shuffle files locally and then 
upload them to a DFS in the background), one wouldn't want to remove all the blocks on 
the same host as a unfetchable block. In that case, perhaps the executor died while 
uploading a backup, but other backups by the same executor are still persisted in the 
DFS, and other blocks written by other executors on the same host might still be 
serviceable. Therefore, in such an implementation, 
shouldUnregisterOutputOnHostOnFetchFailure() should return false. 
However, in the individual file server case, the most likely scenario for a fetch failure 
would be the file server being unresponsive or going down, in which case one should 
trigger a recomputation of everything stored on that host, and thus 
shouldUnregisterOutputOnHostOnFetchFailure() should return true. 

Executor Components 
interface ShuffleExecutorComponents { 
   void initializeExecutor( 
      String appId,  
      String execId, 
      Map<String, String> extraConfigs); 
 
   ShuffleWriteSupport write(); 
 
   ShuffleReadSupport read(); 
} 
 
Reference PR section: 
https://github.com/palantir/spark/commit/bc40da2a765ae38de107bcf74386ac23463d91d1#diff-f
0a98bdcfed7b93ab277e2b92c8fd9ecR216 
 
Executor components are initiated in the SortShuffleManager and are responsible for 
constructing the writers and readers. If the executor needs to do initialization tasks (i.e. register 
with the shuffle service), then it can do so in initializeExecutor(). It's also passed the 
extra configurations set in ShuffleDriverComponents.initializeApplication(). 

https://github.com/palantir/spark/commit/bc40da2a765ae38de107bcf74386ac23463d91d1#diff-f0a98bdcfed7b93ab277e2b92c8fd9ecR216
https://github.com/palantir/spark/commit/bc40da2a765ae38de107bcf74386ac23463d91d1#diff-f0a98bdcfed7b93ab277e2b92c8fd9ecR216
https://github.com/palantir/spark/commit/bc40da2a765ae38de107bcf74386ac23463d91d1#diff-f0a98bdcfed7b93ab277e2b92c8fd9ecR216


Shuffle Writer 
public interface ShuffleWriteSupport { 
   ShuffleMapOutputWriter createMapOutputWriter( 
       int shuffleId, 
       int mapId, 
       int numPartitions) throws IOException; 
} 
 
public interface ShuffleMapOutputWriter { 
    ShufflePartitionWriter getPartitionWriter(int partitionId)  
       throws IOException; 
 
    Optional<BlockManagerId> commitAllPartitions()  
       throws IOException; 
 
    void abort(Throwable error) throws IOException; 
} 
 
public interface ShufflePartitionWriter { 
 
   /** 
    * Returns an underlying {@link OutputStream} that can write bytes 
    * to the underlying data store. 
    * <p> 
    * Note that this stream itself is not closed by the caller; close 
    * the stream in the implementation of this interface's  
    * {@link #close()}. 
    */ 
   OutputStream toStream() throws IOException; 
 
   /** 
    * Get the number of bytes written by this writer's stream returned 
    * by {@link #toStream()} or the channel returned by  
    * {@link #toChannel()}. 
    */ 
   long getNumBytesWritten(); 
} 
 
Reference PRs: 

●​ https://github.com/palantir/spark/pull/524 

https://github.com/palantir/spark/pull/524


●​ https://github.com/palantir/spark/pull/540 
●​ https://github.com/palantir/spark/pull/535 

 
On the writer side, there is a single ShuffleMapOutputWriter for each map task. Each 
mapper creates a single ShufflePartitionWriter for a single partition. Each partition 
writer returns an OutputStream that the shuffle implementation can write its shuffle data to. 
 
If the map task fails for any reason, ShuffleMapOutputWriter#abort is called to revert 
any partial work that was done by the map output writer or any of its partition writers. 
 
When the map task is completed, ShuffleMapOutputWriter#commitAllPartitions is 
called to finalize the writing from this map task. The commit returns metadata about where the 
shuffle data was persisted as an Optional<BlockManagerId>. The return value is 
Optional.empty for DFS use cases since the host/port of the remote store can be configurable. 
For async and local file implementations, this would be the executor from which to retrieve the 
data. For remote file servers, the BlockManagerId would include the host and port of the remote 
file server, with a null execId since the remote file server isn't running an executor. 
 
