
SPIP: SPARK-25299 - An API For
Writing Shuffle Data To Remote Storage
Authors: Matt Cheah and Yifei Huang

Acknowledgements: Special thanks to Ilan Filonenko for writing the initial individual file server
prototype, and contributing the changes to move the existing local disk writers behind the new
API. Also thanks to Imran Rashid and Marcelo Vanzin for their continuous comments and
feedback throughout the project.

Background and Motivation
The shuffle step in Spark is crucial for moving data between executors during a query, but there
are a few problems with the way it's currently implemented in Spark.

First of all, shuffle file storage is not resilient and there could be various situations in which a
recomputation of shuffle is necessary. A recomputation is expensive because shuffle usually
requires high memory utilization and disk IO. For example, if an executor goes down during a
shuffle stage, all the shuffle files that it wrote will need to be recomputed.

When running Spark on Kubernetes, the assumptions required by the External Shuffle Service
do not hold. The external shuffle service in YARN provides executors' shuffle files even after the
executors goes down, thus not requiring all the mapper executors to be online to complete
shuffle transfers. However, in Kubernetes and other containerized environments, containers
cannot necessarily access each others' disks, so shuffle files are lost with a lost executor. This
once again forces shuffle files to be recomputed and wastes work.

To optimize Spark performance, system administrators also wish to reorganize their hardware
configurations to isolate hosts that are optimized for compute and hosts that are optimized for
disk storage. There have been endeavors in the software industry to move towards a
disaggregated deployment structure with separate compute and storage clusters, so each one
can be optimized for its own respective tasks more cheaply than acquiring a single host with the
fully optimized compute and storage specs. To make this deployment infrastructure possible,
Spark would need to write its shuffle files to an external location.

The Spark code currently ships with an interface for shuffle called the ShuffleManager. However,
the implementation of this API includes the entire logic for partitioning, sorting, and aggregating
data that we are not concerned with. For resiliency, performance, and containerization, the most
crucial thing we need is the ability to store shuffle files in locations that are not the executors'

local disk. Currently, changing the storage behavior by extending this interface would require a
lot of copy-and-pasted code, and doesn’t provide other hooks that would be necessary to
support remote storage (i.e. failure handling at the scheduler, location bookkeeping on the
driver).

The initial proposal was to write an implementation of external shuffle that ships directly with
Spark. However, after discussion with members of the community interested in this space, we
discovered that people have different hardware constraints and use cases, and there was no
clear solution that could easily work for everybody. Furthermore, shuffle often comprises the
majority of a job's time, so having the option to optimize for a specific cluster deployment is
useful. In fact, people have already forked Spark to work with other external storage systems,
so we believe that having a unified way of doing so would benefit the community.

Therefore, in this SPIP, we provide a proposal for pluggable reading and writing of shuffle bytes.

Goals
●​ Define an API within the current shuffle implementation for pluggable writing and reading

of shuffle bytes
●​ Determine the usefulness and implications of the API, and how it fits in with the ongoing

and future work in the area of Spark shuffle

Non-Goals
●​ Define details of possible implementations of this API
●​ Discuss other possible solutions to shuffle performance and resiliency, like the feasibility

of a cluster dedicated to shuffle

Target Personas
●​ Developers familiar with the core Spark infrastructure code, especially the code or

designs behind the current implementation of shuffle
●​ Developers interested in improving shuffle resiliency in their own clusters by writing an

external shuffle plugin implementation

Project Overview

As mentioned previously, the proposal is to introduce an API for reading and writing shuffle data
from Spark’s SortShuffleManager. The rest of the document is dedicated to defining the
API and the progress that was made to reach these proposed changes.

Exploratory and background work
We started this project with https://issues.apache.org/jira/browse/SPARK-25299. After two
months of prototyping a possible solution, we decided to pivot to propose an API first before
writing a full implementation. The background for the decision and a detailed description of the
initial API proposal is delineated here:
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit
#heading=h.y41oeu2l8y5u

The API In context of current work
The API proposed here sits behind the existing SortShuffleManager implementation of the
ShuffleManager interface for writing and reading only the shuffle task's output data. It does not
yet concern itself with the temporary spill files, which we'll address later in this section. At a high
level, the interface for writing these files is through OutputStreams or WritableByteChannels,
while the interface for reading is an InputStream. The writer returns an optional BlockManagerId
if the location of the shuffle block needs to be stored by the driver (not every implementation will
need to do this, we discuss this more later).

