
Togetherly 
QA and Test Plan 

The goal of this quality assurance and test plan is to establish a set of processes and standards 
that, when followed by the team, will improve our chances of building a functional, high-quality, 
robust, and maintainable product. 

QA Processes 

Main and Feature Branches 
To prevent accidental conflicts, we have opted to protect the main branch of our repository from 
being pushed to directly. Instead, all work is to be done on feature branches, which should 
generally be named based on the feature or fix for which they were created. In general, only one 
person should work on a given branch at a time, except where there is very close (i.e., 
in-person) coordination between developers. Local feature branches should be periodically 
synced with the corresponding remote branches on the GitHub repository. 

Pull Requests and Code Reviews 
Merging a feature branch into the main branch must be done via a pull request (PR). A PR 
should contain a brief yet meaningful title, as well as a concise description that adequately 
communicates what changes are present and, as necessary, why those changes were made. It 
is also helpful for the description to contain links to any relevant tasks on Asana. 
 
Before a pull request is merged, it must be approved by another team member. Before giving 
their approval, that team member should perform a code review. At a minimum, a code review 
involves looking at each of the files that was changed, executing all automated tests, and 
performing manual testing as needed (both forms of testing are described in detail later). 
 
Once a developer has created a PR, they should request a review using the “Reviewers” 
feature on GitHub. In general, the QA lead is responsible for reviewing and approving PRs. 
However, if they are unavailable to review an urgent change, or if the QA lead needs a review 
for their own PR, another qualified member of the team may be requested instead. Once a 
reviewer approves a PR, they should merge it into main and delete its associated branch. 
 
Important: Once a review has been requested, no commits should be pushed to the branch 
associated with the PR except by the reviewer. This is to allow the reviewer to make minor 
adjustments prior to approving and merging the PR (such as resolving merge conflicts) without 
having to pester the author of the PR. However, if a reviewer does request changes, they should 
not push any further commits to that branch until the author has again requested their review. 



Test Plan 

Automated Testing 
Wherever there is non-UI code that involves non-trivial logic (i.e., is more than just interfaces, 
stubbed methods, getters, or setters), there should generally be automated unit tests. The 
tools and techniques that we will use for automated unit testing are (as of March 23rd) still being 
evaluated. Once we have settled on those tools and techniques, unit tests should be included 
as part of any pull request that introduces or meaningfully modifies non-trivial, non-UI code. Unit 
tests are responsible for evaluating the functionality of the system, ensuring that any non-trivial 
components function as intended. 
 
Once we have reached a point where we may begin writing unit tests, reviewers who are 
evaluating PRs should consider 1) whether unit tests should be present given the changes 
being made, 2) whether such tests have been included in the PR, and 3) whether those tests 
appear adequate given the code that was changed. 
 
Assuming that the reviewer deems the tests adequate, success for automated testing will be 
indicated by all unit tests passing when run in the reviewer’s development environment. A PR 
should not be approved without the reviewer first verifying that all unit tests pass. 

Manual Testing 
Because UI code does not lend itself well to automated tests, it will instead be tested manually. 
Manual testing should be performed when reviewing any PR that contains UI changes. Such 
testing consists of running the app in one’s development environment and observing/interacting 
with each of the new or updated UI components. 
 
Manual testing of the UI is much more subjective than automated testing. Success for manual 
testing will be determined by the reviewer’s satisfaction with the performance, reliability, 
user-friendliness, and appearance of the user interface. 

User Acceptance Testing 
In preparation for the final demo, a current build of the app should be distributed to a small 
group of testers to perform user acceptance testing. The group of testers may include 
members of the team, as well as their friends, family, or acquaintances. Testers should be asked 
to use the app in either a hypothetical setting or, when reasonable, a real-life setting. Following 
their experience, testers should be invited to share any frustrations or suggestions they might 
have. Informal user acceptance testing may also occur throughout the development process. 
 
Success for this category of tests will be measured qualitatively based on tester feedback. If 
testers find the app useful and are not frustrated by any major issues, then this test will 
generally be considered a success. 



Testing of System Modules 

 

Back-end: Supabase 
Our Supabase tables and configuration exist outside our GitHub workflow, and as such, will not 
be reviewed in the same way as other code. Instead, the Database Developer should notify the 
QA Lead when significant tasks relating to the back-end have been completed. Once notified, 
the QA Lead will manually check the schemas, configuration, or other work done in Supabase 
for possible issues. If any issues are found, they will contact the Database Developer over 
Discord to request clarification or changes. 

Front-end 

Services 
Service classes integrate with Supabase, and as such, testing them will require some degree of 
mocking. Service classes should accept a SupabaseClient object via their constructor. In 
production code, this object will be provided via Supabase.instance.client. However, in unit 
tests, it will be replaced with a mock object. 
 
The following is a non-exhaustive set of Service behaviors that should be covered by unit tests: 

●​ Translation of query results into model objects (e.g., read operations) 
●​ Translation of model objects into query parameters (e.g., create/update operations) 
●​ Translation of method parameters into query parameters (e.g., delete operations and 

specialized queries) 

https://docs.flutter.dev/cookbook/testing/unit/mocking


Providers 
Providers act as the bridge between the UI and Service layers. They are also responsible for 
managing app-wide state. Because they implement most of the app’s business logic, Providers 
are the most critical component to unit test. The range of behaviors that will need to be tested is 
too broad to list in this document, but it should suffice to say that any non-trivial behavior should 
be covered. 
 
Note: We failed to make enough time for this portion of our test plan, and as such have set 
aside plans to write unit tests for our providers. 

Views 
Views should manage very little state and should implement practically no business logic. While 
methods do exist for testing aspects of a UI, such testing is excessive given the scope of our 
project. Instead, changes to the View layer will be tested manually as outlined in the previous 
section. 


	Togetherly 
	QA Processes 
	Main and Feature Branches 
	Pull Requests and Code Reviews 

	Test Plan 
	Automated Testing 
	Manual Testing 
	User Acceptance Testing 
	Testing of System Modules 
	Back-end: Supabase 
	Front-end 
	Services 
	Providers 
	Views 




