
Bazel C/C++ Transitive Libraries -
Attack Plan

This is a publicly readable document!

Author: hlopko@google.com
Status: Being reviewed
Reviewers: lberki@google.com, ulfjack@google.com, dslomov@google.com,
klimek@google.com, schmitt@google.com
Date: July 2017

This is a distilled version from the original design doc containing only parts that are going to be
implemented.

Introduction
In Google, we build binaries that link all their dependencies statically. Therefore this use case is
well settled, polished, and optimized in Bazel. In the outside world however, people need
greater control over which libraries get linked statically and which dynamically (#492), as well as
which objects the library is linked against.

Bazel cannot yet create a static archive that contains all objects from all its transitive
dependencies. This has been asked for internally and externally (#1920, #2253). For this reason
Tensorflow currently cannot distribute static library, only .so (#5511).

During the linking of the binary, the program linker throws away all the symbols that are not
transitively used in the .o files of that binary. This includes the removal of global variables whose
initializers are used to register functionality of the library in global registries, unless another
symbol from the translation unit that defines them is (transitively) used from the binary.

Bazel can create a dynamic library that contains all its transitive dependencies, but it lacks the
mechanism to control which dependencies should be linked in and which shouldn’t (specifically,
we cannot leave some symbols undefined), making it susceptible to the diamond linking
problem (getting static initialization of a single library present in the resulting binary or library
multiple times).

Requirements

1.​ To be able to build transitive static library as an artifact ready for distribution

mailto:lberki@google.com
mailto:ulfjack@google.com
mailto:dslomov@google.com
mailto:klimek@google.com
mailto:schmitt@google.com
https://docs.google.com/document/d/1-tv0_79zGyBoDmaP_pYWaBVUwHUteLpAs90_rUl-VY8/edit#heading=h.ugb1hhxhyky4
https://github.com/bazelbuild/bazel/issues/492
https://github.com/bazelbuild/bazel/issues/1920
https://github.com/bazelbuild/bazel/issues/2253
https://github.com/tensorflow/tensorflow/issues/5511

2.​ To be able to build transitive dynamic library as an artifact ready for distribution
3.​ cc_binary should be able to depend on (transitive|nontransitive) dynamic library and on

transitive static library (as it is useful to detect link ordering surprises).
4.​ cc_library should be able to depend on transitive dynamic library. This will allow users to

prevent ODR violation by packaging their libraries cleanly.
5.​ Library artifact ready for distribution can be one of:

a.​ Single static library containing all statically reachable transitive objects. In case a
static library is a dependency of this transitive library, bazel will merge these
libraries.

b.​ Single merged dynamic library with all statically reachable transitive objects
c.​ Single merged static library with ‘a 'solib' directory with dynamic libraries that the

lib depends on
d.​ Single merged dynamic library with a 'solib' directory with dynamic libraries that

the lib depends on

Attack Plan
We will introduce new dependency type to cc_library and friends: ‘reexport_deps’. As implicit
outputs of cc_library rules are an implementation detail and users should not depend on them,
we will introduce 'cc_static_library' and 'cc_shared_library' rules to make the library generation
explicit. These rules have no srcs and deps attributes - they only have 'reexport_deps'. Other
cc_library rules can depend on cc_static_library and cc_shared_library.

cc_static_library and cc_shared_library
Right now binary artifacts in the C++ world are cc_binary and cc_test. cc_binary is used to build
executable binaries, and transitive shared libraries linking all its transitive dependencies, but
without a way of excluding some (that's one of the reasons why this design doc exists). As a
part of rolling out transitive libraries described by this design doc producing shared libraries from
cc_binary will be deprecated. In other words, there will be no supported way of creating static or
shared library that contains dependencies from 'deps', only 'reexport_deps' will be linked
against/archived. We hope to keep it this way.

cc_static_library and cc_shared_library will have no srcs or deps (that is what cc_library is for)
and will only have reexport_deps dependency type. They will unconditionally produce library
artifacts of their respective type.

Reexport_deps
These dependencies will be linked into the output artifacts of the parent cc_*_library target. This
doesn't work transitively. If you need transitive behaviour, you need to mark all the
dependencies down the road as reexport_deps.

Examples
For the sake of brevity I omit the top_level cc_static_library or cc_shared_library rules from all
the cases except Case 0.

