Chapter 20: Electricity

Section 20.1 – Electric Charge and Static Electricity

•	is a property that causes subatom	ic
particles such as repel each other.	to attract	or
1	ric charge is the	
• have a	a and	
have a		
 A cloud of negatively 	charged surroun	ds
the positively charged	l	
• The atom is	because it has an equal nu	mber
of positive and negati		
If an atom	_ electrons, it becomes a	
charged ion.		
If an atom	_ electrons, it becomes a	
charged ion.		
 charges	, and charge	S
·		
• The force of	between	
electrically charged of	bjects is	
• The electric force bet	ween two objects is	
	to the net charge on each ol	bject
and distance between then	to the square of the	
	has on other charg	og in
the space around it is	the charge's	<u> </u>

The	of an electric field depends on the
	that produces the field and on the
	from the charges.
The more	an object has, theis
the force on it	
The	of each field line shows the direction of
the force on a	
	is the study of the behavior of
_	es, including how charge is
between object	ts.
The	states that
the total charg	e in an isolated system is constant.
Charge can be	transferred by
_	loon on your hair is an example of
	move from your hair to the balloon because
atoms in rubbethan atoms in	er have a greater for electrons your hair.
When a girl to	cuches the generator
	quires a charge large enough to make her hairs
You pick up e	xtra when you walk across a
carpet, so you	r hand is
The net negati	ve charge in your hand repels the in
the metal door	knob.
Overall, the de	oorknob is still, but charge has
moved within	it.

 A transfer of charge 	between materials
is	
• The you feel wh	en touching a doorknob is
·	occurs when a pathway through
which charges can move forms	suddenly.
• is static dis	scharge that occurs because
charge can build up in a storm of moving air masses.	cloud from between
Section 20.1 Assessment	
 How is a net electric charge pro 	duced?
 What determines whether charge 	ges attract of repel?
 Name two factors that affect the 	e strength of an electric field.
 List three methods of charge tra 	insfer.
 Explain how static discharge or 	ecurs.
 How does electric force depend 	on the amount of charge and
the distance between charges?	on the amount of charge and
• What is the law of conservation	of charge?

• When a glass rod is rubbed with neutral silk, the glass becomes positively charges. What charge does the silk now have?

A continuous flow of electric charge is an

Section 20.2 – Electric Current and Ohm's Law

-
• The SI unit of electric current is the, or amp, which equals 1 coulomb per second.
ump, which equals I couldnot per second.
 The two types of current are
• Charge flows only flows in one direction in
.
 A flashlight and most battery-operated devices use
• is a flow of electric charge that
regularly reverses its direction.
• Electrons flow from the terminal of a batter
to the terminal of a battery.

• The current is in the direction because

• An ______ is a material through which

charge can flow easily. Examples include

flow.

current is the direction in which charges would

A material through which charge cannot flow easily is called an ______. Examples include

tend to be ele	ectrical	because
they are made up of an ion la	ttice.	
The	cannot move	e, but the
electrons can move.		
This mobile electron lattice is	s known as the	
	·	
As move t	hrough a wire, the	ey collide with
other particles which convert	s some kinetic ene	ergy into
·		
is opposition	on to the	of charges in
a material.		
The SI unit for resistance is the	he	
A material's		
affect its resistance.		
Resistance is	in a longer win	re because the
charges move		
As temperature	, a metal's resi	istance
because e		
A is		
resistance when it is cooled to	o low	
In order for charge to	in a conduction	ng wire, the wire
must be connected in a comp	lete that	t includes a
is th	he difference in ele	ectrical potential
energy between two places in	ı an	
Potential difference is measur	red in joules per co	oulomb, or
·		
Potential difference is also ca	alled	

Charges flow from	potential energy
 Three common voltag 	ge sources are
• A is a	device that converts
	to electrical energy.
 According to 	, the voltage (V) in a circuit
equals the(R).	of the current (I) and the resistance
V = I = R =	
Section 20.2 Assessment List the two types of	
 Name two good elect insulators. 	rical conductors and two good electrical
 What variables affect 	the resistance of a material?
 What causes charge to 	o flow?
 According to Ohm's land current? 	aw, how is voltage related to resistance

- Suppose you have two wires of equal length made from the same material. How is it possible for the wires to have different resistances?
- Use Ohm's law to explain how two circuits could have the same current but different resistances.

C 4.	20	~			\sim	• .
Section	711	- 4	H1	actric	('ira	PHILLE
DOCUM	40				\	

• An	is a complete path through which
charge can	
•	use symbols to represent parts of a
	of electrical energy and e run by the electrical energy.
• show pl	aces where the circuit can be
	, the circuit is not a complete loop, This is called an
	, the circuit is complete and
	is called a
	symbol indicate the positive
and negative	, charge has only path
through which it can f	low.
If one	_ stops functioning in a series circuit,
of the elen	nents can operate.
• The more	you have, the less brightly they shine.

•	A is an electric circuit with
	paths through which charges can
	flow.
•	If one stops functioning in a parallel
	circuit, the rest of the elements can still
	The at which electrical energy is to
	another form of energy is
•	The unit of electric power is the joule per second, or
	Electric power can be calculated by voltage by current.
P = I = V =	
	An electric oven is connected to a 240 volt line, and it uses 34 amps of current. What is the power used by the oven?
	A clothes dryer uses about 27 amps of current from a 240 volt line. How much power does it use?
	A camcorder has a power rating of 2.3 watts. If the output voltage from its battery is 7.2 volts, what current does it use?
	A power tool uses about 12 amps of current and has a power rating of 1440 watts. What voltage does the tool require?

• Correct, ruses, circuit breakers, insulation, a	ana
plugs help make electrical energy	to
use.	
• A prevents current overload in a circuit.	
• A is a switch that opens when	
current in a circuit is too high.	
• The transfer of charge through a conductor to)
Earth is called	
Section 20.3 Assessment	
 Name two elements included in a circuit diagram. 	
• What is the difference between a series circuit and a parall circuit?	lel
• Write the equation for calculating electric power.	
 Name five safety devices used with electric current. 	
 You plug in a string of holiday lights and notice that the enstring turns off when you remove one bulb. Explain why thappens. 	
• A stereo receiver uses a current of 2.2 amps from a 120 vo	olt

line. What is its power?

• A television connected to a 120 volt line uses 102 watts of power. How much current flows through it?