
Snap a python application

Summary In this codelab, you’ll create a snap of a command-line utility for website
benchmarking, called httpstat. This utility is written in Python and requires only
access to the network to perform its task.

URL snap-python-app

Category snapcraft

Environment snapcraft, usage, build, beginner, python

Status Draft

Feedback Link https://github.com/ubuntu/codelabs/issues

Author simos

Tags python,network,interface

Difficulty 2

Published 2017-02-14

Overview
What you’ll learn
What you’ll need

How will you use this tutorial?
What is your current level of experience working with snap?

Getting familiar with the project
Introspect the code

Crafting a working snap in devmode
Scaffolding
Main snapcraft.yaml metadata
A python part
Adding an httpstat command
Polishing our snap (or rather, making it work ;))

Let’s confine everything!
Testing our current snap without modifying it
Enabling access to network
Final testing

That’s all folks!
Next steps
Further readings

Overview
Duration: 1:00

In this tutorial we are going to snap a network utility called httpstat, written in Python.
httpstat visualizes curl statistics in a way of beauty and clarity.

The screenshot above shows the output of httpstat when we run it on

https://www.ubuntu.com. httpstat shows how much time it took for each individual stage of

the page transfer, in this case is:

1.​ DNS Lookup
2.​ TCP Connection

https://github.com/reorx/httpstat
https://www.ubuntu.com

3.​ SSL Handshake
4.​ Server Processing
5.​ Content Transfer

A system administrator would need to control those times in an effort to reduce them as much
as possible. For example, they could switch to a different server location, get a faster server or
optimize the server software so that it delivers the content much faster. In this specific example,
we actually learn that our connection was served by a reverse proxy (shown as
jujube.canonical.com), which guarantees a very short time in server processing when the web
page content remains the same.

What you’ll learn
●​ How to package a python project with snapcraft

●​ How to pull source code from a specific git tag

●​ We’ll finally review how to make its strictly confined.

What you’ll need
●​ Ubuntu 16.04 or newer
●​ Basic knowledge of Linux command line

○​ Familiarize yourself first with snaps by following first these two introductory
tutorials: “basic snap usage” and “create your first snap”

How will you use this tutorial?
●​ Only read through it
●​ Read it and complete the exercises

What is your current level of experience working with snap?
●​ Novice
●​ Intermediate
●​ Proficient

https://tutorials.ubuntu.com/tutorial/basic-snap-usage
https://tutorials.ubuntu.com/tutorial/create-first-snap

Getting familiar with the project
Duration: 2:00

This project is a Python application. It has a very simple project layout with an installation
and test script.

Introspect the code

Simply run:

$ git clone https://github.com/reorx/httpstat
$ cd httpstat
$ ls
[…]
httpstat.py
setup.py

The two interesting files in that directory are:
-​ httpstat.py corresponding to the main (and only!) source file, containing the code.

You can execute it directly once it’s made executable.
-​ setup.py, which is a standard python installation script file. Running setup will build

and install the project on the target host. The good news is that snapcraft has full
support for projects following this best python practice.

You will note that this project has no requirements.txt, meaning that there is no non
standard library module used and that needs to be pulled in at build time. If that were the
case, snapcraft would have handle this for you, pulling the correct dependencies via pip, itself.

Do not hesitate to open the files to get familiar with them. Once this is done, you can now
remove that httpstat directory.

Crafting a working snap in devmode

Duration: 9:00

Note that we know what we are going to snap and how it’s structured. Let’s start getting serious
and work on it!

Scaffolding
We are going to create the snapcraft project in another directory. We will pull the main source
code directly from github each time we build the snap.
Let’s use snapcraft to scaffold an initial configuration file and then build on that to create the
final snap for httpstat.

$ mkdir httpstat-snap
$ cd httpstat-snap
$ snapcraft init
Created snap/snapcraft.yaml.
Edit the file to your liking or run `snapcraft` to get started

You are now ready to go with our familiar snap/snapcraft.yaml file.

Main snapcraft.yaml metadata

Here is the first part of the httpstat snapcraft.yaml. Let’s add to it some metadata
concerning our snap and the project. Change your file to match the following:

name: httpstat
version: '1.1.3'
summary: Curl statistics made simple
description: |
 httpstat is a utility that analyses show fast is a website
 when you are trying to connect to it.
 This utility is particularly useful to Web administrators.
grade: stable
confinement: devmode

First, for the a name, we use httpstat.