There is an additional API that users can optionally implement if they want their implementation 
to support WritableByteChannels to transfer data to the shuffle locations: 
 
public interface SupportsTransferTo extends ShufflePartitionWriter { 
 
   /** 
    * Opens and returns a {@link TransferrableWritableByteChannel} for  
    * transferring bytes from partial input byte channels to the 
    * underlying shuffle data store. 
    */ 
   TransferrableWritableByteChannel openTransferrableChannel()  
       throws IOException; 
 
   /** 
    * Returns the number of bytes written either by this writer's  
    * output stream opened by 
    * {@link #openStream()} or the byte channel opened by 
    * {@link #openTransferrableChannel()}. 
    */ 
   @Override 
   long getNumBytesWritten(); 
} 
 
public interface TransferrableWritableByteChannel extends Closeable { 

https://github.com/palantir/spark/pull/540
https://github.com/palantir/spark/pull/524
https://github.com/palantir/spark/pull/535


 
   /** 
    * Copy all bytes from the source readable byte channel into this 
    * byte channel. 
    * @param source File to transfer bytes from. Do not call anything     
    *        on this channel other than {@link  
    *        FileChannel#transferTo(long, long, WritableByteChannel)}. 
    * @param transferStartPosition Start position of the input file to  
    *        transfer from. 
    * @param numBytesToTransfer Number of bytes to transfer from the  
    *        given source. 
    */ 
    void transferFrom( 
        FileChannel source, 
        long transferStartPosition, 
        long numBytesToTransfer) throws IOException; 
} 
 
The WritableByteChannel implementation is necessary for the implementation of the writer 
that writes to local disk because it allows the write to bypass memory if we're copying from one 
file to another. For implementations where a WritableByteChannel doesn't make sense, a 
default implementation to convert from stream to channel is provided so the implementer 
doesn't need to be concerned with channels. 
 
Wrapping the input and output WritableByteChannels inside of 
TransferrableWritableByteChannel is necessary to be able to override the close() 
method on the WritableByteChannel. In the local disk implementation of shuffle, each 
partition writer actually returns the same stream since all partitions are written to the same file, 
so we don't want to close the OutputStream until the very end, when we commit. However, 
not all implementations behave this way, and some may need to close every partition's 
OutputStream separately. Therefore, to avoid the risk of leaking resources, we need to close 
every OutputStream, so we override the local disk implementation's close() method to not 
close until we commit the entire partition. 
 
The same logic applies to WritableByteChannel. The optimizations for transferring bytes 
bypassing memory are only effective when transferring from FileChannel to FileChannel, 
so we would need to return an instance of FileChannel, which is constructed as part of the 
FileOutputStream object. To override the close functionality, we would need to extend the 
FileChannelImpl class, which seems dubious since the NIO classes are provided by the 
JDK. Therefore, we instead return a TransferrableWritableByteChannel whose 
close() method is easily overridable. Thus, in the local disk implementation, we will just 
choose not to call close() on the underlying WritableByteChannel whenever close() is 
called. 



AttemptId in MapStatus 
PR: https://github.com/palantir/spark/pull/574 
 
The Spark scheduler supports speculative execution, meaning that two executors could be 
running the same task at the same time, and stage retries, meaning that the same task could be 
running in an active taskset as well as a zombie taskset. We need to ensure that, in both cases, 
the two executors don’t override each other’s data, and that a shuffle reader reads accurate 
data. For example, take an instance where the writer implementation writes each partition to the 
remote host in a sequence of chunks. In such a situation, a reducer might read data half written 
by the original task and half written by the running speculative task, which will not be the correct 
contents if the mapper output is unordered. Therefore, writes by a single mapper might have to 
be transactional, which is not clear from the API, and seems rather complex to reason about, so 
we shouldn't expect this from the implementer. 
 
We introduce the idea of an attempt Id in both the API and the MapStatus structure to ensure 
that readers always read consistent data.  
 
The attempt id could also be helpful towards 
https://issues.apache.org/jira/browse/SPARK-25341 by acting as a “shuffle generation number,” 
where the reducer should specify which shuffle it wants to read (as mentioned in the ticket, this 
is necessary for rolling back non-deterministic shuffle stages). 

