
Lab

Arrays in C

●​ An array is defined as the collection of similar type of data

items stored at contiguous memory locations.

●​ Arrays are the derived data type in C programming language

which can store the primitive type of data such as int, char,

double, float, etc.

●​ It also has the capability to store the collection of derived data

types, such as pointers, structure, etc.

●​ The array is the simplest data structure where each data

element can be randomly accessed by using its index number.

Properties of Array:

1.​Each element of an array is of same data type and carries the

same size.

2.​Array element starting index is 0 and last index is size of array –

1.

3.​Elements of the array are stored at contiguous memory

locations where the first element is stored at the smallest

memory location.

4.​Elements of the array can be randomly accessed since we can

calculate the address of each element of the array with the

given base address and the size of the data element.

Disadvantage of C Array:

1.​Fixed Size: Whatever size, we define at the time of declaration

of the array, we can't exceed the limit. So, it doesn't grow the

size dynamically like LinkedList.

Declaration of C Array:

data_type array_name[array_size];

Example:

int marks[5];

where marks is an array name and data type of marks is int and size

of array marks is 5 i.e.

marks can store max 5 int elements [total 10 bytes].

Initialization of C Array:

Array elements can be initialized by i) compile time initialization ii)

run time initialization

Compile time initialization:

The simplest way to initialize an array is by using the index of each

element. We can initialize each element of the array by using the

index. Consider the following example.

marks[0]=80;//initialization of array

marks[1]=60;

marks[2]=70;

marks[3]=85;

marks[4]=75;

//C Program to initialize array elements – compile time initialization

#include<stdio.h>
int main()
{
​ int i=0;
​ int marks[5];//declaration of array
​ marks[0]=80;//initialization of array
​ marks[1]=60;
​ marks[2]=70;
​ marks[3]=85;
​ marks[4]=75;

​ //traversal of array
​ printf("Array elements are : ");
​ for(i=0;i<5;i++)
​ {
​ ​ printf("%d ",marks[i]); // display each element in the
array
​ }
​ return 0;
}
Output:

Alternate way of compile time initialization:

int marks[5]={20,30,40,50,60}; // C array declaration with

initialization

Runtime initialization:

Using scanf() function we can initialize array elements at run

time(during program execution).

// program to initialize array elements at runtime

#include<stdio.h>
int main()
{
​ int i=0;
​ int marks[5];//declaration of array
 //reading array elements
 printf("\nEnter array elements : ");
 for(i=0;i<5;i++)
 {
 ​ scanf("%d",&marks[i]);
​ }

​ //printing array elements
​ printf("Array elements are : ");
​ for(i=0;i<5;i++)
​ {
​ ​ printf("%d ",marks[i]); // display each element in the array
​ }
​ return 0;
}
Output:

Single Dimensional Arrays:

Write an algorithm to flowchart to find the minimum and maximum elements in
the given array

/* C program to find the minimum and maximum elements in
the given list of elements */

#include<stdio.h>
int main()
{
​ int a[100],min,max,i,size;
​ printf("Enter the count of elements : ");
​ scanf("%d",&size);
​
​ printf("Enter the elements : ");
​ for(i=0;i<size;i++) // reading elements
​ scanf("%d",&a[i]);
​

​ printf("\nList of elements are : ");
​ for(i=0;i<size;i++) // printing elements
​ printf("%d ",a[i]);
​
​ min=a[0];
​ for(i=0;i<size;i++) // finding minimum element in the given array
 {
 ​ if(min>a[i])
 ​ min=a[i];
​ }
​ printf("\nMinimum element in the given list is %d ",min);
​
​ max=a[0];
​ for(i=0;i<size;i++) // finding minimum element in the given array
 {
 ​ if(max<a[i])
 ​ max=a[i];
​ }
​ printf("\nMaximum element in the given list is %d ",max);
 return 0;
}

Output:

Write an algorithm and flowchart to search for an element using linear search

/* C program to search an element from the given list of
elements using linear search */

#include<stdio.h>
int main()
{
​ int a[100],i,size,key,flag=0;
​ printf("Enter the count of elements : ");
​ scanf("%d",&size);
​
​ printf("Enter the elements : ");
​ for(i=0;i<size;i++) // reading elements
​ scanf("%d",&a[i]);
​
​ printf("List of elements are : ");
​ for(i=0;i<size;i++) // printing elements
​ printf("%d ",a[i]);
​
​ printf("\nEnter the element to be searched : "); //search element
​ scanf("%d",&key);
​
 for(i=0;i<size;i++) // Linear Search
 {
 ​ if(a[i]==key) // key value is identified
 {
 ​ flag=1;
 ​ break;
​ }
​ }
​
​ if(flag==0)
​ printf("Element is not present in the given list");
​ else
​ printf("Element is present at location %d",i+1);
 return 0;
}