Second, we select a version. Instead of using the latest development version that might not
work or might happen to be broken momentarily, you can pick and choose the stable branch or
the latest tag.

The tag v1.1.3 will do!

Third and fourth, we add a summary and a description from text we got from the httpstat
github page.

Fifth, we select a grade. That would be either devel (for development) or stable. This snap is
going to land in the stable channel in the store.

Sixth, we select the confinement of the snap. As for other snaps, we are going to let it first in
devmode before turning it to strict confinement.

A python part

This simple application is going to be made of a single part, referencing the github source
repository. We know as well that we want to pull a certain revision (a git tab) and the project is
made in python.

This translates into:

parts:
 httpstat:
 source: https://github.com/reorx/httpstat.git
 source-tag: v1.1.3
 plugin: python

And that’s it! In the parts section we provide instructions as to how to process this httpstat
target.

We first specify the git URL for the source (note that it ends with .git) and the tag. The git URL
appears when we click on the Clone or download green button at github. More information
on the source is available via the snapcraft source command.

We then specify that we want to use the plugin: python, which is a plugin that performs
python setup.py build and python setup.py install. The default behavior is to
build a python3 program. The python-version: element can be specified to set the python
version to 2. As we discussed previously, this project doesn’t have a requirements.txt file, and
so, no dependency will be pulled in and referenced via pip by snapcraft. Otherwise, this would
have been done conveniently for you, in a relocatable fashion! Note that snapcraft help
python will give you way more information in the available information of the plugin:

$ snapcraft help python
The python plugin can be used for python 2 or 3 based parts.

It can be used for python projects where you would want to do:

 - import python modules with a requirements.txt
 - build a python project that has a setup.py
 - install packages straight from pip

This plugin uses the common plugin keywords as well as those for "sources".
For more information check the 'plugins' topic for the former and the
'sources' topic for the latter.

Additionally, this plugin uses the following plugin-specific keywords:

 - requirements:
 (string)
 Path to a requirements.txt file
 - constraints:
 (string)
 Path to a constraints file
 - process-dependency-links:
 (bool; default: false)
 Enable the processing of dependency links.
 - python-packages:
 (list)
 A list of dependencies to get from PyPi
 - python-version:
 (string; default: python3)
 The python version to use. Valid options are: python2 and python3

Even if we know we didn’t expose any command or service yet, let’s try to build it to ensure our
part definition is correct:

$ snapcraft prime
Preparing to pull httpstat
Hit http://archive.ubuntu.com/ubuntu xenial InRelease
Get:1 http://archive.canonical.com xenial InRelease [11.5 kB]
[…]
Fetched 6208 kB in 0s (0 B/s)
Pulling httpstat
Cloning in '<…>/parts/httpstat/src'...
remote: Counting objects: 251, done.
remote: Total 251 (delta 0), reused 0 (delta 0), pack-reused 251
Réception d'objets: 100% (251/251), 330.03 KiB | 0 bytes/s, fait.
Résolution des deltas: 100% (138/138), fait.
Vérification de la connectivité... fait.
Note: checking out '0f0e653309982178302ec1d5023bda2de047a72d'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