Shuffle Reader 
public interface ShuffleReadSupport { 
   /** 
    * Returns an underlying {@link Iterable<InputStream>} that will  
    * iterate through shuffle data, given an iterable for the shuffle  
    * blocks to fetch. 
    */ 
   Iterable<InputStream> getPartitionReaders( 
       Iterable<ShuffleBlockInfo> blockMetadata) throws IOException; 
} 
 
public class ShuffleBlockInfo { 
   public final int shuffleId; 
   public final int mapId; 
   public final int reduceId; 
   public final long length; 
   Public final int attemptId; 
   public final Optional<BlockManagerId> shuffleLocation; 

https://github.com/palantir/spark/pull/574
https://issues.apache.org/jira/browse/SPARK-25341


} 
 
Reference PR: https://github.com/palantir/spark/pull/523 
 
On the reader side, the ShuffleReadSupport is passed an iterable over 
ShuffleBlockInfo that contains the information necessary to retrieve each shuffle block, 
and returns an iterable over InputStreams. This flexible API allows the implementation to 
decide how to fetch its bytes. For example, the current Spark shuffle code pre-fetches files onto 
disk before the files' InputStream is returned by the iterator. 

Failure Handling 

Currently, if a reduce job fails to retrieve a shuffle block, Spark will assume that there was an 
error at the remote end of the request and try to mark the storage location as unavailable. This 
means that, when a reducer throws a FetchFailedException, the DAGScheduler will mark 
all data on that executor or host as unavailable. (if the external shuffle service is disabled, Spark 
tries to fetch from the mapper executor directly, so it only marks data on the executor as 
unavailable. However, if the external shuffle service is enabled, then Spark can mark all data on 
the host as unavailable since the external shuffle service is supposed to service all shuffle data 
on the host). Marking mapper data as unavailable allows the scheduler to retry running the 
mapper stage. Otherwise, the entire job will fail. 

When using remote storage, we don't necessarily want Spark to blacklist like it did before. Here, 
we outline how we can handle fetch failures in each of the 4 implementations in a V1 
implementation of this API: 

1.​ The writing of shuffle files to local disk. This is handled the same way as it's currently 
done in Spark since it's the same implementation. Here, the reducer throws a 
FetchFailedException by passing in the remote host and port that it was trying to 
read from. The scheduler then blacklists that host, or the host-port combination (for 
blacklisting by executor id instead of host). 

2.​ Writing shuffle data to local disk and then asynchronously backing up the data to a 
resilient remote storage layer. Here, the reducer will try to read from both a mapper 
executor (to retrieve its local file) and the remote store where the backup is stored. If the 
read from both fails, we can throw a FetchFailedException with the 
BlockManagerId of the executor. Then, the scheduler will retrigger the recomputation of 
any shuffle block stored on the executor. Note that this could potentially rerun map tasks 
that have been already backed up, but it's better to be pessimistic when rerunning 
mapper tasks because Spark will abort the entire job if too many task sets fail to 
complete. 

3.​ Synchronously storing the shuffle data in a distributed cache or file system. When using 
a distributed storage layer for storing shuffle files, there should ideally never be failures 
in fetching shuffle data. To indicate that nothing should be recomputed, the plugin can 

https://github.com/palantir/spark/pull/523


throw a generic Exception that is not a FetchFailedException. However, in the 
off-chance that the plugin wants to report a missing output, it should throw a 
FetchFailedExecption with a null BlockManagerId. 

4.​ Writing shuffle data to individual independent file servers. Here, if the reducer fails to 
fetch the data from a remote host, it will assume that the host is unreachable and all data 
on that host is lost. Then, the plugin can trigger a recomputation of all shuffle blocks on a 
file server by returning the BlockManagerId of the remote server (with a null execId) with 
the FetchFailedException. 

First API Iteration Limitations 

●​ We don't support individual independent file servers with backup locations. We 
experimented with a ShuffleLocation abstraction for denoting backup locations to 
the MapOutputTracker (see PR https://github.com/palantir/spark/pull/517/files), but 
integration with the scheduler was complex (attempts: 
https://github.com/palantir/spark/pull/548, https://github.com/palantir/spark/pull/555, 
https://github.com/palantir/spark/pull/559). We decided not to support this use case in 
the first iteration, and address the issue if it becomes an important concern later. 

●​ In the async backup case (implementation #2 above), there's no way to guarantee 
persistence of a shuffle block if the executor fails for an unexpected reason or in the 
case of dynamic allocation. Ideally, the executor would upload all active shuffle blocks to 
the remote location before shutting down. Additional plugin points might be needed for 
communication between driver and the executor to optimize this case. Without this 
guarantee, the async implementation does offer a large improvement over the existing 
shuffle behavior. 

 

https://github.com/palantir/spark/pull/517/files
https://github.com/palantir/spark/pull/548
https://github.com/palantir/spark/pull/548
https://github.com/palantir/spark/pull/555
https://github.com/palantir/spark/pull/559
https://github.com/palantir/spark/pull/559
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