Output:

Write an algorithm and flowchart to reverse the given 1D array

// C program to reverse the given 1D array

#include<stdio.h>
int main()
{
​ int a[100],b[100],i,size,temp;
​ printf("Enter the array size : ");
​ scanf("%d",&size);
​
​ printf("Enter the array elements : ");
​ for(i=0;i<size;i++) // reading elements
​ scanf("%d",&a[i]);
​
​ printf("Original array is : ");
​ for(i=0;i<size;i++) // printing original array elements
​ printf("%d ",a[i]);
​
​ for(i=0;i<size/2;i++) //reverse of arrray logic
​ {
​ ​ temp=a[i];
​ ​ a[i]=a[size-i-1];
​ ​ a[size-i-1]=temp;
 }

 printf("\nReverse of the given array is : ");
 for(i=0;i<size;i++) // reading elements
​ printf("%d ",a[i]);
 return 0;
}
Output:

Write an algorithm and flowchart to remove the duplicate elements

in the given array

#include<stdio.h>
int main ()
{
 int arr[20],i,j,k,size;
 printf("Enter the number of elements in an array : ");
 scanf("%d", &size);
 printf("\n Enter %d elements of an array: \n ", size);
 // reading elements into the array
 for(i=0;i<size;i++)
 {
 scanf("%d",&arr[i]);
 }
 // removing duplicate elements in the array
 for(i=0;i<size;i++)
 {
 for(j=i+1;j<size;j++)
 {
 if(arr[i]==arr[j]) // check duplicate
 {
 // delete the current position of duplicate element
 for(k=j;k<size-1;k++)
 {
 arr[k]=arr[k+1];
 }
 // decrease the size of array after removing duplicate element
 size--;

/* if the position of the elements is changes, don't increase the
index j */
 j--;
 }
 }
 }

 /* display an array after deletion or removing of the duplicate
elements */
 printf (" \n Array elements after deletion of the duplicate
elements: ");

 // for loop to print the array
 for (i = 0; i < size; i++)
 {
 printf (" %d \t", arr[i]);
 }
 return 0;
}

Basics:

Two Dimensional Arrays:

syntax:
int array_name[row_size][column_size];
int x[5][10]; // array x with 5 rows and 10 columns
int x[3][3]; // array x with 3 rows and 3 columns

The above matrix contains three rows and three columns

Row index starts from 0

Column index starts from 0

Initialization of 2D arrays:

i) Compile time initialization ii) Run time initialization

i) Compile time initialization:

int a[3][2]={10,20,30,40,50,60}; // total 6 elements

int a[3][2]={{10,20},{30,40},{50,60}}; //total 6 elements

Printing 2D array values:

printf(“%d”,a[0][0]); //print element of row0 and column0

 printf(“%d”,a[0][1]); //print element of row0 and column1

printf(“%d”,a[1][0]); //print element of row1 and column0

printf(“%d”,a[1][1]); //print element of row1 and column1

printf(“%d”,a[2][0]); //print element of row2 and column0

printf(“%d”,a[2][1]); //print element of row2 and column1

ii) Run time initialization:

We can initialize the values into the 2D array at the time of

execution.

int a[3][2]; // array a with 3 rows and 2 columns

Reading value from the keyboard using scanf() function:

printf(“Enter any element : “);

 // reading values into row0 and column1

scanf(“%d”,&a[0][1]); // reading values into row0 and column2

scanf(“%d”,&a[1][0]); // reading values into row1 and column0

scanf(“%d”,&a[1][1]); // reading values into row1 and column1

scanf(“%d”,&a[2][0]); // reading values into row2 and column0

scanf(“%d”,&a[2][1]); // reading values into row2 and column0

Write a C program to read and write values into 2D array

// C program to read and write values into 2D array
/*C program to read and write values into the 2D array*/
#include<stdio.h>
int main()
{
​ int a[50][50],m,n,i,j;
​ printf("Enter the dimensions of a matrix: ");
​ scanf("%d%d",&m,&n);​
​ //reading elements into the 2D array

​ printf("\nEnter the elements \n");
​ for(i=0;i<m;i++) // m-rows
 {
 ​ for(j=0;j<n;j++) // n-columns
 ​ {
 ​ ​ scanf("%d",&a[i][j]);
 }
 }​

​ printf("\Matrix Elements are : ");
​ for(i=0;i<m;i++) // m-rows
 {
 ​ printf("\n");
 ​ for(j=0;j<n;j++) // n-columns
 ​ {
 ​ ​ printf("%d ",a[i][j]);
​ }
 }
 }

Output:

Matrix Addition:

C=A+B