 git checkout -b <new-branch-name>

Collecting pip
 Using cached pip-9.0.1-py2.py3-none-any.whl
 Saved ./parts/httpstat/packages/pip-9.0.1-py2.py3-none-any.whl
Collecting setuptools
 Downloading setuptools-34.2.0-py2.py3-none-any.whl (389kB)
 100% |████████████████████████████████| 399kB 2.2MB/s
 Saved ./parts/httpstat/packages/setuptools-34.2.0-py2.py3-none-any.whl
[…]
Installing collected packages: pip, six, appdirs, pyparsing, packaging,
setuptools, wheel
Successfully installed appdirs packaging pip-8.1.1 pyparsing-2.0.3
setuptools-20.7.0 six-1.10.0 wheel-0.29.0
pip download --disable-pip-version-check --dest
<…>/parts/httpstat/packages .
Processing <…>/step3/parts/httpstat/src
 Link is a directory, ignoring download_dir
Successfully downloaded httpstat
Preparing to build httpstat
Building httpstat
Collecting pip
 Saved /tmp/tmpmj_yh4e1/pip-9.0.1-py2.py3-none-any.whl
Collecting setuptools
 Saved /tmp/tmpmj_yh4e1/setuptools-34.2.0-py2.py3-none-any.whl
[…]
Successfully installed appdirs-1.4.0 packaging-16.8 pip-9.0.1
pyparsing-2.1.10 setuptools-34.2.0 six-1.10.0 wheel-0.29.0
pip wheel --disable-pip-version-check --no-index --find-links
<…>/step3/parts/httpstat/packages --wheel-dir /tmp/tmpah1cbkq9 .
Processing <…>/step3/parts/httpstat/build
Building wheels for collected packages: httpstat
 Running setup.py bdist_wheel for httpstat ... done
 Stored in directory: /tmp/tmpah1cbkq9
Successfully built httpstat
DEPRECATION: The default format will switch to columns in the future. You
can use --format=(legacy|columns) (or define a format=(legacy|columns) in
your pip.conf under the [list] section) to disable this warning.
pip install --user --no-compile --disable-pip-version-check --no-index
--find-links <…>/step3/parts/httpstat/packages httpstat --no-deps
--upgrade
Collecting httpstat
Installing collected packages: httpstat
Successfully installed httpstat-1.1.3
Staging httpstat

Priming httpstat

Success! (Well, if you don’t have any typo in your yaml file ;)). Reading the log, you can see that
the python plugin did some heavy lifting for you:

●​ Installing pip, setuptools, and a lot of other tools (from the distribution and pip)
●​ Putting the python3 binaries and standard library as part of the snap
●​ Running setup.py which installs the httpstat binary. This one finally ends up as

prime/bin/httpstat.

Note:

Do not hesitate to look at the content of the prime/ directory. This is what will be
exactly in your final snap. You will really appreciate all the work snapcraft did for you
there!

Adding an httpstat command

Ok, our httpstat project is being built, but we are missing something: a command to run it! Let’s
expose one.
Add in your snapcraft.yaml, between the top metadata and the parts: paragraph:

apps:
 httpstat:
 command: httpstat

We specify that the users will be running an executable named httpstat via the command:
argument. We name that command httpstat itself.

That’s it? Yes it is and it is high time to issue a build:

$ snapcraft prime
Skipping pull httpstat (already ran)
Skipping build httpstat (already ran)
Skipping stage httpstat (already ran)
Skipping prime httpstat (already ran)

And done! Let’s ship it. Oh wait! Testing? Hum maybe… but let’s add a new section for this.

Note:

You will notice in the generated command-httpstat.wrapper file from the
prime/ directory that snapcraft python plugin helped you in exporting
PYTHONUSERBASE and PYTHONHOME to reference your local python installation.
Nifty!

Polishing our snap (or rather, making it work ;))

Ok, let’s see what this is getting us, trying the snap on our system:

$ snap try --devmode prime/
httpstat 1.1.3 mounted from <…>/prime
$ httpstat --help
Usage: httpstat URL [CURL_OPTIONS]
 httpstat -h | --help
 httpstat --version

Arguments:
 URL url to request, could be with or without `http(s)://` prefix

Options:
 CURL_OPTIONS any curl supported options, except for -w -D -o -S -s,
 which are already used internally.
 -h --help show this screen.
 --version show version.

Environments:
 HTTPSTAT_SHOW_BODY By default httpstat will write response body
 in a tempfile, but you can let it print out by
setting
 this variable to `true`.
 HTTPSTAT_SHOW_SPEED set to `true` to show download and upload speed.

Looks great! Let’s try now to get some statistics on https://www.ubuntu.com:

$ httpstat https://www.ubuntu.com
Traceback (most recent call last):
 File "/snap/httpstat/x1/bin/httpstat", line 11, in <module>
 sys.exit(main())
 File "/snap/httpstat/x1/lib/python3.5/site-packages/httpstat.py", line
155, in main
 p = subprocess.Popen(cmd, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, env=cmd_env)
 File "/snap/httpstat/x1/usr/lib/python3.5/subprocess.py", line 947, in
__init__

 restore_signals, start_new_session)
 File "/snap/httpstat/x1/usr/lib/python3.5/subprocess.py", line 1551, in
_execute_child
 raise child_exception_type(errno_num, err_msg)
FileNotFoundError: [Errno 2] No such file or directory: 'curl'

Ah, not so good… The error helps us here: No such file or directory: ‘curl’. Indeed, curl is a binary,
not a python module, and we don’t ship it as part of our snap. curl is available in the Ubuntu
apt repositories, therefore we can use the stage-packages functionality in order to reuse
this available binary package:

parts:
 httpstat:
 […]
 stage-packages: [curl]

Here, we only add one package to the stage-packages list: curl.

