
[Design Doc] File System Observer
This Document is public

Authors: dslee@chromium.org memmott@chromium.org (original author:
asully@chromium.org)

Last Updated: Jul 30, 2024

One-page overview

Summary
The File System Access API lets web applications interact with the host operating system's file
system. One big missing feature of it is allowing web applications to be notified when files or
directories change. Web applications could try to implement something like this using polling,
but that would be very inefficient. As such we want to provide a dedicated API for observing
file changes at runtime while the site has an open tab.

Platforms
Mac, Windows, Linux, Chrome OS

Team
storage-dev@chromium.org

Bug
https://crbug.com/1019297

Code affected
//content/browser/file_system_access/
//third_party/blink/renderer/modules/file_system_access/
//third_party/blink/public/mojom/file_system_access/

Explainer
https://github.com/whatwg/fs/blob/main/proposals/FileSystemObserver.md

Motivation
The file system is a shared resource that can be modified from several contexts. A Bucket File
System spans numerous agents - tabs, workers, etc - within the same storage key. The local file

mailto:dslee@chromium.org
mailto:memmott@chromium.org
mailto:asully@chromium.org
https://developer.chrome.com/articles/file-system-access/
mailto:storage-dev@chromium.org
https://crbug.com/1019297
https://github.com/whatwg/fs/blob/main/proposals/FileSystemObserver.md


go/slimdoc 2 of 18

system also spans across origins and other applications on the host operating system.

For a given agent to know about modifications to the file system - made either by itself or from
some external context - it can currently poll the file system to detect changes. This is
inefficient and does not scale well.

This doc proposes a FileSystemObserver interface which will much more easily allow a website
to be notified of changes to the file system.

Observing file changes is by far the most-requested feature on the File System Access API
from developers. See discussions on the spec: Watching/notifications · Issue #72

Javascript API Design

Web IDL

interface FileSystemObserver {

constructor(FileSystemObserverCallback callback);

Promise<void> observe(FileSystemHandle handle,

optional FileSystemObserverObserveOptions options = {});

void disconnect();

};

callback FileSystemObserverCallback = void (

sequence<FileSystemChangeRecord> records,

FileSystemObserver observer

);

enum FileSystemChangeType {

"appeared", // File/dir has been created or moved into the scope of the

// observation.

"disappeared", // File/dir has been deleted or moved out of the scope of the

// observation.

"modified", // File/dir has been modified.

"moved", // File/dir has been moved within the scope of the observation.

"unknown", // Zero or more events are missed. Site should poll the

// watched directory in response to this.

"errored" // This observation is no longer valid.

};

dictionary FileSystemObserverObserveOptions {

2 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://github.com/WICG/file-system-access/issues/72
https://goto.google.com/slimdoc


go/slimdoc 3 of 18

bool recursive = false;

};

interface FileSystemChangeRecord {

// The handle that was passed to FileSystemObserver.observe, representing

// the scope of the observation.

readonly attribute FileSystemHandle root;

// The handle affected by the file system change. For “moved” type, this

// refers to the new location of a moved handle.

readonly attribute FileSystemHandle changedHandle;

// The path of changedHandle relative to root.

readonly attribute FrozenArray<USVString> relativePathComponents;

// The type of change.

readonly attribute FileSystemChangeType type;

// Former location of a moved handle. Used only when type === ‘moved’.

readonly attribute FrozenArray<USVString>? relativePathMovedFrom;

};

Observing Changes to a File
When the observed file changes, the website will receive a FileSystemChangeRecord including
details about the file system change.

const callback = (records, observer) => {

// Will be run when the observed file changes.

for (const record of records) {

// The change record includes a handle detailing which file has

// changed, which corresponds to the observed handle in this case of

// watching a file.

const changedFileHandle = record.changedHandle;

assert(await fileHandle.isSameEntry(changedFileHandle));

// Since we're observing changes to a file, the root of the change

// record also corresponds to the observed file.

assert(await fileHandle.isSameEntry(record.root));

handleRecord(record);

}

}

3 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://goto.google.com/slimdoc


go/slimdoc 4 of 18

const fileHandle = await window.showSaveFilePicker();

const observer = new FileSystemObserver(callback);

await observer.observe(fileHandle);

Observing Changes to a Directory

Non-recursive watching

const callback = (records, observer) => {

for (const record of records) {

assert(await directoryHandle.IsSameEntry(record.root));

// Non-recursively watching a directory will only report changes to

// immediate children of the observed directory.

assert(record.relativePathComponents.length <= 1);

handleRecord(record);

}

}

const observer = new FileSystemObserver(callback);

const options = { recursive: false }; // Default is false.

await observer.observe(directoryHandle, options);

Recursive watching

// Detecting changes to a directory recursively with a FileSystemObserver.

const callback = (records, observer) => {

// Recursively watching a directory will report changes to both

// children and all subdirectories of the watched directory.

for (const record of records) {

handleRecord(record);

}

}

const observer = new FileSystemObserver(callback);

const options = { recursive: true };

await observer.observe(directoryHandle, options);

4 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://goto.google.com/slimdoc


go/slimdoc 5 of 18

// Example function of handing FileSystemChangeRecord.

async function handleRecord(record) {

// Decide how to mark the file dirty according to the

// FileSystemChangeType included in each file system change record.

switch (record.type) {

case 'appeared':

markCreated(record.root, record.relativePathComponents);

break;

case 'disappeared':

// The relative path of the changed handle may be more useful than

// the handle itself, since the file no longer exists.

markDeleted(record.root, record.relativePathComponents);

break;

case 'modified':

// A handle to the changed path may be more useful than its

// relative path if reading from the file is necessary to

// understand the change.

