
Java Wrapper Class
In Java, we have 8 primitive data types. Java provides type wrappers, which are classes that
encapsulate a primitive type within an Object.

●​ A wrapper class wraps (encloses) around a primitive datatype and gives it an object
appearance. Wherever the primitive datatype is required as an object type, this type
wrapper can be used.

●​ Wrapper classes include methods to unwrap the object and give back the data type.

●​ The type wrappers classes are part of java.lang package.

●​ Each primitive type has a corresponding wrapper class.

When to use Wrapper Classes?

Java wrapper classes are used in scenarios –

●​ When two methods wants to refer to the same instance of an primitive type, then
pass wrapper class as method arguments.

●​ Java Generics works only with object types and does not support primitive types.

●​ Java Collections deal only with objects; to store a primitive type in one of these
classes, you need to wrap the primitive type in a class.

●​ When you want to refer null from data type, the you need object. Primitives cannot
have null as value.

Converting Primitive Types to Wrapper Classes

There are two ways for converting a primitive type into an instance of the corresponding
wrapper class –

1.​ Using constructors (Deprecated since Java 9)

2.​ Using static factory methods

// 1. using constructor

Integer object = new Integer(10);

// 2. using static factory method

Integer anotherObject = Integer.valueOf(10);

In the above example, the valueOf() method is a static factory method that returns an
instance of Integer class representing the specified int value.

Similarly, we can convert the other primitive types like boolean to Boolean, char to
Character, short to Short, etc.

Java wrapper classes use internal caching which returns internally cached values upto a
limit. This internal caching of instances makes the wrapper classes more efficient in
performance and memory utilization.

Converting Wrapper Class to Primitive Type

Converting from wrapper class to primitive type is simple. Each wrapper class (Integer,
Double, etc.) provides a set of xxxValue() methods to obtain the corresponding primitive
value. e.g. intValue(), doubleValue(), shortValue() etc.

Integer integerObject = new Integer(10);

int intValue = integerObject.intValue();

Generally, using intValue() is the preferred method for converting a
Wrapper type (like Integer) to its corresponding primitive type (like
int).

Here's why:

●​ Clarity: It explicitly expresses the intent to convert the
wrapper to a primitive.

●​ Consistency: It aligns with other wrapper classes' methods for
getting primitive values (e.g., doubleValue, longValue).

●​ Avoids potential pitfalls: Unboxing (implicit conversion) can
sometimes lead to unexpected behavior, especially when dealing
with null values. Using intValue() makes the code more explicit
and less prone to errors.

Unboxing

Java automatically converts wrapper objects to primitive types in certain contexts, a process
known as unboxing. This happens implicitly in arithmetic operations, method parameters,
and conditional statements.

Integer integerObject = new Integer(10);

int intValue = integerObject + 5; // Unboxing occurs here

Typecasting (Not Preferred)

While possible, explicit type casting is generally not recommended as it might lead to
unexpected behavior if the wrapper object is null.

Integer integerObject = new Integer(10);

int intValue = (int) integerObject; // Type casting

Note:

●​ Using xxxValue() methods is the preferred way to convert wrapper objects to primitive
types.

●​ Unboxing is often the most convenient approach, but be aware of potential
NullPointerException if the wrapper object is null.

●​ Explicit type casting should be used with caution.

Additional Considerations:

●​ For boolean values, use booleanValue() method.

●​ For character values, use charValue() method.

●​ Be mindful of potential data loss when converting between numeric types (e.g., from
double to int).

By understanding these methods, you can effectively convert wrapper objects to primitive
types in your Java code.

	Java Wrapper Class