Case 0: cc_*_library rules usage
cc_static_library(
 name = 'main_staticlib',
 reexport_deps = [':main']
)
cc_shared_library(
 name = 'main_sharedlib',
 reexport_deps = [':main']
)
cc_library(
 name = 'main',
 srcs = ['main.cc'],
 deps = [':base'],
)
cc_library(
 name = 'base',
 srcs = ['base.cc']
)

Case 1: cc_library reexporting cc_library
cc_library(
 name = 'main',
 srcs = ['main.cc'],
 reexport_deps = [':base'],
)
cc_library(
 name = 'base',
 srcs = ['base.cc']
)

Observable effect (comparing using reexport_deps over deps):
Archiving of //:'main_staticlib' will turn from:
ar rcsD libmain.a main.o
into:
ar rcsD libmain.a main.o base.o

Creating 'main_sharedlib' library will turn from:
clang -shared -o libmain.so main.o
into:

clang -shared -o libmain.so main.o base.o

Case 2: cc_binary reexporting cc_library
This has no observable effect. cc_binary will by default use all transitive libraries, and add all
non-reexport deps. At the end, the set of objects linked into cc_binary is the same no matter
how you use reexport_deps.

Case 3: Reexporting a dep that reexports a dep.
cc_library(
 name = 'top',
 srcs = ['top.cc'],
 reexport_deps = [':middle'],
)
cc_library(
 name = 'middle',
 srcs = ['middle.cc'],
 deps = [':sideways'],
 reexport_deps = [':bottom'],
)
cc_library(
 name = 'bottom',
 srcs = ['bottom.cc'],
)
cc_library(
 name = 'sideways',
 srcs = ['sideways.cc'],
)
cc_binary(
 name = 'binary',
 deps = [':top'],
 srcs = ['binary.cc'],
)

Observable effect (comparing using reexport_deps over deps):
(green denotes flags added, red flags removed)

Archiving:
ar rcsD libbottom.a bottom.o
ar rcsD libsideways.a sideways.o
ar rcsD libmiddle.a middle.o bottom.o
ar rcsD libtop.a top.o middle.o bottom.o
Linking shared library:

clang -shared -o libbottom.so bottom.o
clang -shared -o libsideways.so sideways.o
clang -shared -o libmiddle.so middle.o bottom.o
clang -shared -o libtop.so top.o middle.o bottom.o
Linking binary:
clang -o binary binary.o -ltop -lmiddle -lsideways -lbottom

Case 4: Reexporting a dep that reexports precompiled static library
cc_library(
 name = 'top',
 srcs = ['top.cc'],
 reexport_deps = [':middle'],
)
cc_library(
 name = 'middle',
 srcs = ['middle.cc'],
 reexport_deps = [':precompiled_static_lib'],
)
cc_library(
 name = 'precompiled_static_lib',
 srcs = ['static_lib.a'],
)
cc_binary(
 name = 'binary',
 deps = [':top'],
 srcs = ['binary.cc'],
)

Observable behaviour (comparing using reexport_deps over deps):
(green denotes flags added, red flags removed)

This cannot be done using ar in a normal way (on windows link.exe supports this, on mac libtool
supports this), we would need to use MRI script. The ar invocation becomes simple 'ar -M <
script', where 'script' contains following:

Archiving middle
create libmiddle.a
addmod middle.o
addlib precompiled_static_lib.a
save
end
Archiving top

create libtop.a
addmod top.o
addmod middle.o
addlib precompiled_static_lib.a
save
end
Linking shared library:
clang -shared -o libtop.so top.o middle.o -lprecompiled_static_lib
clang -shared -o libmiddle.so middle.o -lprecompiled_static_lib
Linking binary:
clang -o binary binary.o -ltop -lmiddle -lstatic_lib

Case 5: Reexporting precompiled shared library
cc_library(
 name = 'top',
 srcs = ['top.cc'],
 reexport_deps = [':precompiled_shared_lib'],
)
cc_library(
 name = 'precompiled_shared_lib',
 srcs = ['shared_lib.so'],
)
cc_binary(
 name = 'binary',
 deps = [':top'],
 srcs = ['binary.cc'],
)

Merging shared libraries is not possible (on neither linux, mac, nor windows). the only thing we
can do is to provide the shared library in the runfiles.

Archiving is not affected, except that the shared library is distributed along the static library.
Linking shared library (again, libshared_lib.so must be distributed in the runfiles):
clang -shared -o libtop.so top.o -lshared_lib

Linking binary (with libtop.so and libshared_lib.so in the runfiles):
clang -o binary binary.o -ltop -lshared_lib

Non cc rules
There are many non C++ related rules that cc_rules can depend on, that could in theory
participate in reexporting deps. The most prominent are proto_library and go_library.

proto_library
To make protos work transitively, we propose we add a boolean flag to cc_proto_library to treat
all nested protos as reexport_deps, plus a boolean flag stating whether to link against/archive
the proto runtime too.

go_library
When linking a binary, go linker needs to know about all of transitive go_library dependencies in
order to generate runtime structures correctly. Because of this we assume people don't want to
distribute shared libraries that include go runtime very often, as such dependencies couldn't be
used if some other shared library included go runtime too. If I'm proved wrong, we could
introduce cc_export_deps into go_library and implement all the machinery around it in the go
rules.