Because the API is only concerned with writing the final shuffle files, the API cannot currently
support a fully disaggregated cluster where the compute cluster has little to no disk. However, if
there is a concrete need to support this in the wider community, we can easily add APIs for
writing the temporary spill files as well. Spill file management is orthogonal to the work we
propose here.

Since the API is used from within the SortShuffleManager implementation, other
implementations of the ShuffleManager will likely not benefit from this design. For example,
Facebook's Cosco work that relies on a completely external shuffle cluster (where the mapper
only partitions and streams its data to the appropriate shuffle cluster node and the shuffle cluster
nodes take care of the sorting and aggregation work originally done by the mapper) uses a
custom implementation of the ShuffleManager and thus will not hit the codepath that uses the
API we plan to introduce. Similarly, Uber's shuffle manager work also extends the
ShuffleManager interface to store data on remote servers instead of local disk. It is noteworthy
that our work does not conflict with this previous work. Rather, the projects can be done in
parallel: our work allows for flexible storage options with the existing SortShuffleManager
without modifying the shuffle algorithm, while they are writing new implementations of the
ShuffleManager interface to implement their own shuffle algorithm.

https://issues.apache.org/jira/browse/SPARK-25299
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit#heading=h.y41oeu2l8y5u
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit#heading=h.y41oeu2l8y5u
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit#heading=h.y41oeu2l8y5u
https://databricks.com/sparkaisummit/sessions-single-2019/?id=68

Our work shares many similarities to the Splash Shuffle Manager proposed by MemVerge. Both
implementations aim to allow for pluggable implementations of storing temporary data. There
are several significant differences between our API and the Splash shuffle manager:

1.​ Code structure: Embedding in existing code vs. creating separate code paths. Our
code hooks into the existing shuffle manager, without creating a separate
implementation of ShuffleManager . By contrast, the Splash shuffle manager extends the
ShuffleManager API, but rewrites the sort-based shuffle algorithm, in a sense thus
cloning the existing shuffle code. The risk of cloning work this way is that the upstream
SortShuffleManager could diverge from the implementation of Splash's equivalent code.

2.​ Shuffle index files as part of the API vs. an implementation detail. The Splash
shuffle manager has APIs for explicitly writing index files to look up partition blocks from
map output files. We make the API more generic to make the implementation decide
how to look up partitions after they have been written. We will discuss this further below.

3.​ Splash considers map outputs to be written as files, while we consider partitions
to be stored as arbitrary byte streams. This is perhaps more so a naming convention,
but Splash's APIs consider partition data to be stored in files, and as such have named
the APIs using file system-based concepts. Our APIs are more generic, and as such we
open the possibility for shuffle data to be stored in other kinds of data storage systems,
such as NoSQL databases and distributed key-value stores.

4.​ Splash handles spill files, but this is considered future work in this proposal.
Splash has an additional API for writing shuffle spill files to remote storage. We do not
include this in our first incarnation of this work, but we think that it would be possible to
either port over Splash's spill file API, or propose our own spill file APIs, into the Spark
codebase.

We observe, then, that the APIs proposed here are strictly more generic than the file APIs given
in the Splash shuffle manager. Or to put it another way, all implementations of the Splash APIs
can be reworked to be put behind the proposed APIs here, and the resulting performance
should be equivalent.

Some people are also using an implementation of ShuffleManager that performs the same logic
as the current SortShuffleManager but also asynchronously uploads a backup copy of the
shuffle files to the distributed cache Alluxio, and has logic to retrieve from that backup location
when the initial fetch request from the executor fails. The new API is designed to support such
an async backup implementation, where the shuffle writers could return a BlockManagerId
indicating the local executor location, but still have the shuffle reader read from a DFS backup
location if a read from the local executor fails.

