

Mathematics, Grade 9, Perimeter and Area

Revision

- Perimeter of a polygon: The sum of lengths of its sides or the distance along the sides of a shape.
- Area of a polygon: The amount of space covered by the polygon or the size of the flat surface enclosed by the polygon.
- 1cm = 10mm then $1cm2 = 10mm \times 10mm = 100mm2$
- 1m = 100 cm then $1m2 = 100 cm \times 100 cm = 10000 cm$ 2

Name	Shape	Perimeter	Area
Square	s	P = 4s	$A = s^2$
Rhombus	S/h	P = 4s	$A = base \times height$ $= b \times h$
Rectangle	b l	$P=2(l\times b)$	$A = length \times breadth$ $= l \times b$
Parallelogram	s ₁ h b	$P=2(s_1\times s_2)$	$A = base \times height$ $= b \times h$

Note

- A square is a regular polygon (All sides and all angles are equal). The formulae for calculating the perimeter of a square and a rhombus are the same.
- A rectangle, a parallelogram and a rhombus are irregular polygons. The formulae for calculating the perimeter of a square and a rhombus are the same.
- The formulae for calculating the perimeter of a square and a rhombus are the same.

Activity 1: Worked examples:

Example 1:

- a) Calculate the perimeter and area of square with a length of 8 cm.
- b) Convert answers in (a) to mm or mm2

Solutions:

- a) Perimeter = $4s = 4 \times 8 \ cm = 32cm$ and Area = $s^2 = (8 \ cm)^2 = 64 \ cm^2$
- b) $32 cm = (32 \times 10)mm = 320 mm \text{ and}$ $64 cm^2 = (64 \times 100)mm^2 = 6400 mm^2$

Example 2: The area of a rectangle is $72 cm^2$ and its length is 8 cm.

- a) What is its breadth?
- b) Express the answer in m.

Solution:

a) $(length \times breadth = Area of a rectangle$ $8 cm \times breadth = 72 cm²$ $<math>breadth = \frac{72 cm^2}{2}$

$$breadth = \frac{72 cm^2}{8cm}$$
$$= 9 cm$$

b)
$$9 cm = \left(\frac{9}{100}\right) m = 0.09 m$$

Example 3: The diagram alongside shows a parallelogram with sides 7,3 cm; 5,5 cm and height 3,8 cm.

 a) Calculate the perimeter and area of the parallelogram.

b) Convert area to m²

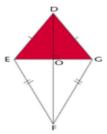
Solution:

- a) Perimeter = $2(s_1 + s_2) = 2(7.3 \text{ cm} + 5.5 \text{ cm}) = 25.6 \text{ cm}$ Area = $b \times h = 7.3 \text{ cm} \times 3.8 \text{ cm} = 27.74 \text{ cm}^2$
- b) $27,74 \text{ } cm^2 = 27,74 \times 0,0001 \text{ } m^2 = 0,002774 m^2$

Activity 2:

Calculate the perimeter and the height of a rhombus with base length 3.9 cm and area = $31.2 cm^2$.

Solution: Perimeter = 4s= $4 \times 3.9 cm$ = 15.6 cm


$$base \times height = Area of rhombus$$

$$3.9 cm \times height = 31.2 cm^2$$

$$height = \frac{31.2 \text{ cm}^2}{3.9 \text{ cm}}$$
$$= 8 \text{ cm}$$

Kite

To calculate the area of a kite, we use one of its properties, namely that the diagonals of a kite are perpendicular.

Area of a kite DEFG = Area of ΔDEG + Area of ΔEFG

$$= \frac{1}{2}(b \times h) + \frac{1}{2}(b \times h)$$

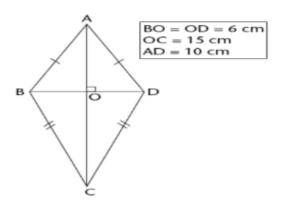
$$= \frac{1}{2}(EG \times OD) + \frac{1}{2}(EG \times OF)$$

$$= \frac{1}{2}EG(OD + OF)$$

$$= \frac{1}{2}EG \times DF$$

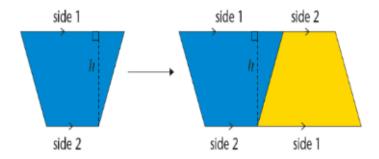
Take out common factor

Explain the above statement practically using flash cards to show how to derive a formula for the area of a kite


Area of a kite = $\frac{1}{2}$ (diagonal 1 × diagonal 2)

- Calculate the area of kite with the following diagonals. Give your 1. answers in m2
 - (a) 150 mm and 200 mm
- (b) 25 cm and 40 cm

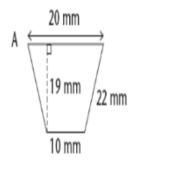
Solutions:

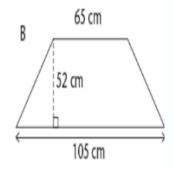

Solutions:
(a) Area=
$$\frac{1}{2}(d_1 \times d_2)$$
 (b) Area= $\frac{1}{2}(d_1 \times d_2)$
= $\frac{1}{2}(150 \text{ } mm \times 200 \text{ } mm)$ = $\frac{1}{2}(25 \text{ } cm \times 40 \text{ } cm)$
= 15 000 mm^2 = 500 cm^2
= 0,015 m^2 = 0,05 m^2

2. Calculate the area of the following kite.

Solution:
$$AO^2 + DO^2 = AD^2$$
 Pythagoras
 $AO^2 = (10 \text{ cm})^2 - (6 \text{ cm})^2$
 $= 100 \text{ cm}^2 - 36 \text{cm}^2$
 $= 64 \text{ cm}^2$
 $\therefore AO = 8 \text{ cm}$
Area= $\frac{1}{2}(d_1 \times d_2)$
 $= \frac{1}{2}((6+6) \text{ cm} \times (15+8) \text{cm})$
 $= \frac{1}{2}(12 \text{ cm} \times 23 \text{ cm})$
 $= 138 \text{ cm}^2$

A trapezium has two parallel sides. If tessellate (tile) two trapeziums as shown in the diagram below, we form a parallelogram. The yellow trapezium is the size of the blue one.

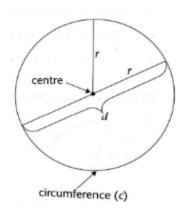

Use the formula for the area of a parallelogram to work out the formula for the area of a trapezium as follows:


Area of parallelogram= base x height = (side 1 + side 2) x height

Area of a trapezium = $\frac{1}{2}$ area of parallelogram = $\frac{1}{2}$ (side 1 + side 2) × height

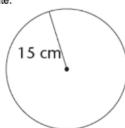
Are of a trapezium = $\frac{1}{2}$ (sum of parallel sides) × height

Activity: Calculate the area of the following trapeziums:


Solution: Figure A

Area =
$$\frac{1}{2}$$
(sum of parallel sides)× height
= $\frac{1}{2}$ (10 mm + 20 mm) × 19mm
= $\frac{1}{2}$ (30 mm × 19 mm)
= 285mm²
= 2,85cm²

Figure B


Area =
$$\frac{1}{2}$$
(sum of parallel sides)× height
= $\frac{1}{2}$ (105 cm + 65 cm) × 52 cm
= $\frac{1}{2}$ (170 cm × 52 cm)
= 4420 cm²
= 442 000 mm²

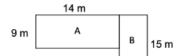
- The perimeter of a circle is called the circumference of a circle.
- Radius (r): distance from the centre
- Diameter (d) distance across the circle through the centre Ask learners to name parts of the circle.

Note: Emphasise the following:

- d = 2r and $r = \frac{1}{2}d$
- Circumference of a circle (c) = $2\pi r$ Area of a circle (A) = πr^2 $\pi \approx 3.14 \ or \frac{22}{7}$
- - 1. Calculate:

- a) the perimeter (circumference) of the circle.
- b) area of the circle below:

Solutions:


a)
$$P = 2\pi r$$

= 2 × 3,14 × 15 cm
= 94,2 cm

b)
$$A = \pi r^2$$

= $\pi (3.14 \text{ cm})^2$
= $3.14 \times 225 \text{ cm}^2$
= 706.5 cm^2

2. Calculate the radius of the circle with a circumference of 206 mm. (round off answer to one decimal place)

Solution:
$$2\pi r = P$$

 $2 \times 3,14 \times r = 206 \ mm$
 $6,28r = 206 \ mm$
 $r = 32,8 \ mm$

3. Use the figure below to:

$$= 46 m + 46 m - 18 m$$

= 74 m

b) A = Area of rectangle D + Area of rectangle E
=
$$(l \times b) + (l \times b)$$

= $(9 m \times 14 m) + (15 m \times 8 m)$
= $126 m^2 + 120 m^2$
= $246 m^2$

Present the following activity to learners:

The square below measures 1 cm × 1 cm:

Calculate the perimeter and area of the square.

Solution:

$$\begin{array}{lll} \textit{Perimeter} = 4s & \text{and} & \textit{Area} = s^2 \\ & = 4 \times 1 \, \textit{cm} & = (1 \, \textit{cm})^2 & \textit{or} \, 1 \, \textit{cm} \times 1 \, \textit{cm} \\ & = 4 \textit{cm} & = 1 \, \textit{cm}^2 \end{array}$$

Now if we double (Doubling means to multiply by 2) the dimensions of original square, the new square measures 2 $cm \times 2cm$. The shape of the new square would be as follows:

Calculate the perimeter and the area of the new square.

Solution:

Perimeter = 4s and Area =
$$s^2$$

= $4 \times 2 cm$ = $(2 cm)^2$ or $2 cm \times 2 cm$
= $8 cm$ = $4 cm^2$

What do you observe about the perimeter and the area of original square and the new square?

Solution:

- $\,\succ\,\,$ The perimeter of the new square is 2 \times perimeter of the original square.
- > The area of the new square is 4 × area of the original square.
- Is the observation TRUE for ALL 2D figures?