//

// Note that records with the 'modified' change type may be noisy

// (e.g. overwriting file contents with the same data) so it's

// necessary to check whether the file actually changed.

if (await checkIfChanged(record.changedHandle)) {

markModified(record.root, record.relativePathComponents);

}

break;

case 'moved':

// record.relativePathMovedFrom is used exclusively for 'moved'

// records, to indicate the previous path of the moved file.

markMoved(record.root, record.relativePathMovedFrom,

record.relativePathComponents);

break;

case 'unknown':

// Change occurred, but the type of change is unknown. Check

// the root directory to search for changes.

await searchForChange(record.root));

break;

case 'errored':

// Watching paths on the local file system may fail unexpectedly.

// After receiving a record with an 'errored' change type, we will

// not receive any more change records from this observer.

// You may then consider re-observing the handle, though that may

5 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://goto.google.com/slimdoc


go/slimdoc 6 of 18

// fail if the issue was not transient.

observer.disconnect();

break;

}

// ...

}

High-level Architecture

source link

[Renderer] FileSystemObserver
Renderer-side representation of FileSystemObserver javascript instance that holds mojo
connection to the browser-side, via mojom::FileSystemAccessObserverHost, which handles
observe() calls. Upon a successful observation from the browser-side,
mojom::FilesystemAccessObserver, which is the receiver responsible for getting file change
events notified from the browser-side, is returned to FileSystemObserver and added to
FileSystemObservationCollection. This class is also responsible for checking the file system
storage access.