Palantir has also been working on an implementation of external shuffle using Apache Ignite, a
distributed in-memory cache. The idea combines the fault tolerance of a distributed file system
with MemVerge's idea of using an in-memory store to avoid the time it takes to write bytes to
disk. (link)

https://github.com/MemVerge/splash
https://github.com/MemVerge/splash/blob/master/src/main/java/com/memverge/splash/shared/SharedFSFactory.java
https://github.com/apache/spark/pull/22005
https://github.com/apache/spark/pull/22005
https://github.com/mccheah/ignite-shuffle-service/pull/2/files

Finally, Palantir has also explored a default external shuffle service implementation that could
ship with Spark that does not mandate the use of any external libraries, making it easy to
deploy. The implementation involves individual servers that do not communicate or know about
each other. In such situations, the metadata about the primary and backup locations of each
shuffle block is assigned by the executor and stored within the driver. (link)

Success Criteria: Target Shuffle Storage Implementations
The objective of this API is to enable users to write shuffle storage implementations that can
have all of the following properties:

1.​ The temporary output from map tasks can be stored resiliently. The failure of any single
process in the system does not necessarily require the map output to be recomputed.

2.​ The temporary output from map tasks does not have to be stored on the executor nodes.
3.​ The implementation can be used in Kubernetes, thus enabling the user to turn on

dynamic allocation in this environment.

Note that any given implementation does not need to satisfy all three of these properties.
Rather, the goal is that the API would enable any implementation to have all three of these
properties.

We will introduce the API into the Spark code base by moving the existing local file shuffle
storage behind this API. We have already done some work to prove that this existing
implementation can live behind the API (linked in PRs below).

Concretely, we considered four possible shuffle storage strategies that should be possible with
this API. The criteria for success, then, is that one can reason about how the proposed API
would be extended to support all of the following four strategies. These four strategies are as
follows:

●​ The writing of shuffle files to local disk. This is the current implementation of Spark's
shuffle. As mentioned previously, we will place Spark's current shuffle storage code
behind the API so it can be easily replaced with a plugin implementation without the
need to fork many codepaths in the Spark codebase.

●​ Asynchronous backup to a distributed file system. The Alluxio implementation of shuffle
is an example of this. In these implementations, the shuffle files are still being stored to
the executor disk. A thread asynchronous from the task worker thread will back up the
files to an external storage system. The reader can later retrieve the file contents from
either the original executor that wrote the files or the external storage system.

●​ Storing files in a distributed cache or file system. The Splash Shuffle Manager, HDFS
implementation, or using a distributed cache like Ignite are all examples of external
storage systems in this category. Here, the final shuffle files are written directly to a
distributed file system or cache that manages its own replication.

https://github.com/mccheah/spark/pull/6

●​ Individual file servers without backup or replication. In such implementations, a cluster of
individual file servers store the shuffle files. The servers don't gossip, so there is no
replication and no server knows about the others. Here, the driver must store the
location host and port location of each shuffle block. More work, especially that related to
FetchFailure integration with the scheduler, is necessary to support file system servers
that handle replication.

In the next sections, we will describe some API decisions that we made in order to support all 4
types of implementations above.

Risks

●​ The API changes require changes to the core shuffle code itself, which could pose as a
risk since it will likely affect almost every Spark query. We have attempted to mitigate
these risks by running existing tests, writing microbenchmark tests, and cluster
performance tests

●​ There is the risk that, once we start writing implementations of the plugin, there might
need to be changes to the initial API. Discussing how the API could handle anticipated
implementations will decrease the number and severity of changes we'd need to make
later. Also, we are placing the current implementation of local shuffle file storage under
this API as an initial proof of concept for both the usability and versatility of the API.

●​ The current design only deals with writing the final shuffle files to external locations.
Temporary spills will still require disk, so fully disaggregated cluster deployments are not
possible with this design alone. We would need further APIs to put spill files on remote
storage.

Timeline
We have the majority of the code already written or in pull requests to this branch:
https://github.com/palantir/spark/tree/spark-25299. It will likely take a couple of months to
propose and merge these changes to Apache/spark, and write integration tests for the API.