Important: The error messages may be long and perhaps confusing. It is important
to skim the whole error message for the interesting information. In the above case,
we learn that the error produced a traceback (a trace of the instructions from start
to the point of the error). At the end of the traceback, we get the important hint:
FileNotFoundError: [Errno 2] No such file or directory: 'curl' It
could not find curl, one of the most common utility that downloads content from
websites. Every snap is considered empty unless we explicitly add commands like
curl, which is needed here.

Let’s quickly rebuild (after cleaning as we changed one part definition), reinstall, cross fingers,
and run it:

$ snapcraft clean
Cleaning up priming area
Cleaning up staging area
Cleaning up parts directory
$ snapcraft prime
[…]
$ snap try --devmode prime/
httpstat 1.1.3 mounted from <…>/prime
$ httpstat https://www.ubuntu.com
HTTP/1.1 200 OK
Date: Thu, 16 Feb 2017 14:44:40 GMT
Server: gunicorn/17.5
Strict-Transport-Security: max-age=15768000
Content-Type: text/html; charset=utf-8
Age: 173

Content-Length: 34074
X-Cache: HIT from privet.canonical.com
X-Cache-Lookup: HIT from privet.canonical.com:80
Via: 1.0 privet.canonical.com:80 (squid/2.7.STABLE7)
Vary: Accept-Encoding

Body stored in: /tmp/tmp3m7quqre

 DNS Lookup TCP Connection SSL Handshake Server Processing Content
Transfer
[61ms | 17ms | 230ms | 20ms |
38ms]
 | | | |
|
 namelookup:61ms | | |
|
 connect:78ms | |
|
 pretransfer:308ms |
|
 starttransfer:328ms
|

total:366ms

Success! Before shipping our snap, to be able to publish in the stable channel, we need to turn
confinement on though. But that’s for the next step, we have worked enough here!

Let’s confine everything!
Duration: 4:00

Ok, the title may be a little bit catchy. Let’s start by confining this snap alone :)

Lost or starting from here?

Check or download here to see what your current directory should look like.

Testing our current snap without modifying it
In other tutorials, we directly edited snapcraft.yaml and replaced confinement: devmode by
strict, rebuilt the snap and so on. We will need to do that for the final snap. However, we can
bypass this by now by installing our devmode snap with strict confinement.

How to do this? Quite easily:

$ snap try --jailmode prime/
httpstat 1.1.3 mounted from <…>/prime

jailmode forces any snap declaring needing devmode to be fully confined.

Let’s give this a shot:

$ httpstat https://www.ubuntu.com
> curl -w <output-format> -D <tempfile> -o <tempfile> -s -S
https://www.ubuntu.com
curl error: curl: (6) Could not resolve host: www.ubuntu.com

We are almost there, but as you saw, this didn’t work! Indeed, the snap does not have access to
the Internet anymore because of the strict confinement. We need to declare that type of
access and only that (for example, the httpstat would still not have any access to the files in
our home directory).

Important: The error message was curl error: curl: (6) Couldn't
resolve host 'www.ubuntu.com'. When trying to make an Internet connection,
an app needs to first resolve the name of the server into the IP address. When there
is no access to the Internet, the resolve (the first step towards a network
connection) will not work, thus this error. A snap with confinement: strict
does not have any access to the Internet, unless explicitly allowed.

https://github.com/ubuntu/snap-tutorials-code/tree/master/snap-python-app/step3
http://www.ubuntu.com

Enabling access to network

To allow networking access to a snap, we need to specify that networking is OK for this snap.
network is an interface in snaps and it is one of the many supported interfaces for snaps.
There is the notion of plugs (provider of resource) and slots (consumer of resource). For
most cases, like this one here, we need a plug, a plug for network.