[Browser] FileSystemAccessWatcherManager

6 of 18

go/slimdoc

https://goto.google.com/slimdoc
http://magjac.com/graphviz-visual-editor/?dot=digraph%20%7B%0A%20%20stylesheet%20%3D%20%22%2Fframeworks%2Fg3doc%2Fincludes%2Fgraphviz-style.css%22%0A%20%20%0A%20%20%2F%2F%20%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%20Definitions%20%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%0A%20%20%0A%20%20%2F%2F%20JavaScript%20entry%20points%20%0A%20%20JS_CONSTRUCT_OBSERVER%20%5Bfontname%3D%22monospace%22%20color%3D%22none%22%20label%3D%22new%20FileSystemObserver%28callback%29%22%5D%0A%0A%20%20%0A%20%20%2F%2F%20Browser%20%28blue%29%0A%20%20STORAGE_PARTITION%20%5Bcolor%3D%22blue%22%20label%3D%22StoragePartitionImpl%22%5D%0A%20%20FSA_MANAGER_IMPL%20%5Bcolor%3D%22blue%22%20label%3D%22FileSystemAccessManagerImpl%22%5D%0A%20%20FSA_WATCHER_MANAGER%20%5Bcolor%3D%22blue%22%20label%3D%22FileSystemAccessWatcherManager%22%5D%0A%20%20FSA_WATCHER_OBSERVATION%20%5Bcolor%3D%22blue%22%20label%3D%22FileSystemAccessWatcherManager.Observation%22%5D%0A%20%20FSA_WATCH_SCOPE%20%5Bcolor%3D%22blue%22%20label%3D%22FileSystemAccessWatchScope%22%5D%0A%20%20FSA_OBSERVER_HOST%20%5Bcolor%3D%22blue%22%20label%3D%22FileSystemAccessObserverHost%22%5D%0A%20%20FSA_OBSERVER_OBSERVATION%20%5Bcolor%3D%22blue%22%20label%3D%22FileSystemAccessObserverObservation%22%5D%0A%20%20FSA_CHANGE_SOURCE%20%5Bcolor%3D%22blue%22%20label%3D%22FileSystemAccessChangeSource%22%5D%0A%20%20FSA_BUCKET_WATCHER%20%5Bcolor%3D%22blue%22%20label%3D%22FileSystemAccessBucketPathWatcher%22%5D%0A%20%20FSA_LOCAL_WATCHER%20%5Bcolor%3D%22blue%22%20label%3D%22FileSystemAccessLocalPathWatcher%22%5D%0A%20%20FILEPATHWATCHER%20%5Bcolor%3D%22blue%22%20label%3D%22FilePathWatcher%22%5D%0A%0A%20%20%2F%2F%20Mojom%20%28green%29%0A%20%20MOJO_OBSERVER_HOST%20%5Bcolor%3D%22green%22%20label%3D%22mojom%3A%3AFileSystemAccessObserverHost%22%5D%0A%20%20MOJO_OBSERVER%20%5Bcolor%3D%22green%22%20label%3D%22mojom%3A%3AFileSystemAccessObserver%22%5D%0A%0A%20%20%2F%2F%20Renderer%20%28yellow%29%0A%20%20FS_OBSERVER%20%5Bcolor%3D%22red%22%20label%3D%22FileSystemObserver%22%5D%0A%20%20FS_OBSERVATION_COLLECTION%20%5Bcolor%3D%22red%22%20label%3D%22FileSystemObservationCollection%22%5D%0A%20%20FS_OBSERVATION%20%5Bcolor%3D%22red%22%20label%3D%22FileSystemObservation%22%5D%0A%0A%20%20%2F%2F%20File%20System%0A%20%20BUCKET_FILE_SYSTEM%20%5Bshape%3D%22folder%22%20label%3D%22Bucket%5CnFile%20System%22%5D%0A%20%20LOCAL_FILE_SYSTEM%20%5Bshape%3D%22folder%22%20label%3D%22local%5Cnfile%20system%22%5D%0A%0A%20%20%2F%2F%20%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%20Relations%20%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%0A%0A%20%20%2F%2F%20Browser-side%20ownership%0A%20%20STORAGE_PARTITION%20-%3E%20FSA_MANAGER_IMPL%20%20%5Blabel%3D%22owns%5Cn%20reference%20to%20a%22%5D%0A%20%20FSA_MANAGER_IMPL%20-%3E%20FSA_WATCHER_MANAGER%20%20%5Blabel%3D%22owns%5Cn%20reference%20to%20a%22%5D%0A%20%20FSA_WATCHER_MANAGER%20-%3E%20FSA_WATCHER_OBSERVATION%20%5Blabel%3D%22has%20set%20of%22%5D%0A%20%20FSA_WATCHER_MANAGER%20-%3E%20FSA_OBSERVER_HOST%20%5Blabel%3D%22has%20set%20of%22%5D%0A%20%20FSA_WATCHER_MANAGER%20-%3E%20FSA_CHANGE_SOURCE%20%5Blabel%3D%22has%20set%20of%22%5D%0A%20%20FSA_OBSERVER_HOST%20-%3E%20FSA_OBSERVER_OBSERVATION%20%5Blabel%3D%22has%20set%20of%22%5D%0A%20%20FSA_WATCHER_OBSERVATION%20-%3E%20FSA_WATCH_SCOPE%20%5Blabel%3D%22has%22%5D%0A%20%20%0A%20%20FSA_CHANGE_SOURCE%20-%3E%20FSA_BUCKET_WATCHER%20%5Blabel%3D%22extends%22%5D%0A%20%20FSA_WATCHER_MANAGER%20-%3E%20FSA_BUCKET_WATCHER%20%5Blabel%3D%22per%20StorageKey%22%5D%0A%20%20FSA_CHANGE_SOURCE%20-%3E%20FSA_LOCAL_WATCHER%20%5Blabel%3D%22extends%22%5D%0A%20%20FSA_WATCHER_MANAGER%20-%3E%20FSA_LOCAL_WATCHER%20%5Blabel%3D%22owns%20per%5Cn%20path%20watched%22%5D%0A%20%20FSA_LOCAL_WATCHER%20-%3E%20FILEPATHWATCHER%20%5Blabel%3D%22owns%20a%22%5D%0A%20%20%0A%20%20%2F%2F%20Observing%0A%20%20FILEPATHWATCHER%20-%3E%20LOCAL_FILE_SYSTEM%20%5Blabel%3D%22watches%22%20color%3D%22brown%22%5D%0A%20%20FSA_BUCKET_WATCHER%20-%3E%20BUCKET_FILE_SYSTEM%20%5Blabel%3D%22watches%22%20color%3D%22brown%22%5D%0A%20%20FSA_OBSERVER_OBSERVATION%20-%3E%20FSA_WATCHER_OBSERVATION%20%5Blabel%3D%22registers%5Cn%20callback%20to%22%20color%3D%22brown%22%5D%0A%20%20%0A%20%20%2F%2F%20Event%20reporting%20%28purple%29%0A%20%20LOCAL_FILE_SYSTEM%20-%3E%20FILEPATHWATCHER%20%5Blabel%3D%22%20dispatches%5Cn%20events%20to%22%20color%3D%22purple%22%5D%0A%20%20FILEPATHWATCHER%20-%3E%20FSA_LOCAL_WATCHER%20%5Blabel%3D%22%20dispatches%5Cn%20events%20to%22%20color%3D%22purple%22%5D%0A%20%20BUCKET_FILE_SYSTEM%20-%3E%20FSA_BUCKET_WATCHER%20%5Blabel%3D%22dispatches%5Cn%20events%20to%22%20color%3D%22purple%22%5D%0A%20%20FSA_BUCKET_WATCHER%20-%3E%20FSA_WATCHER_MANAGER%20%5Blabel%3D%22dispatches%5Cn%20events%20to%22%20color%3D%22purple%22%5D%0A%20%20FSA_LOCAL_WATCHER%20-%3E%20FSA_WATCHER_MANAGER%20%5Blabel%3D%22%20dispatches%5Cn%20events%20to%22%20color%3D%22purple%22%5D%0A%20%20FSA_WATCHER_MANAGER%20-%3E%20FSA_WATCHER_OBSERVATION%20%5Blabel%3D%22%20dispatches%5Cn%20events%20to%22%20color%3D%22purple%22%5D%0A%20%20FSA_WATCHER_OBSERVATION%20-%3E%20FSA_OBSERVER_OBSERVATION%20%5Blabel%3D%22%20dispatches%5Cn%20events%20to%22%20color%3D%22purple%22%5D%0A%20%20FSA_OBSERVER_OBSERVATION%20-%3E%20MOJO_OBSERVER%20%5Blabel%3D%22%20dispatches%5Cn%20events%20to%22%20color%3D%22purple%22%5D%0A%20%20%0A%20%20%2F%2F%20Constructing%20an%20observer%20from%20an%20open%20tab%0A%20%20JS_CONSTRUCT_OBSERVER%20-%3E%20FS_OBSERVER%20%5Blabel%3D%22yields%20a%22%5D%0A%20%20FS_OBSERVER%20-%3E%20MOJO_OBSERVER_HOST%20%5Blabel%3D%22has%20a%20remote%22%5D%0A%20%20FSA_OBSERVER_OBSERVATION%20-%3E%20MOJO_OBSERVER%20%5Blabel%3D%22has%20a%20remote%22%5D%0A%20%20MOJO_OBSERVER_HOST%20-%3E%20FSA_OBSERVER_HOST%20%5Blabel%3D%22has%20a%20receiver%22%20dir%3Dback%5D%0A%20%20FS_OBSERVER%20-%3E%20FS_OBSERVATION_COLLECTION%20%5Blabel%3D%22observe%28%29%20adds%20observation%22%5D%0A%20%20FS_OBSERVATION_COLLECTION%20-%3E%20FS_OBSERVATION%20%5Blabel%3D%22has%20set%20of%22%5D%0A%20%20FS_OBSERVATION%20-%3E%20MOJO_OBSERVER%20%5Blabel%3D%22has%20set%20of%5Cn%20receivers%22%5D%0A%20%20%0A%20%20%2F%2F%20Legend%0A%20%20subgraph%20cluster_legend%20%7B%0A%20%20%20%20label%20%3D%20%22Legend%22%3B%0A%20%20%20%20rank%20%3D%20sink%3B%0A%20%20%20%20%0A%20%20%20%20RENDERER%20%5Bcolor%3D%22red%22%20label%3D%22Renderer%22%5D%0A%20%20%20%20BROWSER%20%5Bcolor%3D%22blue%22%20label%3D%22Browser%22%5D%0A%20%20%20%20MOJO%20%5Bcolor%3D%22green%22%20label%3D%22Mojo%22%5D%0A%20%20%20%20%0A%20%20%20%20node%20%5Bshape%3Dpoint%5D%0A%20%20%20%20%7B%0A%20%20%20%20%20%20%20%20rank%3Dsame%0A%20%20%20%20%20%20%20%20ev0%20%5Bstyle%20%3D%20invis%5D%3B%0A%20%20%20%20%20%20%20%20ev1%20%5Bstyle%20%3D%20invis%5D%3B%0A%20%20%20%20%20%20%20%20ob0%20%5Bstyle%20%3D%20invis%5D%3B%0A%20%20%20%20%20%20%20%20ob1%20%5Bstyle%20%3D%20invis%5D%3B%0A%20%20%20%20%7D%0A%20%20%20%20ev0%20-%3E%20ev1%20%5Blabel%3D%22Event%20Callback%22%20color%3D%22purple%22%5D%0A%20%20%20%20ob0%20-%3E%20ob1%20%5Blabel%3D%22Observing%22%20color%3D%22brown%22%5D%0A%20%20%7D%0A%7D
https://goto.google.com/slimdoc