We are also working on implementations of this API that involve remote storage, specifically
allowing more fault-tolerant behavior and isolation when running Spark on Kubernetes. Those
implementations, along with the default implementation, should be performance tested.

API Deep Dive
The API we propose comes in 5 parts: the driver lifecycle, executor lifecycle, the shuffle writer,
shuffle locations metadata, and the shuffle reader.

Our initial plan is to refactor the existing shuffle logic of writing shuffle files locally behind this
API. This allows us to both define all shuffle logic behind this API without having to fork the

https://github.com/palantir/spark/commit/11a37edda09aa980f807acbd83816e24ade7f03f
https://github.com/palantir/spark-tpcds-benchmark
https://github.com/palantir/spark-tpcds-benchmark
https://github.com/palantir/spark/tree/spark-25299
https://docs.google.com/document/d/1NQW1XgJ6bwktjq5iPyxnvasV9g-XsauiRRayQcGLiik/edit#heading=h.y41oeu2l8y5u

shuffle logic, while also providing a way to test plugin implementations without being concerned
about negatively impacting the current shuffle storage implementation.

We've already started writing the code for introducing the API and refactoring the current shuffle
code on this branch: https://github.com/palantir/spark/tree/spark-25299. Ongoing work is also in
pull requests in this fork tagged with [SPARK-25299].

We wanted to provide an API that was both flexible enough for most feasible implementations,
but had a minimal surface area that obviated the need to understand how sort-based shuffle and
the scheduler behave internally. Some more advanced features can be hidden by default
implementations.

Driver lifecycle
interface ShuffleDataIO {
 ShuffleDriverComponents driver();
 ShuffleExecutorComponents executor();
}

interface ShuffleDriverComponents {
 Map<String, String> initializeApplication();
 void cleanupApplication();
 void removeShuffleData(int shuffleId);
 default boolean shouldUnregisterOutputOnHostOnFetchFailure() {
 return false;
 }
}

Ongoing PR: https://github.com/palantir/spark/pull/533

ShuffleDataIO is the entry point to the entire shuffle plugin system, and it will be reflectively
instantiated from the class indicated by the configuration
spark.shuffle.io.plugin.class (see code here). From there,
ShuffleDataIO#driver() would be called to initialize the driver-specific parts of the plugin
tree.

The driver side of the plugin allows for the following operations:

●​ initializeApplication() is a generic method for the plugin system to initialize
application-wide state. For example, this can register the application with an external
shuffle service process. It returns a map of additional spark configurations that will be
sent to all of the application's executors.

https://github.com/palantir/spark/tree/spark-25299
https://github.com/palantir/spark/pull/533
https://github.com/palantir/spark/pull/533/files#diff-364713d7776956cb8b0a771e9b62f82dR496

●​ cleanupApplication() will be called upon the exit of the application, and can clean
up any ephemeral state created by the shuffle plugin system. For example, this method
can make calls to an external shuffle service to delete any files associated with the
application.

●​ removeShuffleData(int shuffleId) is used by the ContextCleaner to delete
map output data from shuffle steps that are no longer referenced.

●​ shouldUnregisterOutputOnHostOnFetchFailure() determines whether other
shuffle blocks on the same host as a block that resulted in a
FetchFailureException should be removed. For example, in the case where blocks
are backed up asynchronously (i.e. executors store the shuffle files locally and then
upload them to a DFS in the background), one wouldn't want to remove all the blocks on
the same host as a unfetchable block. In that case, perhaps the executor died while
uploading a backup, but other backups by the same executor are still persisted in the
DFS, and other blocks written by other executors on the same host might still be
serviceable. Therefore, in such an implementation,
shouldUnregisterOutputOnHostOnFetchFailure() should return false.
However, in the individual file server case, the most likely scenario for a fetch failure
would be the file server being unresponsive or going down, in which case one should
trigger a recomputation of everything stored on that host, and thus
shouldUnregisterOutputOnHostOnFetchFailure() should return true.

