
None

None

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

Carbon Language - http://github.com/carbon-language

Multi-Thread
Examples

Authors: danakj, …
Status: Draft
Created: 2025-10-24
Docs stored in Carbon's Shared Drive
Access instructions

Problem
Examples that demonstrate parallelism and concurrency needs for Carbon. Either code that
should compile, or problematic code that should not.

Examples

Thread spawn
-​ No join, so no way to know when it’s done in the caller.
-​ Passing in a pointer that is invalidated

fn F() {
 var i: i32 = 0;
 var p: const i32* = &i;
 spawn(fn [p] => G(p));
 // Bad: i is destroyed, p is invalidated but in use on another thread.
}

-​ Holding a pointer that is invalidated, moving its owner

fn F() {
 var i: Box(i32) = .Make(0);
 var p: const i32* = i.Get();
 spawn(fn [~i] => ~i));

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
http://github.com/carbon-language
https://drive.google.com/drive/folders/1aC5JJ5EcI8B7cgVDrLvO7WNw97F0LpS2
https://github.com/carbon-language/carbon-lang/blob/trunk/CONTRIBUTING.md#getting-access

None

None

 // Bad: i may be destroyed, then p is invalidated.​
 Core.Print(*p);​
}

-​ Holding a pointer that is invalidated, not moving its owner

var i: Cell(Optional(i32)): .Make(.Some(0));

fn F() {
 var p: const i32* = i.Get();​
 spawn(fn => i.Set(.None)));
 // Bad: The i32 in i may be destroyed/inactive, then p is invalidated.​
 Core.Print(*p);​
}

-​ Long lived vs short lived pointers

fn F(pointer_to_string_literal: const char*, pointer_to_string: const char*) {
 spawn(fn [let] => H(pointer_to_string_literal, pointer_to_string);​
}

fn G1() {
 let world = "world" as strbuf;
 F("hello", world.Get());
 // Bad: `world` is freed, but the pointer is in use on another thread.​
}

fn G2() {
 F("hello", "world");
 // OK: neither pointer is freed while in use on another thread.​
}

-​ Long lived with mutation

None

None

None

fn F(pointer_to_global: const i32*) {
 spawn(fn [let] => H(pointer_to_global);​
}

var g: i32 = 2;

fn G() {
 let world = "world" as strbuf;
 F(&g);
 // Bad: Writing to `g: i32` on this thread, but maybe reading it on another
thread.
 g = 3;
}

-​ Passing unowned along with ownership

fn F() {
 var b: Box(i32) = .Make(2);
 var p: i32* = b.Get();
 spawn(fn [~b, p] => H(~b, p));
 // Bad: `p` needs to be invalidated for soundness. The box may be destroyed
 // at any time.
 Core.Print(*p);
}

-​ Passing combined owned, unowned, and global/static, pointer to locally-owned, and Rc.

class C(^B, ^G, ^L) {
 // Can move across threads.
 var b: Box(i32);
 // Moves with the owner, is valid. Must invalidate any copies on the original
thread.
 var p: i32 ^B *;
 // Global so can move across threads. Must not invalidate any copies on the
original
 // thread.

 var g: i32 ^G *;
 // Moves across threads without the other, not valid. Must be an error.
 var l: i32 ^L *;
 // Owns its data, but can not move across threads. Must be an error.
 var r: Rc(i32);​
}

var globalint: i32 = 3;

fn F() {
 var b: Box(i32) = .Make(2);
 var p: i32* = &c.b;
 var g: i32* = &globalint;
 var l: i32 = 1;
 var r: Rc(i32) = .Make(4);
 var c: C = { .b = ~b, .p = p, .g = g, .l = l, .r = r };
 // Two errors must occur:
 // - Sending `.l` across threads without its owner. The owner will invalidate
 // it in the future.
 // - Sending `.r` across threads, as its _type_ is not valid to move across
 // threads even though it owns its data.
 spawn(fn [~c] => H(~c));
 // Error: `p` needs to be invalidated for soundness. The box may be destroyed
 // at any time.
 Core.Print(*p);
 // Accepted: `g` must *not* be invalidated, as it points to a global not an
 // owned thing.
 Core.Print(*g);
}

Send effect
Maybe we need a send effect/function capability. Like we can say invalidate(x) we could
say send(x) to say we move it (or a copy maybe?) to another thread. Then we can say no
based on conditions like:

-​ Rc is not allowed (how do we mark it as such? Type capabilities?)
-​ .l is allowed by type but then we can look to see there’s not an owner going with? And

see there is not.
-​ .b is allowed by type and we can see that there is an owner going with.
-​ send(x) would invalidate any alias sets owned by something in x. So p gets

invalidated, but g doesn’t.

