Lab

Arrays in C

® An array is defined as the collection of similar type of data
items stored at contiguous memory locations.

® Arrays are the derived data type in C programming language
which can store the primitive type of data such as int, char,
double, float, etc.

® It also has the capability to store the collection of derived data
types, such as pointers, structure, etc.

e The array is the simplest data structure where each data
element can be randomly accessed by using its index number.

Properties of Array:

1. Each element of an array is of same data type and carries the
same size.

2. Array element starting index is 0 and last index is size of array —
1.

3. Elements of the array are stored at contiguous memory
locations where the first element is stored at the smallest
memory location.

4. Elements of the array can be randomly accessed since we can
calculate the address of each element of the array with the
given base address and the size of the data element.

Disadvantage of C Array:

1. Fixed Size: Whatever size, we define at the time of declaration
of the array, we can't exceed the limit. So, it doesn't grow the
size dynamically like LinkedList.

Declaration of C Array:

data_type array_namelarray_size];
Example:
int marks[5];

where marks is an array name and data type of marks is int and size
of array marks is 5 i.e.

marks can store max 5 int elements [total 10 bytes].

Initialization of C Array:

Array elements can be initialized by i) compile time initialization ii)
run time initialization

Compile time initialization:

The simplest way to initialize an array is by using the index of each
element. We can initialize each element of the array by using the
index. Consider the following example.

marks[0]=80;//initialization of array
marks[1]=60;
marks[2]=70;
marks[3]=85;
marks[4]=75;

80 60 70 85 75

marks[0] marks[1] marks[2] marks[3] marks[4]

Initialization of Array

//C Program to initialize array elements — compile time initialization

#include<stdio.h>
int main()
{
int i=0;
int marks[5];//declaration of array
marks[0]=80;//initialization of array
marks[1]=60;
marks[2]=70;
marks[3]=85;
marks[4]=75;

//traversal of array
printf("Array elements are : ");
for(i=0;i<5;i++)

{
printf("%d ", marks[i]); // display each element in the
array
}
return O;
}
Output:

C\Users\anilk\OneDrive\Doct. X + v

Array elements are : 80 60 70 85 75

Alternate way of compile time initialization:

int marks[5]={20,30,40,50,60}; //_C array declaration with
initialization

Runtime initialization:

Using scanf() function we can initialize array elements at run
time(during program execution).

// program to initialize array elements at runtime

#include<stdio.h>

int main()

{
int i=0;
int marks[5];//declaration of array
//reading array elements
printf("\nEnter array elements : "),

for(i=0;i<5;i++)

{
scanf("%d",&marks[i]);
}

//printing array elements
printf("Array elements are : ");
for(i=0;i<5;i++)

{

printf("%d ", marks[i]); // display each element in the array
}
return O;

}
Output:

C:\Users\anilk\OneDrive\Doci X +

Enter array elements : 10 20 30 4@ 50
Array elements are : 10 20 30 4@ 50

Single Dimensional Arrays:

UNIT II1

WEEK 7:

Objective: Explore the full scope of Arrays construct namely defining and initializing 1-D and 2-D and more generically
n-D arrays and referencing individual array elements from the defined array. Using integer 1-D arrays, explore search
solution linear search.

Suggested Experiments/Activities:

Tutorial 7: 1 D Arrays: searching.

Lab 7:1D Array manipulation, linear search

i) Find the min and max of a 1-D integer array.

i) Perform linear search on1D array.

i) The reverse of a 1D integer array

iv) Find 2°s complement of the given binary number.

v) Eliminate duplicate elements in an array.

Write an algorithm to flowchart to find the minimum and maximum elements in
the given array

/* C program to find the minimum and maximum elements in
the given list of elements */

#include<stdio.h>

int main()

{
int a[100],min,max, i,size;
printf("Enter the count of elements : ");
scanf("%d" &size);

printf("Enter the elements : ");
for(i=0;i<size;i++) // reading elements
scanf("%d" &ali]);

printf("\nList of elements are : ");
for(i=0;i<size;i++) // printing elements
printf("%d ",ali]);

min=a[0];
for(i=0;i<size;i++) // finding minimum element in the given array

{
if(min>ali])
min=alil;
}

printf("\nMinimum element in the given list is %d ",min);

max=a[0];
for(i=0;i<size;i++) // finding minimum element in the given array
{
if(max<ali])
max=all];
}

printf("\nMaximum element in the given list is %d ",max);
return 0O;

Output:

Enter the count of elements : 5
Enter the elements : 10 20 15 45 75 55

List of elements are : 10 20 15 45 75
Minimum element in the given list is 10
Maximum element in the given list is 75

Write an algorithm and flowchart to search for an element using linear search

/* C program to search an element from the given list of
elements using linear search */

#include<stdio.h>

int main()

{
int a[100],i,size,key,flag=0;
printf("Enter the count of elements : ");
scanf("%d", &size);

printf("Enter the elements : ");
for(i=0;i<size;i++) // reading elements
scanf("%d", &alil);

printf("List of elements are : ");
for(i=0;i<size;i++) // printing elements
printf("%d ",afi]);

printf("\nEnter the element to be searched : "); //search element
scanf("%d", &key);

for(i=0;i<size;i++) // Linear Search
{
if(ali]==key) // key value is identified
{
flag=1;
break;
}
}

if(flag==0)

printf("Element is not present in the given list");
else

printf("Element is present at location %d",i+1);
return 0;

Output:

Enter the count of elements : 6
Enter the elements : 10 20 15 56 78 90

List of elements are : 10 20 15 56 78 90
Enter the element to be searched : 56
Element is present at location 4