Executor Components
interface ShuffleExecutorComponents {
 void initializeExecutor(
 String appId,
 String execId,
 Map<String, String> extraConfigs);

 ShuffleWriteSupport write();

 ShuffleReadSupport read();
}

Reference PR section:
https://github.com/palantir/spark/commit/bc40da2a765ae38de107bcf74386ac23463d91d1#diff-f
0a98bdcfed7b93ab277e2b92c8fd9ecR216

Executor components are initiated in the SortShuffleManager and are responsible for
constructing the writers and readers. If the executor needs to do initialization tasks (i.e. register
with the shuffle service), then it can do so in initializeExecutor(). It's also passed the
extra configurations set in ShuffleDriverComponents.initializeApplication().

https://github.com/palantir/spark/commit/bc40da2a765ae38de107bcf74386ac23463d91d1#diff-f0a98bdcfed7b93ab277e2b92c8fd9ecR216
https://github.com/palantir/spark/commit/bc40da2a765ae38de107bcf74386ac23463d91d1#diff-f0a98bdcfed7b93ab277e2b92c8fd9ecR216
https://github.com/palantir/spark/commit/bc40da2a765ae38de107bcf74386ac23463d91d1#diff-f0a98bdcfed7b93ab277e2b92c8fd9ecR216

Shuffle Writer
public interface ShuffleWriteSupport {
 ShuffleMapOutputWriter createMapOutputWriter(
 int shuffleId,
 int mapId,
 int numPartitions) throws IOException;
}

public interface ShuffleMapOutputWriter {
 ShufflePartitionWriter getPartitionWriter(int partitionId)
 throws IOException;

 Optional<BlockManagerId> commitAllPartitions()
 throws IOException;

 void abort(Throwable error) throws IOException;
}

public interface ShufflePartitionWriter {

 /**
 * Returns an underlying {@link OutputStream} that can write bytes
 * to the underlying data store.
 * <p>
 * Note that this stream itself is not closed by the caller; close
 * the stream in the implementation of this interface's
 * {@link #close()}.
 */
 OutputStream toStream() throws IOException;

 /**
 * Get the number of bytes written by this writer's stream returned
 * by {@link #toStream()} or the channel returned by
 * {@link #toChannel()}.
 */
 long getNumBytesWritten();
}

Reference PRs:

●​ https://github.com/palantir/spark/pull/524

https://github.com/palantir/spark/pull/524

●​ https://github.com/palantir/spark/pull/540
●​ https://github.com/palantir/spark/pull/535

On the writer side, there is a single ShuffleMapOutputWriter for each map task. Each
mapper creates a single ShufflePartitionWriter for a single partition. Each partition
writer returns an OutputStream that the shuffle implementation can write its shuffle data to.

If the map task fails for any reason, ShuffleMapOutputWriter#abort is called to revert
any partial work that was done by the map output writer or any of its partition writers.

When the map task is completed, ShuffleMapOutputWriter#commitAllPartitions is
called to finalize the writing from this map task. The commit returns metadata about where the
shuffle data was persisted as an Optional<BlockManagerId>. The return value is
Optional.empty for DFS use cases since the host/port of the remote store can be configurable.
For async and local file implementations, this would be the executor from which to retrieve the
data. For remote file servers, the BlockManagerId would include the host and port of the remote
file server, with a null execId since the remote file server isn't running an executor.

There is an additional API that users can optionally implement if they want their implementation
to support WritableByteChannels to transfer data to the shuffle locations:

public interface SupportsTransferTo extends ShufflePartitionWriter {

 /**
 * Opens and returns a {@link TransferrableWritableByteChannel} for
 * transferring bytes from partial input byte channels to the
 * underlying shuffle data store.
 */
 TransferrableWritableByteChannel openTransferrableChannel()
 throws IOException;

 /**
 * Returns the number of bytes written either by this writer's
 * output stream opened by
 * {@link #openStream()} or the byte channel opened by
 * {@link #openTransferrableChannel()}.
 */
 @Override
 long getNumBytesWritten();
}

public interface TransferrableWritableByteChannel extends Closeable {

https://github.com/palantir/spark/pull/540
https://github.com/palantir/spark/pull/524
https://github.com/palantir/spark/pull/535