Let’s edit our snapcraft.yaml and declare for our httpstat command this access:

apps:
 httpstat:
 command: httpstat
 plugs: [network]

While we are at it and before we rebuild our snap, let’s change the confinement: line to set it
as strict.

Once we add these two lines, we reach the final version of snapcraft.yaml for httpstat.

confinement: strict

and let’s build it all:

$ snapcraft
Skipping pull httpstat (already ran)
Skipping build httpstat (already ran)
Skipping stage httpstat (already ran)
Skipping prime httpstat (already ran)
Snapping 'httpstat' -
Snapped httpstat_1.1.3_amd64.snap

Final testing

It’s time to install the final snap product, confined, and retest it (remember of --dangerous as
we are installing a local snap, and not one signed from the store):

$ snap install --dangerous httpstat_1.1.3_amd64.snap
httpstat 1.1.3 installed
$ httpstat https://www.ubuntu.com

HTTP/1.1 200 OK

Date: Thu, 16 Feb 2017 15:27:22 GMT
Server: gunicorn/17.5
Strict-Transport-Security: max-age=15768000
Content-Type: text/html; charset=utf-8
Content-Length: 34222
X-Cache: HIT from jujube.canonical.com
X-Cache-Lookup: HIT from jujube.canonical.com:80
Via: 1.0 jujube.canonical.com:80 (squid/2.7.STABLE7)
Vary: Accept-Encoding

Body stored in: /tmp/tmpvnlglnz3

 DNS Lookup TCP Connection SSL Handshake Server Processing Content
Transfer
[12ms | 25ms | 240ms | 21ms |
40ms]
 | | | |
|
 namelookup:12ms | | |
|
 connect:37ms | |
|
 pretransfer:277ms |
|
 starttransfer:298ms
|

total:338ms

And that’s it! The snap, with strict confinement, works!

That’s all folks!

Duration: 1:00

And here we go, that was quite easy isn’t it?

Final code

Your final code directory should now look like this. Do not hesitate to download and build your
snap from it if you only read it through!

You should by now have a complete python snap ready to be uploaded to the store, fully
confined, only having access to the network.
You now know how to snap a python application, the available options and handy features
it gives to you to make snapping it a breeze! You also have some notions on how to
reference external programs, branching them at specific tags. Finally, looking at the
output of our program, we were able to understand the secure interfaces it requires. This
allowed us to turn on confinement.

Next steps
●​ Now that you have package an application, you can learn how to snap a service, a more

iterative process on debugging confinement issues and more, on our unique build a
nodejs service tutorial. Chuck Norris is also starring it, how to resist? :)

●​ Learn some more advanced techniques on how to use your snap system looking for our
others codelabs!

●​ Join the snapcraft.io community on the snapcraft forum.

Further readings
●​ You can check online the python plugin reference.
●​ Common source options are used to define where to branch your code from.
●​ Snapcraft.io user interface documentation will give you some basics about slots, plugs

and interfaces.
●​ An interface reference explains and list existing interface, if they auto-connect or not

and more.
●​ Some basic notions on debugging a snap.
●​ Snapcraft syntax reference, covering various available options like the daemon ones.
●​ Check how you can contact us and the broader community.

https://github.com/ubuntu/snap-tutorials-code/tree/master/snap-python-app/final
https://forum.snapcraft.io/
https://snapcraft.io/docs/reference/plugins/python
https://snapcraft.io/docs/reference/plugins/source
http://snapcraft.io/docs/core/interfaces
http://snapcraft.io/docs/reference/interfaces
http://snapcraft.io/docs/build-snaps/debugging
http://snapcraft.io/docs/build-snaps/syntax
http://snapcraft.io/community/

	Snap a python application
	Overview
	What you’ll learn
	What you’ll need
	How will you use this tutorial?
	What is your current level of experience working with snap?

	
	
	Getting familiar with the project
	Introspect the code

	
	Crafting a working snap in devmode
	Scaffolding
	Main snapcraft.yaml metadata
	A python part
	Adding an httpstat command
	Polishing our snap (or rather, making it work ;))

	Let’s confine everything!
	Testing our current snap without modifying it
	Enabling access to network
	Final testing

	That’s all folks!
	Next steps
	Further readings