Write an algorithm and flowchart to reverse the given 1D array

// C program to reverse the given 1D array

#include<stdio.h>

int main()

{
int a[100],b[100],i,size,temp;
printf("Enter the array size : ");
scanf("%d" &size);

printf("Enter the array elements : ");
for(i=0;i<size;i++) // reading elements
scanf("%d", &ali]);

printf("Original array is : ");
for(i=0;i<size;i++) // printing original array elements
printf("%d “,afi]);

for(i=0;i<size/2;i++) //reverse of arrray logic

{
temp=ali];
afil=a[size-i-1];
afsize-i-1]=temp;
}

printf("\nReverse of the given array is : ");

for(i=0;i<size;i++) // reading elements
printf("%d “,afi]);

return O;

}

Output:
Enter the array size : 5
Enter the array elements : 10 20 30 U@ 50

Original array is : 10 20 30 4O 50
Reverse of the given array is : 50 4@ 30 20 10

Write an algorithm and flowchart to remove the duplicate elements
in the given array

#include<stdio.h>
int main ()
{
int arr[20],i,j,k,size;
printf("Enter the number of elements in an array : ");
scanf("%d", &size);
printf("\n Enter %d elements of an array: \n ", size);
// reading elements into the array
for(i=0;i<size;i++)
{
scanf("%d", &arrli]);
}
// removing duplicate elements in the array
for(i=0;i<size;i++)
{
for(j=i+1;j<size;j++)
{
if(arr[i]==arrlj]) // check duplicate
{
// delete the current position of duplicate element
for(k=j;k<size-1;k++)
{
arr[k]=arr[k+1];
}
// decrease the size of array after removing duplicate element
size--;

/* if the position of the elements is changes, don't increase the
indexj */

}
}
}

/* display an array after deletion or removing of the duplicate
elements */

printf (" \n Array elements after deletion of the duplicate
elements: ");

// for loop to print the array
for (i=0;i<size; i++)
{
printf (" %d \t", arr[i]);
/

return O;

B ' C\Users\Admin\Documents\duplicate.exe

Enter the number of elements in an array : 6

Enter 6 elements of an array:
16 20 20 30 40 56

WEEK 8:

Objective: Explore the difference between other arrays and character arrays that can be used as Strings by using null
character and get comfortable with string by doing experiments that will reverse a string and concatenate two strings.
Explore sorting solution bubble sort using integer arrays.

Suggested Experiments/Activities:

Tutorial 8: 2 D arrays, sorting and Strings.

Lab 8: Matrix problems, String operations, Bubble sort

i) Addition of two matrices

ii) Multiplication two matrices

ii1) Sort array elements using bubble sort

iv) Concatenate two strings without built-in functions

v) Reverse a string using built-in and without built-in string functions

Basics:

Two Dimensional Arrays:

syntax:
int array_name[row_size][column_size];

int x[5][10]; // array x with 5 rows and 10 columns
int x[3][3]; // array x with 3 rows and 3 columns

Column0 Column1 Column 2
Row 0 x[0][0] | x[O]1[1] | x[O][2]
Row 1 x[1][0] x[1][1] x[1][2]

The above matrix contains three rows and three columns

Row index starts from O

Column index starts from O

Initialization of 2D arrays:

i) Compile time initialization ii) Run time initialization

i) Compile time initialization:

int a[3][2]={10,20,30,40,50,60}; // total 6 elements
int a[3][2]={{10,20},{30,40},{50,60}}; //total 6 elements

Printing 2D array values:

printf(“%d”,a[0][0]); //print element of row0 and columnO
printf(“%d”,a[0][1]); //print element of row0 and column1
printf(“%d”,a[1][0]); //print element of row1 and columnO
printf(“%d”,a[1][1]); //print element of row1 and columnl
printf(“%d”,a[2][0]); //print element of row2 and columnO

printf(“%d”,a[2][1]); //print element of row2 and columnl

ii) Run time initialization:

We can initialize the values into the 2D array at the time of
execution.
int a[3][2]; // array a with 3 rows and 2 columns

Reading value from the keyboard using scanf() function:

printf(“Enter any element : “);

// reading values into row0 and column1

scanf(“%d”,&a[0][1]); // reading values into row0 and column2
scanf(“%d”,&a[1][0]); // reading values into row1 and columnO
scanf(“%d”&a[1][1]); // reading values into row1 and columnl
scanf(“%d”,&a[2][0]); // reading values into row2 and columnO
scanf(“%d”,&a[2][1]); // reading values into row2 and columnO

Write a C program to read and write values into 2D array

// C program to read and write values into 2D array
/*C program to read and write values into the 2D array*/
#include<stdio.h>
int main()
{
int a[50][50],m,n,ij;
printf("Enter the dimensions of a matrix: ");
scanf("%d%d",&m,&n);
//reading elements into the 2D array

printf("\nEnter the elements \n");
for(i=0;i<m;i++) // m-rows
{
for(j=0;j<n;j++) // n-columns
{
scanf("%d",&alil[j]);
}
}

printf("\Matrix Elements are : ");
for(i=0;i<m;i++) // m-rows
{
printf("\n");
for(j=0;j<n;j++) // n-columns
{
printf("%d ", ali][j]);

Output:

B DAMNRAON2d.exe

the dimensions of a matrix:

~ the elements

Elements are :
40

86

Matrix Addition:

C=A+B

1+9 248 3+7
4+6 5+5 6+4
7+3 86+2 9+1

S Sy

00 L1 bd

O oW
+

W o WD

M LA 00

O
1