 /**
 * Copy all bytes from the source readable byte channel into this
 * byte channel.
 * @param source File to transfer bytes from. Do not call anything
 * on this channel other than {@link
 * FileChannel#transferTo(long, long, WritableByteChannel)}.
 * @param transferStartPosition Start position of the input file to
 * transfer from.
 * @param numBytesToTransfer Number of bytes to transfer from the
 * given source.
 */
 void transferFrom(
 FileChannel source,
 long transferStartPosition,
 long numBytesToTransfer) throws IOException;
}

The WritableByteChannel implementation is necessary for the implementation of the writer
that writes to local disk because it allows the write to bypass memory if we're copying from one
file to another. For implementations where a WritableByteChannel doesn't make sense, a
default implementation to convert from stream to channel is provided so the implementer
doesn't need to be concerned with channels.

Wrapping the input and output WritableByteChannels inside of
TransferrableWritableByteChannel is necessary to be able to override the close()
method on the WritableByteChannel. In the local disk implementation of shuffle, each
partition writer actually returns the same stream since all partitions are written to the same file,
so we don't want to close the OutputStream until the very end, when we commit. However,
not all implementations behave this way, and some may need to close every partition's
OutputStream separately. Therefore, to avoid the risk of leaking resources, we need to close
every OutputStream, so we override the local disk implementation's close() method to not
close until we commit the entire partition.

The same logic applies to WritableByteChannel. The optimizations for transferring bytes
bypassing memory are only effective when transferring from FileChannel to FileChannel,
so we would need to return an instance of FileChannel, which is constructed as part of the
FileOutputStream object. To override the close functionality, we would need to extend the
FileChannelImpl class, which seems dubious since the NIO classes are provided by the
JDK. Therefore, we instead return a TransferrableWritableByteChannel whose
close() method is easily overridable. Thus, in the local disk implementation, we will just
choose not to call close() on the underlying WritableByteChannel whenever close() is
called.

AttemptId in MapStatus
PR: https://github.com/palantir/spark/pull/574

The Spark scheduler supports speculative execution, meaning that two executors could be
running the same task at the same time, and stage retries, meaning that the same task could be
running in an active taskset as well as a zombie taskset. We need to ensure that, in both cases,
the two executors don’t override each other’s data, and that a shuffle reader reads accurate
data. For example, take an instance where the writer implementation writes each partition to the
remote host in a sequence of chunks. In such a situation, a reducer might read data half written
by the original task and half written by the running speculative task, which will not be the correct
contents if the mapper output is unordered. Therefore, writes by a single mapper might have to
be transactional, which is not clear from the API, and seems rather complex to reason about, so
we shouldn't expect this from the implementer.

We introduce the idea of an attempt Id in both the API and the MapStatus structure to ensure
that readers always read consistent data.

The attempt id could also be helpful towards
https://issues.apache.org/jira/browse/SPARK-25341 by acting as a “shuffle generation number,”
where the reducer should specify which shuffle it wants to read (as mentioned in the ticket, this
is necessary for rolling back non-deterministic shuffle stages).

Shuffle Reader
public interface ShuffleReadSupport {
 /**
 * Returns an underlying {@link Iterable<InputStream>} that will
 * iterate through shuffle data, given an iterable for the shuffle
 * blocks to fetch.
 */
 Iterable<InputStream> getPartitionReaders(
 Iterable<ShuffleBlockInfo> blockMetadata) throws IOException;
}

public class ShuffleBlockInfo {
 public final int shuffleId;
 public final int mapId;
 public final int reduceId;
 public final long length;
 Public final int attemptId;
 public final Optional<BlockManagerId> shuffleLocation;

https://github.com/palantir/spark/pull/574
https://issues.apache.org/jira/browse/SPARK-25341

}

Reference PR: https://github.com/palantir/spark/pull/523

On the reader side, the ShuffleReadSupport is passed an iterable over
ShuffleBlockInfo that contains the information necessary to retrieve each shuffle block,
and returns an iterable over InputStreams. This flexible API allows the implementation to
decide how to fetch its bytes. For example, the current Spark shuffle code pre-fetches files onto
disk before the files' InputStream is returned by the iterator.