go/slimdoc 7 of 18

This class manages all watches to file system changes for a StoragePartition. Raw changes
from the underlying file system are plumbed through this class, to be filtered, batched, and
transformed before being relayed to the appropriate Observer, represented by
FilesystemAccessWatchManage::Observation.

FilesystemAccessWatchManager::Observation is responsible for relaying change events for a
given FileSystemAccessWatchScope, to FileSystemAccessObserverObservation.

This class owns a set of FileSystemAccessChangeSource, which can be either
FileSystemAccessBucketPathWatcher or FileSystemAccessLocalPathWatcher, based on which
file system it watches. Currently, there is only one FileSystemAccessBucketPathWatcher, as it
watches the root of the Bucket File System, while there may be many
FileSystemAccessLocalPathWatchers.

[Browser] FileSystemAccessChangeSource
This class encapsulates the logic to watch a file system and to notify a file system change
event, for a given FileSystemAccessWatchScope. Currently, it is extended by
FileSystemAccessBucketPathWatcher and FileSystemAccessLocalPathWatcher.

[Browser] FileSystemAccessWatchScope
This class describes the extent of the file system that is being observed, which can be a single
file, a directory and its contents, or a directory and all its subdirectories, or the whole file
system (i.e. Bucket File System)

[Browser] FileSystemAccessObserverHost
This class stores the state associated with each FileSystemAccessObserverHost mojo
connection, and interacts with FileSystemAccessWatcherManager to handle observe() calls. It
also checks for a valid permission state before observe()ing.

