

Indraprastha College for Women University of Delhi

Course Name:	B.Sc. (Hons.) Mathematics
Paper Title:	Linear Programming and Applications
Unique Paper Code:	
Semester:	VI
Faculty(s):	Mr. Ashutosh Rajput and Dr. Pradeep Kumar
Year:	2024

	Work Plan			
Unit No.	Learning Objective	Lecture No.	Topics to be Covered	
Ι	Learn about the graphical solution of linear	1	Linear programming problem	
	programming problem with two variables.	2	Linear programming problem	
	Learn about the relation between basic	3	Standard, Canonical and matrix forms	
	feasible solutions and extreme points.	4	Standard, Canonical and matrix forms	
		5	Standard, Canonical and matrix forms	
		6	Graphical solution	
		7	Convex and polyhedral sets	
		8	Convex and polyhedral sets	
		9	Hyperplanes, Extreme points	
		10	Basic solutions, Basic feasible solutions	
		11	Basic solutions, Basic feasible solutions	
		12	Reduction of feasible solution to a basic feasible solution	
		13	Reduction of feasible solution to a basic feasible solution	
		14	Correspondence between basic feasible solutions and extreme points.	
		15	Correspondence between basic feasible solutions and extreme points.	
II	Understand the theory of the simplex method	16	Simplex method	
	used to solve linear programming problems.	17	Simplex method	
	Learn about 2-phase & big-M methods to deal	18	Simplex method	

with problems involving artificial variables.	19	Optimal solution
	20	Optimal solution
	21	Optimal solution
	22	Termination criteria for optimal solution
	23	Termination criteria for optimal solution
	24	Termination criteria for optimal solution
	25	Termination criteria for optimal solution
	26	Unique and alternate optimal solutions
	27	Unique and alternate optimal solutions
	28	Unique and alternate optimal solutions
	29	Unique and alternate optimal solutions
	30	Unboundedness
	31	Unboundedness
	32	Unboundedness
	33	Simplex algorithm and its tableau format
	34	Simplex algorithm and its tableau format
	35	Simplex algorithm and its tableau format
	36	Simplex algorithm and its tableau format
	37	Artificial variables
	38	Two-phase method
	39	Two-phase method
	40	Two-phase method
	41	Big-M method
	42	Big-M method

	Syllabus			
Unit	Contents	Contac t Hours		
	Introduction to Linear Programming	15		
Ι	Linear programming problem: Standard, Canonical and matrix forms, Graphical solution; Convex and polyhedral sets, Hyperplanes, Extreme points; Basic solutions, Basic feasible solutions, Reduction of feasible solution to a basic feasible solution, Correspondence between basic feasible solutions and extreme points.			

	Methods of Solving Linear Programming Problem		25
Π	Simplex method: Optimal solution, Termination criteria for optimal solution of the linear programming problem, Unique and alternate optimal solutions, Unboundedness; Simplex algorithm and its tableau format; Artificial variables, Two-phase method, Big-M method.		
	Duality Theory of Linear Programming		
Ш	III Motivation and formulation of dual problem; Primal-Dual relationships; Fundamental theorem of duality; Complimentary slackness.		
	Applications		
IV	 IV Transportation Problem: Definition and formulation; Methods of finding initial basic feasible solutions; Northwest-corner rule. Least-cost method; Vogel's problems. Assignment Problem: Mathematical formulation and Hungarian method of solving. Game Theory: Basic concept, Formulation and solution of two-person zero-sum games, Games with mixed strategies, Linear programming method of solving a game. 		
Total			70
	Text Books/Suggested Readings:		
S. No.	No. Name of Authors/Books/Publishers Year		of Publication/ Repr int
1.	Bazaraa, Mokhtar S., Jarvis, John J., & Sherali, Hanif D. Linear Programming and etwork Flows (4th ed.). John Wiley and Sons.		2010
2.	Hadley, G. Linear Programming. Narosa Publishing House. New Delhi.		1997
3.	Taha, Hamdy A. Operations Research: An Introduction (9th ed.). Pearson.		2010
4.	Hillier, Frederick S. & Lieberman, Gerald J. Introduction to Operations Research (10th ed.). McGraw-Hill Education (India) Pvt. Ltd.		2014

	Paper Components			
Credits	Lecture (L)	Tutorial (T)	Practical (P)	
6	5	1	0	
Assessment Scheme				
S.No.	Component	Marking Scheme	Total Marks	
1	Internal Assessment		25	
	• Assignment/Quiz/Project/			

	Presentation	10	
	• Class Test	10	
	• Attendance	5	
3.	Practical	NA	NA
	Continuous Assessment	NA	
	• End Term Written/Practical Exam	NA	
	• Viva	NA	
4.	End Semester Examination		75