

Worksheet IT 3: Accelerometer focus and gravity force (Part 1)

In this scenario we examine the relationship between the sensor called "Accelerometer", used to measure linear speed variations in the 3 directions of space, and the "Gravimeter", used to evaluate the 3 components of the G-force. This experience is designed to let students understand the functioning of two important sensors used to analyse movement, such as the accelerometer and the gravity sensor.

What will you learn?

- Step 1: Start and learn about the "Accelerometer" sensor in detail
- Step 2: Dropping the phone from a given height onto a soft surface
- Step 3: Export the measured data into a graph

Gravity direction

What sign and direction does the g-force have when you drop the phone?

- \Box + Z
- ☐ I don't know, maybe sagittarius
- □ 7

This document is distributed in 2021 by Politecnico di Bari within the FabCitizen Project Consortium under an Attribution--ShareAlike Creative Commons license (CC BY-SA 4.0). This license allows you to remix, tweak, and build upon this work, as long as you credit the Politecnico di Bari / FabCitizen Project Consortium and license your new creations under the identical terms

Acceleration and weight

The smartphones used for this experience certainly have different weights. How does this affect the fall and the acceleration of gravity?

- ☐ Heavier phones measure greater acceleration
- Lighter phones measure greater acceleration
- ☐ Acceleration is absolutely identical no matter the weight of the smartphone

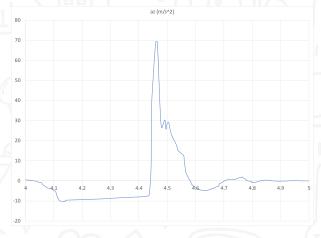


Chart detected

Immediately after the fall export the values obtained and get a linear graph.

What do you learn from the chart?

- ☐ During the fall the acceleration is constant and almost equal to -9.8 m/s^2
- ☐ The 70 m/s^2 peak is due to the smartphone's weight
- ☐ The phone touches the soft surface at 4.6 second

This document is distributed in 2021 by Politecnico di Bari within the FabCitizen Project Consortium under an Attribution--ShareAlike Creative Commons license (CC BY-SA 4.0). This license allows you to remix, tweak, and build upon this work, as long as you credit the Politecnico di Bari / FabCitizen Project Consortium and license your new creations under the identical terms