[Browser] FileSystemAccessObserverObservation
This class is a browser-side representation of a successful FileSystemObserver.observe() call
from Javascript. It registers a callback function to the corresponding
FilesystemAccessWatchManager.Observation retrieved from
FileSystemAccessWatcherManager. When this callback function is invoked, it checks for a valid
permission state before forwarding changes to the observed file or directory to a mojo pipe,
whose receiver is owned by the renderer.

[Browser] FilePathWatcher
This class is an encapsulation of platform-specific local file path watcher implementation,
which calls an OS-specific API to watch local file system changes.

7 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://goto.google.com/slimdoc


go/slimdoc 8 of 18

Setting up Observation:
FileSystemObserver.observe()
On the renderer-side, FileSystemAccess.observe(FileSystemHandle handle) calls gets a
FileSystemAccessTransferToken from the passed handle, and invokes
mojom::FileSystemAccessObserverHost.observe() with the transfer token.

On the browser-side, FileSystemAccessObserverHost checks for a valid permission (i.e.
granted) on the passed handle and gets a new
FileSystemAccessWatcherManager::Observation from FileSystemAccessWatcherManager. If
FileSystemAccessWatcherManager has an existing FileSystemAccessChangeSource that
matches the scope, it will be re-used; otherwise, a new FileSystemAccessChangeSource is set
up. Upon a successful retrieval of Observation, FileSystemAccessObserverHost creates a new
FileSystemAccessObserverObservation, which is passed with (1) Observation (for receiving
the changes) and (2) a newly created mojom::FileSystemAccessObserver (for reporting the
changes back to the renderer).

Watching Local File System
Chromium has an existing base::FilePathWatcher class, which provides primitive watching of a
given file path using file path watching APIs built-in to the host OS. It has a number of
limitations, such as only reporting that a path has changed without any indication of how, as it
is initially designed for this simple use case.

As the only (known) use case that needs the support for file change info, it was recommended
to make a copy of base::FilePathWatcher as content::FilePathWatcher and to add new
functionalities to the file system access code base (i.e.
content/browser/file_system_access/file_path_watcher/…). We may consider consolidating two
separate implementations, as the API shape evolves and more clients will need to be
supported.

Interface Changes to FilePathWatcher
The following changes will be made to the interface, in order to report (1) change type and (2)
modified file path(s).

using Callback = RepeatingCallback<void(ChangeInfo info, bool error)>;

enum class ChangeType {

kUnknown,

8 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://crsrc.org/c/base/files/file_path_watcher.h
https://goto.google.com/slimdoc


go/slimdoc 9 of 18

kCreated,

kDeleted,

kModified, // Set if either attributes or contents are modified.

kMoved, // Set for any move (moved out of, into, or within the

// watched scope).

};

// Path type of the modified path.

enum class FilePathType {

kUnknown,

kDirectory,

kFile,

};

struct ChangeInfo {

FilePathType file_path_type;

ChangeType change_type;

// Modified path of the changed file or directory.

FilePath modified_path;

// Previous path that the file or the directory has been moved from. This

// field is only set for ChangeType:kMoved. It is provided as best-effort,

// and may not exist if the underlying platform is unable to find information.

std::optional<FilePath> moved_from_path;

};

bool Watch(const base::FilePath& path, const WatchOptions& options,

const Callback& callback);

Platform-specific changes to FilePathWatcher

Windows
base::FilePathWatcher uses FindFirstChangeNotification which simply states that something
has changed but doesn’t provide the change type or path.

In the copied content::FilePathWatcher, we use ReadDirectoryChangesW which can recursively
watch a directory and provides both the change type and path.

ReadDirectoryChangesW reports changes with a FILE_NOTIFY_INFORMATION struct. It’s
Action field can be mapped to content::FilePathWatcher::ChangeType as follows:

9 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-findfirstchangenotificationa
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-readdirectorychangesw?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-file_notify_information
https://goto.google.com/slimdoc


go/slimdoc 10 of 18

content::FilePathWatcher::ChangeType FILE_NOTIFY_INFORMATION::Action

kCreated FILE_ACTION_ADDED

kDeleted FILE_ACTION_REMOVED

kModified FILE_ACTION_MODIFIED

kMoved FILE_ACTION_RENAMED_OLD_NAME
FILE_ACTION_RENAMED_NEW_NAME

Windows sends move events as two consecutive FILE_ACTION_RENAMED_OLD_NAME and
FILE_ACTION_RENAMED_NEW_NAME. These can be coalesced into a single kMoved event.

We ignore FILE_ACTION_MODIFIED on directories since it doesn’t produce any useful
information.

ReadDirectoryChangesW doesn’t provide information on the change’s file path type. This
means we must fill out content::FilePathWatcher::ChangeInfo::file_path_type via
base::GetFileInfo. This unfortunately leads to several issues:

● After receiving an event from the OS, there is a race between checking the event’s file
path type via base::GetFileInfo and further file events which may change the file path
type.

● For delete events, there is no possible way to know the file path type with
base::GetFileInfo since the file is already gone.