Failure Handling

Currently, if a reduce job fails to retrieve a shuffle block, Spark will assume that there was an
error at the remote end of the request and try to mark the storage location as unavailable. This
means that, when a reducer throws a FetchFailedException, the DAGScheduler will mark
all data on that executor or host as unavailable. (if the external shuffle service is disabled, Spark
tries to fetch from the mapper executor directly, so it only marks data on the executor as
unavailable. However, if the external shuffle service is enabled, then Spark can mark all data on
the host as unavailable since the external shuffle service is supposed to service all shuffle data
on the host). Marking mapper data as unavailable allows the scheduler to retry running the
mapper stage. Otherwise, the entire job will fail.

When using remote storage, we don't necessarily want Spark to blacklist like it did before. Here,
we outline how we can handle fetch failures in each of the 4 implementations in a V1
implementation of this API:

1.​ The writing of shuffle files to local disk. This is handled the same way as it's currently
done in Spark since it's the same implementation. Here, the reducer throws a
FetchFailedException by passing in the remote host and port that it was trying to
read from. The scheduler then blacklists that host, or the host-port combination (for
blacklisting by executor id instead of host).

2.​ Writing shuffle data to local disk and then asynchronously backing up the data to a
resilient remote storage layer. Here, the reducer will try to read from both a mapper
executor (to retrieve its local file) and the remote store where the backup is stored. If the
read from both fails, we can throw a FetchFailedException with the
BlockManagerId of the executor. Then, the scheduler will retrigger the recomputation of
any shuffle block stored on the executor. Note that this could potentially rerun map tasks
that have been already backed up, but it's better to be pessimistic when rerunning
mapper tasks because Spark will abort the entire job if too many task sets fail to
complete.

3.​ Synchronously storing the shuffle data in a distributed cache or file system. When using
a distributed storage layer for storing shuffle files, there should ideally never be failures
in fetching shuffle data. To indicate that nothing should be recomputed, the plugin can

https://github.com/palantir/spark/pull/523

throw a generic Exception that is not a FetchFailedException. However, in the
off-chance that the plugin wants to report a missing output, it should throw a
FetchFailedExecption with a null BlockManagerId.

4.​ Writing shuffle data to individual independent file servers. Here, if the reducer fails to
fetch the data from a remote host, it will assume that the host is unreachable and all data
on that host is lost. Then, the plugin can trigger a recomputation of all shuffle blocks on a
file server by returning the BlockManagerId of the remote server (with a null execId) with
the FetchFailedException.

First API Iteration Limitations

●​ We don't support individual independent file servers with backup locations. We
experimented with a ShuffleLocation abstraction for denoting backup locations to
the MapOutputTracker (see PR https://github.com/palantir/spark/pull/517/files), but
integration with the scheduler was complex (attempts:
https://github.com/palantir/spark/pull/548, https://github.com/palantir/spark/pull/555,
https://github.com/palantir/spark/pull/559). We decided not to support this use case in
the first iteration, and address the issue if it becomes an important concern later.

●​ In the async backup case (implementation #2 above), there's no way to guarantee
persistence of a shuffle block if the executor fails for an unexpected reason or in the
case of dynamic allocation. Ideally, the executor would upload all active shuffle blocks to
the remote location before shutting down. Additional plugin points might be needed for
communication between driver and the executor to optimize this case. Without this
guarantee, the async implementation does offer a large improvement over the existing
shuffle behavior.

https://github.com/palantir/spark/pull/517/files
https://github.com/palantir/spark/pull/548
https://github.com/palantir/spark/pull/548
https://github.com/palantir/spark/pull/555
https://github.com/palantir/spark/pull/559
https://github.com/palantir/spark/pull/559

	SPIP: SPARK-25299 - An API For Writing Shuffle Data To Remote Storage
	Background and Motivation
	Goals
	Non-Goals
	Target Personas
	Project Overview
	Exploratory and background work
	The API In context of current work
	Success Criteria: Target Shuffle Storage Implementations
	Risks
	Timeline

	API Deep Dive
	Driver lifecycle
	Executor Components
	Shuffle Writer
	AttemptId in MapStatus
	Shuffle Reader
	Failure Handling
	First API Iteration Limitations