None

None

None

None

fn spawn[Func: Call](func: Func) [[send(^func.any)]];

-​ Problem is that anything that gets send applied to it needs to pass that up the call stack
to anything that passed it along. Rust only requires putting Send on generics that pass
things through a call stack, since types get Send as an auto trait.

class C;

fn GenericSpawns[T:! type](c: T) [[send(c)]];
fn SpawnsGenerically(c: C) [[send(c)]];
fn CallsSpawnsGenerically(c: C) [[send(c)]];

Vs Rust

struct C;

fn GenericSpawns<T: Send>(c: T);
fn SpawnsGenerically(c: C);
fn CallsSpawnsGenerically(c: C);

Scoped thread spawn
-​ Mostly for the ability to pass in pointers to data in the caller, knowing when the thread is

done with them.
-​ To allow immutable sharing
-​ Not to allow destruction from the thread

-​ A fixed point in the caller where the task is done running.
-​ Either scoped as a lambda: gives a nested scope for the point where the thread ends
-​ Or as a return guard that must be destroyed: allows returning the guard, giving a

multi-function/non-local scope where the thread may be running

-​ spawn_scoped allows pointers to things before the scope

fn F() {​
 var i: i32 = 0;

None

None

None

 var p: const i32* = &i;
 var scope: auto = spawn_scoped(fn [p] => G(p));
 ~scope;
 // Scope does not finish destruction until the scoped_spawn is joined:
 // i was not destroyed and p was not invalidated.
}

-​ But not if they are mutated in the scope.

fn F() {
 var i: Optional(i32) = 0;
 var p: const i32* = &i.Get();
 var scope: auto = spawn_scoped(fn [p] => G(p));
 // Bad, the i32 in i is gone, so p is invalidated but it’s in use on another
thread.
 i = .None;
 ~scope;
}

-​ And doesn’t allow holding pointers to things given to the thread

fn F() {​
 var i: Box(i32) = .Make(0);
 var p: const i32* = i.Get();
 var scope: auto = spawn_scoped(fn [~i] => ~i);
 // Still bad: i may be destroyed, so p may be invalidated.
 Core.Print(*p);
 ~scope;
}

Coroutines
-​ Web server calling backends

class Request {
 var data: buf(u8),
}
class Headers {
 var mode: Optional(i32);

None

 var pos: slice(u8); // In Request.data.
}

/*async*/ fn ParseHeaders(let r: Request) -> Future(Headers);
/*async*/ fn QueryDatabase(let h: Headers) -> Future(strbuf);
/*async*/ fn SendReply(reply: strbuf) -> Future(());

/*async*/ fn HandleRequest(var r: Request) -> Future(()) {
 let headers: Headers = ParseHeaders(r).await;
 var answer: strbuf = QueryDatabase(headers).await;
 return SendReply(answer); // returns the Promise/Future instead of .await.​
}

/*async*/ fn ClearsDataDuringHandleRequest(var r: Request) -> Future(()) {
 let headers: Headers = ParseHeaders(r).await;
 // Bad: Invalidates headers.pos, but headers is used below.
 r.data.clear();
 var answer: strbuf = QueryDatabase(headers).await;
 return SendReply(answer); // returns the Promise/Future instead of .await.​
}

/*async*/ fn RequestDoesntLiveLongEnough(let r: Request*) -> Future(()) {
 let headers: Headers = ParseHeaders(*r).await;
 // Bad: r could be invalidated as soon as we call .await, while ParseHeaders()
 // is working if it has any .await inside.
 return SendReply("done"); // returns the Promise/Future instead of .await.
}

Fiber race

(adapted from a Rust example)

// Run each of the supplied children concurrently on its own
fiber
// that is a child of the parent making this call. Return the
result
// of first child to finish, cancelling and joining the

// others.
//
// In Rust:
// pub fn race<'a, T>(children: Vec<Box<dyn 'a + FnOnce() -> T +
Send>>) -> T

fn race[T:! Type](children: Vec<Box<call!() -> T>> -> T {
 // There is no correct answer if the set of children is
empty.
 assert!(!children.is_empty());

 // Spawn child fibers that race to store their result into
 // a OnceLock. After one of them wins, cancel and join them
all.
 // OnceLock is mutable, but shared in Rust
 // (using interior mutability)
 let once = OnceLock::Make();
 nursery::with_nursery([ref once](n: Nursery) {
 // Start children competing to be the first.
 let fibers: Vec<Fiber> = children
 .map(|child| {
​ ​ ​ // Run child in a a fiber
 n.spawn(|| {
 let _ = once.set(child());
 })
 })
 .collect();

 // Wait for one to win.
 once.wait();

 // We've got what we need. Clean up.
 for (f in fibers) {
 f.cancel();
 f.join();
 }

 });

 // By now our result is in the OnceLock.
 Box::Take(once.consume())
}

	Multi-Thread Examples
	Problem
	Examples
	Thread spawn
	Send effect
	Scoped thread spawn
	Coroutines
	Fiber race