● Some FILE_ACTION_MODIFIEDs on directories may not get filtered due to the previous
two issues.

This issue can be somewhat mitigated if we cached the known state of the file system. And it
can further be mitigated if we used the file events to deduce the state of the file system. E.g.
we know that if we receive an event for a file path, we know at that moment all its ancestors
are directories and not files.

Deleting the directory that ReadDirectoryChangesW is watching can also cause problems.
Some events before the watched directory is deleted can be lost. And the events between the
directory being deleted and the ReadDirectoryChangesW being set up again will be lost.

Mac
Currently uses kqueues for non-recursive watches (and always on iOS) and FSEvents only for
recursive watches on MacOS.

We could support non-recursive watches with FSEvents, if determined to be a worthwhile
effort. Historically, kqueue support was added earlier and FSEvents was unreliable on Mac 10.6.

10 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/FSEvents_ProgGuide/KernelQueues/KernelQueues.html#//apple_ref/doc/uid/TP40005289-CH5-SW2
https://developer.apple.com/documentation/coreservices/file_system_events
https://crsrc.org/c/base/files/file_path_watcher_fsevents.cc;l=88-89
https://crsrc.org/c/base/files/file_path_watcher_fsevents.h;l=21-25
https://goto.google.com/slimdoc


go/slimdoc 11 of 18

As a result, FSEvents was only used for recursive support that kqueue couldn’t provide.

This comes with some downsides:

● MacOS and iOS are the only platforms for which:
○ watching a directory does not trigger events when children change, and

■ This would likely become an enormous headache for web developers
○ watching a symlink does not trigger events when the target of the symlink

changes
● kqueue implementation is very noisy

FSEvents appears to have become much more reliable in Mac 10.7. From what I can tell, all the
major file path watching third-party libraries (e.g.) use FSEvents from Mac 10.7 onwards.

Proposal: Use FSEvents for all* watches on MacOS.

ChangeEventInfo FSEventStreamCallback (with FSEventStreamEventFlags)

FilePath eventPaths

PathType kFSEventStreamEventFlagItemIsDir +
kFSEventStreamEventFlagItemIsFile +
kFSEventStreamEventIs*Link

ChangeType::kUnknown Unused

ChangeType::kModified kFSEventStreamEventFlagItemModified

kFSEventStreamEventFlagItemInodeMetaMod

Also, probably:
kFSEventStreamEventFlagItemChangeOwner

And maybe or maybe not:
kFSEventStreamEventFlagItemXattrMod +
kFSEventStreamEventFlagItemFinderInfoMod

ChangeType::kCreate kFSEventStreamEventFlagItemCreated

Also, maybe:
kFSEventStreamEventFlagItemCloned

ChangeType::kDeleted kFSEventStreamEventFlagItemRemoved

ChangeType::kMoved kFSEventStreamEventFlagItemRenamed

11 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://crbug.com/130610
https://facebook.github.io/watchman/docs/install#system-requirements
https://developer.apple.com/documentation/coreservices/fseventstreamcallback
https://github.com/phracker/MacOSX-SDKs/blob/041600eda65c6a668f66cb7d56b7d1da3e8bcc93/MacOSX11.3.sdk/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/FSEvents.framework/Versions/A/Headers/FSEvents.h#L339
https://goto.google.com/slimdoc


go/slimdoc 12 of 18

Linux / ChromeOS
Currently, it uses inotify. It already supports reporting modified file paths (unlike Mac and
Windows), which are available from inotify_event struct sent from the inotify API. In order to
report the change type, inotify_event.mask contains information about the type of change
events, which will be passed to the callback registered to FilePathWatcher.

ChangeEventInfo inotify_event

FilePath name + len

PathType mask.IN_ISDIR

ChangeType::kUnknown Unused

ChangeType::kModified mask.IN_ATTRIB +
mask.IN_CLOSE_WRITE

ChangeType::kCreate mask.IN_CREATE

ChangeType::kDelete mask.IN_DELETE

ChangeType::kMoved mask.IN_MOVED_FROM +
mask.IN_MOVED_TO

On inotify, it generates two events for a move (IN_MOVED_FROM and IN_MOVED_TO) with a
matching cookie value. The current implementation reports an event if the modified file path is
within the scope of the watch root. This means that moving a child file within the watched
directory (i.e. foo/bar -> foo/baz while watching foo/ ) would generate duplicate move events.
The two related move events are coalesced as one, by matching the cookie value.

Known Issues
inotify

inotify has default max inotify watches per user is 8192. Since this is per user, this limit can be
reached by other applications or by other usages within Chrome. If the limit is reached, an
error would be sent to the client, and the site would need to re-try observe().

This limitation is exacerbated by the fact that an inotify watch is created per file component
(and for each descendents, if watching recursively). This is a known limitation of inotify and a
known problem in Chrome.

Mac (FSEvents)

12 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html#:~:text=the%20following%20structures%3A-,struct%20inotify_event,-%7B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20int%20%20%20%20%20%20wd%3B%20%20%20%20%20%20%20/*%20Watch
https://man7.org/linux/man-pages/man1/inotifywait.1.html#:~:text=The%20default%20maximum%20is%208192
https://en.wikipedia.org/wiki/Inotify#Limitations
https://goto.google.com/slimdoc


go/slimdoc 13 of 18

A maximum of 4096 watched paths is allowed. If exceeded, calling start() would result in error.