Detecting diamonds
Bazel can automatically detect diamonds and report errors when some is discovered (with the
ability to turn this check off if an user wants to keep their diamonds). The problem is that the
best algorithm so far grows linearly in the number of transitive dependencies for every
cc_binary, cc_shared_library, and cc_test in the graph, therefore grows quadratically in total.
This is a very restrictive property of the approach if done in the analysis phase. But we can do
this check in the execution phase, possibly distributing the work over multiple machines. The
work is still done though, so we will keep a close eye on the performance and if this is causing
trouble we will investigate possible solutions. And if we solve it, we will publish a paper about
the solution :)

Case study: static initialization logic (the diamond)
Sometimes cc_libraries contain some static initialization logic that shouldn't happen twice. In the
following situation:

cc_binary(
 name = 'main',
 srcs = ['main.cc'],
 deps = [':leftlib', ':rightlib'],
)
cc_shared_library(
 name = 'leftlib',
 reexport_deps = [':left']
)
cc_shared_library(
 name = 'rightlib',
 reexport_deps = [':right']
)
cc_library(
 name = 'left',
 srcs = ['left.cc'],
 reexport_deps = [':base'],
)
cc_library(
 name = 'right',
 srcs = ['right.cc'],
 reexport_deps = [':base'],
)
cc_library(
 name = 'base',
 srcs = ['i_have_static_initialization.cc'],
)

If we are unlucky, and build 'leftlib' and 'rightlib', it might happen that the static initialization from
'base' will be inlined into their 'init' sections, and when loaded by 'main', the static initialization
will happen twice. (read more in the original transitive libraries design doc). To give users control
over this sensitive behavior, we advise leaving such dependencies in the 'deps'. cc_binary will
link against all non-reexport deps, or creating a separate cc_shared_library for 'base' and linking
against that.
To say it once more: there is no way of creating shared library that will link against
dependencies in 'deps'!

Related Work
I talked about this problem with many people, and in the process we came up with two more
dependency types that might help with expressivity of our C++ rules. After thinking deeply, I
don't think they're needed. In particular these were:

initialization_deps - dependencies containing static initialization logic as elaborated in the case
study above. There's no need to explicitly mark these I think. The only use I can think of right

https://docs.google.com/document/d/1-tv0_79zGyBoDmaP_pYWaBVUwHUteLpAs90_rUl-VY8/edit#

now is that they would give us the ability to build a shared library containing only the initialization
logic.

alwayslink_deps - these dependencies will be linked in the whole archive block (all their
symbols will be present in the library, even when they're not used). This dependency is still
useful, but not in the context of transitive libraries, so I wouldn't tie it's implementation with
transitive libraries

Also, this document mentions depending on prebuilt libraries. This is currently very cumbersome
in Bazel, one cannot wrap these libraries in whole archive block, they cannot form a lib group,
etc. cc_*_library_import rules are solution to these issues. Transitive libraries are not affected
by that work though.

Future Work

Dead code elimination
With every use of whole-archive we increase the size of the artifact. Symbols that are not used
are kept around, retaining possibly dead code. This overhead is significant for e.g. mobile
development. Right now, when bazel builds shared library it links all transitive objects in a
whole-archive block. With transitive libraries approach this doesn't have to be the case, but this
is yet to be investigated and designed. I don't think the approach described in this doc will make
this work any harder.

Symbol visibility specification (as entry points)
Related to the previous problem, right now Bazel doesn't provide a way of specifying which
symbols should be kept in the resulting libraries. This problem becomes more important on
windows, where this information is required when building a .dll. Again, I don't think the
approach described in this doc makes this work any harder.

Exposed header specification
This also needs more investigation. Since it's tied to the transitive libraries, it might be
worthwhile discussing this here. Should headers of my reexported deps be available to my
dependants? Should this be configurable?

https://docs.google.com/document/d/1hK2mWl3TYNL9oJYX_S020TKkXZvBw1aBoYERvTHVyfg/edit

	Bazel C/C++ Transitive Libraries - Attack Plan
	Introduction
	Requirements
	Attack Plan
	cc_static_library and cc_shared_library
	Reexport_deps
	Examples
	Case 0: cc_*_library rules usage
	Case 1: cc_library reexporting cc_library
	Case 2: cc_binary reexporting cc_library
	Case 3: Reexporting a dep that reexports a dep.
	Case 4: Reexporting a dep that reexports precompiled static library
	Case 5: Reexporting precompiled shared library

	Non cc rules
	proto_library
	go_library

	Detecting diamonds
	Case study: static initialization logic (the diamond)
	Related Work
	Future Work
	Dead code elimination
	Symbol visibility specification (as entry points)
	Exposed header specification