Windows

A buffer is passed to Windows’ ReadDirectoryChangesW for holding the file events. The buffer
can be between 0 and 64kb. And whatever is passed, Windows will double the memory usage
since it maintains its own copy. Having a buffer that is too small can lead to frequent buffer
overflows. So there must be a balance between avoiding buffer overflows and reducing
memory usage.

Move events between directories (vs. under the same directory) do not arrive as two
consecutive FILE_ACTION_RENAMED_OLD_NAME and FILE_ACTION_RENAMED_NEW_NAME,
making it not possible to coalesce related move events. It may be worth investigating if
Windows NTFS change journal could help solve this inconsistency.

Watching Bucket File System
Unlike the local file system, OS-level file path watching APIs are not appropriate for the Bucket
File System* (a.k.a. the OPFS):

● Its contents are not easily accessible by the user
● It has a flat directory structure
● It uses an in-memory file system in incognito mode

Since changes to the Bucket File System are coming from Chrome, we can add hooks on
operations which modify files to track and report changes ourselves. This can be done by
extending storage::FileChangeObserver in storage/browser/file_system/file_observers.h, which
monitors changes to files managed by Chrome.

However, there are some known drawbacks:

● There is only one use of this class, which is in service of the deprecated SyncFileSystem
for Chrome Apps

● FileSystemSyncAccessHandles do not use //storage/browser/file_system, and migrating
FileSystemWritableFileStreams away from using FileSystemOperationRunner is on the
table. Incorporating file modification changes from outside
//storage/browser/file_system is doable, but would require adding additional hooks

● We would like to eventually move FSA away from using //storage/browser/file_system
anyways.

FileSystemAccessBucketPathWatcher (a subclass of FileSystemAccessChangeSource for
Bucket File System) will extend storage::FileChangeObserver for observing changes. It
watches the root of the Bucket File System (which is a flat structure on disk), so there is only

13 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://github.com/whatwg/fs/issues/92
https://fs.spec.whatwg.org/#sandboxed-filesystem
https://crsrc.org/c/storage/browser/file_system/sandbox_origin_database.h
https://crsrc.org/c/storage/browser/file_system/obfuscated_file_util_memory_delegate.h
https://crsrc.org/c/storage/browser/file_system/file_observers.h
https://crsrc.org/c/chrome/browser/sync_file_system/local/local_file_change_tracker.h
https://developer.chrome.com/docs/extensions/reference/syncFileSystem/
https://developer.mozilla.org/en-US/docs/Web/API/FileSystemSyncAccessHandle
https://developer.mozilla.org/en-US/docs/Web/API/FileSystemWritableFileStream
https://crsrc.org/c/storage/browser/file_system/file_system_operation_runner.h
https://crbug.com/1309000#c11
https://crbug.com/1309000#c11
https://goto.google.com/slimdoc


go/slimdoc 14 of 18

one instance of FileSystemAccessBucketPathWatcher for FileSystemAccessWatcherManager.

Processing and Reporting File Changes
Raw changes (ChangeInfo) notified to FileSystemAccessChangeSource from different file
system backends are routed to its observer, FileSystemAccessWatcherManager. These raw
changes are then processed (i.e. handling errors, converting certain move events, etc) and
sent to the Observations with the matching scope.

Each Observation’s registered callback (to ​​FileSystemAccessObserverObservation) is invoked.
Further processing is done in ​​FileSystemAccessObserverObservation, such as checking for
valid permission and active RenderFrameHost. See below for more details.

Reporting “move in/out of” the scope as “appeared/disappeared”
Move/rename could occur across the boundary of the observation scope. If a file/directory is
moved into the observation scope, then the event is reported as “appeared”. Similarly, if it is
moved out of the observation scope, the event is reported as “disappeared”. Otherwise, it is
moved within the observation scope, and it is reported as “moved” with both old and new path
information. This ensures that path information is not exposed if it is out of the observation
scope, with the assumption that the site does not have permission to the file system outside
the observation scope. Furthermore, it helps mitigate the platform inconsistency on Windows
where some move events are reported as created or deleted.

Handling OS-level Error
An error can occur on watching on inotify if the number of inotify watches exceeds the default
maximum value. In this case, the callback is reported with “errored” type, and the observation
is destroyed. The site is expected to handle the error, by re-attempting to observe() again.

Handling Permission Change
A file or directory path can be watched only if a corresponding FileSystemHandle has
“granted” permission status. In addition to checking the permission status (1) when an
observation is created and (2) before FileSystemObserver callback is invoked, permission
change is observed in ​​FileSystemAccessObserverObservation by making it
FileSystemAccessPermissionGrant::Observer. In the case of permission status change to
values other than “granted”, the callback is invoked with “errored” and the observation is
destroyed.

Interactions with BFCache

14 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://goto.google.com/slimdoc


go/slimdoc 15 of 18

Since no events are sent to the callback while the page is not active, some change events may
be lost if the page was in BFCache and then back to “active” state. In this case, we would track
whether a file change event has occurred while in BFCache, and send an “unknown” event to
the callback once the page is back to “active”. This is tracked via
WebContentsObserver::RenderFrameHostStateChanged.

In order to avoid exposing what exactly occurred (i.e. exact sequence of events) while in
BFCache, a single change event with “unknown” type is sent such that the site can know that
some change occurred.

Ignoring Swap Files
Using the File System Access API, FileSystemWritableFileStream can be created via
FileSystemFileHandle.createWritable(). This creates a swap file (.crswap), where temporary
writes are recorded until it overwrites the original file. This can cause additional file change
events to be emitted. Since this is an implementation detail of FileSystemWritableFileStream,
any changes to swap files will be ignored such that only changes in the original file would be
reported.

FileSystemObserver.disconnect()
Disconnecting the observer destroys all observations set up under this observer, and cleans
up watches (unless there are other observations using the watches).

One drawback of disconnect() is that it disconnects “all” observations. In the future iteration,
we may consider adding FileSystemObserver.unobserve(FileSystemHandle), that would
un-observe individual observation.

Resource Consumption Considerations

Limit on the number of inotify watches
As mentioned above, watching can fail on inotify if the global limit is reached. We could
consider imposing a limit from FilePathWatcher, as to prevent the starvation outside
FilePathWatcher use in Chrome. However, estimating an upper limit is challenging as Chrome
does not have a visibility on how inotify is used by other applications, and the usage pattern
will vary widely across users. Also, the default max could be changed by user, which would
make imposing a fixed upper limit infeasible.

During the Origin Trial, the resource exceeded error will be monitored in order to understand
how often this occurs, and whether/what limit should be imposed (at Chrome level, or at File

15 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://goto.google.com/slimdoc


go/slimdoc 16 of 18

System Observer API level) will be revisited.

Note that this estimated usage would not include the usage occurring outside of Chrome by
other applications, nor the usage within Chrome that does not use FilePathWatcher as a layer.
In other words, this restriction would only help to prevent FilePathWatcher consuming all the
inotify watches.

Limit on the number of observations per origin
Similarly, we may consider adding a per-origin (or tab) limit in order to prevent a site hoarding
the OS resource. The challenge is that the number of inotify watches created is not equal to
the number of FilePathWatcher::Watch*() calls, since an inotify watch is created per file
component. Also, the number of FilePathWatcher::Watch*() calls is not equal to the number
observations created (via observe() Javascript API), since a same watch could be shared by
multiple observations, if the configuration is the same (= overlapping observations).

To come up with the estimated usage that is closest with the actual OS resource usage, the
number of (inotify) watches should be counted, if possible.

During the Origin Trial, the number of observations created will be recorded in order to learn
about the usage pattern and to determine this limit.

FollowupWork

FileSystemObserver.unobserve()
We may consider adding unobserve() to the API, which will allow disconnecting individual
observation. This would be particularly useful when handling an “errored” change event in
which the observation is already destroyed; instead of disconnecting the whole
FileSystemObserver, it can simply unobserve a single observation.

Optimize FilePathWatcher
● On inotify, ref-counting inotify watches to reduce open watch descriptors (and

possibly allow the use of IN_MASK_CREATE).
● Reduce calls to UpdateWatch[es]()

○ On inotify, UpdateWatches() is called every time a component of the watched
path (dis)appears, whereas ideally it would only be called for directory changes
and symlinks

○ On Windows, UpdateWatch() + StartWatchingOnce() is called for every change.
This is wasteful, since the watch really only should be updated if the path of the
watched directory itself changes, as we do on some other platforms.

16 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://goto.google.com/slimdoc


go/slimdoc 17 of 18

Optimize Overlapping Observations
It is possible that there may be overlapping observation scopes (within the same site, or across
different sites). Currently, if there is a watch set up for a given scope, it is re-used. However, if
the scopes are not exactly the same, it is not re-used. The handling of overlapping
observations could be improved for re-use.

Batching multiple change events at once to JS API
The site may want to receive events at a batch, instead of receiving it right when the change
occurs. It may be able to specify a time window for which a batch of change events are sent.

Filtering Options
The site may want to specify options to include or exclude certain change types. This would
help reduce the number of callbacks for the events that the site is not interested in.

Metrics

UMA
● Javascript API usage will be tracked with UseCounter
● OS watch API error (i.e. resource limit exceeded)
● OS watch API callback error
● Rate at which the number of callbacks sent for an observation for a one-second

window

UKM
FileSystemObserver.observe() is tracked for UKM logging for the Origin Trial, given a small set
of origins using this API.

Rollout plan
This API will be initially available via Origin Trial from M129 to M134.

Testing plan

Web Platform Test
Manual wpt will be enabled for the File System Observer feature. (Automatic testing disabled

17 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://goto.google.com/slimdoc


go/slimdoc 18 of 18

per b/346991169)

18 of 18

go/slimdoc

https://goto.google.com/slimdoc
https://issues.chromium.org/346991169
https://goto.google.com/slimdoc

